#ifndef _ASM_POWERPC_MMU_HASH64_H_ #define _ASM_POWERPC_MMU_HASH64_H_ /* * PowerPC64 memory management structures * * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> * PPC64 rework. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <asm/asm-compat.h> #include <asm/page.h> /* * Segment table */ #define STE_ESID_V 0x80 #define STE_ESID_KS 0x20 #define STE_ESID_KP 0x10 #define STE_ESID_N 0x08 #define STE_VSID_SHIFT 12 /* Location of cpu0's segment table */ #define STAB0_PAGE 0x6 #define STAB0_OFFSET (STAB0_PAGE << 12) #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) #ifndef __ASSEMBLY__ extern char initial_stab[]; #endif /* ! __ASSEMBLY */ /* * SLB */ #define SLB_NUM_BOLTED 3 #define SLB_CACHE_ENTRIES 8 /* Bits in the SLB ESID word */ #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ /* Bits in the SLB VSID word */ #define SLB_VSID_SHIFT 12 #define SLB_VSID_SHIFT_1T 24 #define SLB_VSID_SSIZE_SHIFT 62 #define SLB_VSID_B ASM_CONST(0xc000000000000000) #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) #define SLB_VSID_KS ASM_CONST(0x0000000000000800) #define SLB_VSID_KP ASM_CONST(0x0000000000000400) #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ #define SLB_VSID_L ASM_CONST(0x0000000000000100) #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ #define SLB_VSID_LP ASM_CONST(0x0000000000000030) #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) #define SLB_VSID_KERNEL (SLB_VSID_KP) #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) #define SLBIE_C (0x08000000) #define SLBIE_SSIZE_SHIFT 25 /* * Hash table */ #define HPTES_PER_GROUP 8 #define HPTE_V_SSIZE_SHIFT 62 #define HPTE_V_AVPN_SHIFT 7 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) #define HPTE_V_VALID ASM_CONST(0x0000000000000001) #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) #define HPTE_R_TS ASM_CONST(0x4000000000000000) #define HPTE_R_RPN_SHIFT 12 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) #define HPTE_R_PP ASM_CONST(0x0000000000000003) #define HPTE_R_N ASM_CONST(0x0000000000000004) #define HPTE_R_C ASM_CONST(0x0000000000000080) #define HPTE_R_R ASM_CONST(0x0000000000000100) #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) /* Values for PP (assumes Ks=0, Kp=1) */ /* pp0 will always be 0 for linux */ #define PP_RWXX 0 /* Supervisor read/write, User none */ #define PP_RWRX 1 /* Supervisor read/write, User read */ #define PP_RWRW 2 /* Supervisor read/write, User read/write */ #define PP_RXRX 3 /* Supervisor read, User read */ #ifndef __ASSEMBLY__ struct hash_pte { unsigned long v; unsigned long r; }; extern struct hash_pte *htab_address; extern unsigned long htab_size_bytes; extern unsigned long htab_hash_mask; /* * Page size definition * * shift : is the "PAGE_SHIFT" value for that page size * sllp : is a bit mask with the value of SLB L || LP to be or'ed * directly to a slbmte "vsid" value * penc : is the HPTE encoding mask for the "LP" field: * */ struct mmu_psize_def { unsigned int shift; /* number of bits */ unsigned int penc; /* HPTE encoding */ unsigned int tlbiel; /* tlbiel supported for that page size */ unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ }; #endif /* __ASSEMBLY__ */ /* * The kernel use the constants below to index in the page sizes array. * The use of fixed constants for this purpose is better for performances * of the low level hash refill handlers. * * A non supported page size has a "shift" field set to 0 * * Any new page size being implemented can get a new entry in here. Whether * the kernel will use it or not is a different matter though. The actual page * size used by hugetlbfs is not defined here and may be made variable */ #define MMU_PAGE_4K 0 /* 4K */ #define MMU_PAGE_64K 1 /* 64K */ #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ #define MMU_PAGE_1M 3 /* 1M */ #define MMU_PAGE_16M 4 /* 16M */ #define MMU_PAGE_16G 5 /* 16G */ #define MMU_PAGE_COUNT 6 /* * Segment sizes. * These are the values used by hardware in the B field of * SLB entries and the first dword of MMU hashtable entries. * The B field is 2 bits; the values 2 and 3 are unused and reserved. */ #define MMU_SEGSIZE_256M 0 #define MMU_SEGSIZE_1T 1 #ifndef __ASSEMBLY__ /* * The current system page and segment sizes */ extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; extern int mmu_linear_psize; extern int mmu_virtual_psize; extern int mmu_vmalloc_psize; extern int mmu_vmemmap_psize; extern int mmu_io_psize; extern int mmu_kernel_ssize; extern int mmu_highuser_ssize; extern u16 mmu_slb_size; extern unsigned long tce_alloc_start, tce_alloc_end; /* * If the processor supports 64k normal pages but not 64k cache * inhibited pages, we have to be prepared to switch processes * to use 4k pages when they create cache-inhibited mappings. * If this is the case, mmu_ci_restrictions will be set to 1. */ extern int mmu_ci_restrictions; #ifdef CONFIG_HUGETLB_PAGE /* * The page size indexes of the huge pages for use by hugetlbfs */ extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT]; #endif /* CONFIG_HUGETLB_PAGE */ /* * This function sets the AVPN and L fields of the HPTE appropriately * for the page size */ static inline unsigned long hpte_encode_v(unsigned long va, int psize, int ssize) { unsigned long v; v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); v <<= HPTE_V_AVPN_SHIFT; if (psize != MMU_PAGE_4K) v |= HPTE_V_LARGE; v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; return v; } /* * This function sets the ARPN, and LP fields of the HPTE appropriately * for the page size. We assume the pa is already "clean" that is properly * aligned for the requested page size */ static inline unsigned long hpte_encode_r(unsigned long pa, int psize) { unsigned long r; /* A 4K page needs no special encoding */ if (psize == MMU_PAGE_4K) return pa & HPTE_R_RPN; else { unsigned int penc = mmu_psize_defs[psize].penc; unsigned int shift = mmu_psize_defs[psize].shift; return (pa & ~((1ul << shift) - 1)) | (penc << 12); } return r; } /* * Build a VA given VSID, EA and segment size */ static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid, int ssize) { if (ssize == MMU_SEGSIZE_256M) return (vsid << 28) | (ea & 0xfffffffUL); return (vsid << 40) | (ea & 0xffffffffffUL); } /* * This hashes a virtual address */ static inline unsigned long hpt_hash(unsigned long va, unsigned int shift, int ssize) { unsigned long hash, vsid; if (ssize == MMU_SEGSIZE_256M) { hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift); } else { vsid = va >> 40; hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift); } return hash & 0x7fffffffffUL; } extern int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned int local, int ssize, int subpage_prot); extern int __hash_page_64K(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned int local, int ssize); struct mm_struct; extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); extern int hash_huge_page(struct mm_struct *mm, unsigned long access, unsigned long ea, unsigned long vsid, int local, unsigned long trap); extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, unsigned long pstart, unsigned long prot, int psize, int ssize); extern void set_huge_psize(int psize); extern void add_gpage(unsigned long addr, unsigned long page_size, unsigned long number_of_pages); extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); extern void htab_initialize(void); extern void htab_initialize_secondary(void); extern void hpte_init_native(void); extern void hpte_init_lpar(void); extern void hpte_init_iSeries(void); extern void hpte_init_beat(void); extern void hpte_init_beat_v3(void); extern void stabs_alloc(void); extern void slb_initialize(void); extern void slb_flush_and_rebolt(void); extern void stab_initialize(unsigned long stab); extern void slb_vmalloc_update(void); #endif /* __ASSEMBLY__ */ /* * VSID allocation * * We first generate a 36-bit "proto-VSID". For kernel addresses this * is equal to the ESID, for user addresses it is: * (context << 15) | (esid & 0x7fff) * * The two forms are distinguishable because the top bit is 0 for user * addresses, whereas the top two bits are 1 for kernel addresses. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for * now. * * The proto-VSIDs are then scrambled into real VSIDs with the * multiplicative hash: * * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF * * This scramble is only well defined for proto-VSIDs below * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are * reserved. VSID_MULTIPLIER is prime, so in particular it is * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. * Because the modulus is 2^n-1 we can compute it efficiently without * a divide or extra multiply (see below). * * This scheme has several advantages over older methods: * * - We have VSIDs allocated for every kernel address * (i.e. everything above 0xC000000000000000), except the very top * segment, which simplifies several things. * * - We allow for 15 significant bits of ESID and 20 bits of * context for user addresses. i.e. 8T (43 bits) of address space for * up to 1M contexts (although the page table structure and context * allocation will need changes to take advantage of this). * * - The scramble function gives robust scattering in the hash * table (at least based on some initial results). The previous * method was more susceptible to pathological cases giving excessive * hash collisions. */ /* * WARNING - If you change these you must make sure the asm * implementations in slb_allocate (slb_low.S), do_stab_bolted * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. * * You'll also need to change the precomputed VSID values in head.S * which are used by the iSeries firmware. */ #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */ #define VSID_BITS_256M 36 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1) #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ #define VSID_BITS_1T 24 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1) #define CONTEXT_BITS 19 #define USER_ESID_BITS 16 #define USER_ESID_BITS_1T 4 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) /* * This macro generates asm code to compute the VSID scramble * function. Used in slb_allocate() and do_stab_bolted. The function * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS * * rt = register continaing the proto-VSID and into which the * VSID will be stored * rx = scratch register (clobbered) * * - rt and rx must be different registers * - The answer will end up in the low VSID_BITS bits of rt. The higher * bits may contain other garbage, so you may need to mask the * result. */ #define ASM_VSID_SCRAMBLE(rt, rx, size) \ lis rx,VSID_MULTIPLIER_##size@h; \ ori rx,rx,VSID_MULTIPLIER_##size@l; \ mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ \ srdi rx,rt,VSID_BITS_##size; \ clrldi rt,rt,(64-VSID_BITS_##size); \ add rt,rt,rx; /* add high and low bits */ \ /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ * 2^36-1+2^28-1. That in particular means that if r3 >= \ * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ * the bit clear, r3 already has the answer we want, if it \ * doesn't, the answer is the low 36 bits of r3+1. So in all \ * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ addi rx,rt,1; \ srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ add rt,rt,rx #ifndef __ASSEMBLY__ typedef unsigned long mm_context_id_t; typedef struct { mm_context_id_t id; u16 user_psize; /* page size index */ #ifdef CONFIG_PPC_MM_SLICES u64 low_slices_psize; /* SLB page size encodings */ u64 high_slices_psize; /* 4 bits per slice for now */ #else u16 sllp; /* SLB page size encoding */ #endif unsigned long vdso_base; } mm_context_t; #if 0 /* * The code below is equivalent to this function for arguments * < 2^VSID_BITS, which is all this should ever be called * with. However gcc is not clever enough to compute the * modulus (2^n-1) without a second multiply. */ #define vsid_scrample(protovsid, size) \ ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) #else /* 1 */ #define vsid_scramble(protovsid, size) \ ({ \ unsigned long x; \ x = (protovsid) * VSID_MULTIPLIER_##size; \ x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ }) #endif /* 1 */ /* This is only valid for addresses >= KERNELBASE */ static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) { if (ssize == MMU_SEGSIZE_256M) return vsid_scramble(ea >> SID_SHIFT, 256M); return vsid_scramble(ea >> SID_SHIFT_1T, 1T); } /* Returns the segment size indicator for a user address */ static inline int user_segment_size(unsigned long addr) { /* Use 1T segments if possible for addresses >= 1T */ if (addr >= (1UL << SID_SHIFT_1T)) return mmu_highuser_ssize; return MMU_SEGSIZE_256M; } /* This is only valid for user addresses (which are below 2^44) */ static inline unsigned long get_vsid(unsigned long context, unsigned long ea, int ssize) { if (ssize == MMU_SEGSIZE_256M) return vsid_scramble((context << USER_ESID_BITS) | (ea >> SID_SHIFT), 256M); return vsid_scramble((context << USER_ESID_BITS_1T) | (ea >> SID_SHIFT_1T), 1T); } /* * This is only used on legacy iSeries in lparmap.c, * hence the 256MB segment assumption. */ #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \ VSID_MODULUS_256M) #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_MMU_HASH64_H_ */