/* * Machine check exception handling CPU-side for power7 and power8 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright 2013 IBM Corporation * Author: Mahesh Salgaonkar */ #undef DEBUG #define pr_fmt(fmt) "mce_power: " fmt #include #include #include #include #include static void flush_tlb_206(unsigned int num_sets, unsigned int action) { unsigned long rb; unsigned int i; switch (action) { case TLB_INVAL_SCOPE_GLOBAL: rb = TLBIEL_INVAL_SET; break; case TLB_INVAL_SCOPE_LPID: rb = TLBIEL_INVAL_SET_LPID; break; default: BUG(); break; } asm volatile("ptesync" : : : "memory"); for (i = 0; i < num_sets; i++) { asm volatile("tlbiel %0" : : "r" (rb)); rb += 1 << TLBIEL_INVAL_SET_SHIFT; } asm volatile("ptesync" : : : "memory"); } static void flush_tlb_300(unsigned int num_sets, unsigned int action) { unsigned long rb; unsigned int i; unsigned int r; switch (action) { case TLB_INVAL_SCOPE_GLOBAL: rb = TLBIEL_INVAL_SET; break; case TLB_INVAL_SCOPE_LPID: rb = TLBIEL_INVAL_SET_LPID; break; default: BUG(); break; } asm volatile("ptesync" : : : "memory"); if (early_radix_enabled()) r = 1; else r = 0; /* * First flush table/PWC caches with set 0, then flush the * rest of the sets, partition scope. Radix must then do it * all again with process scope. Hash just has to flush * process table. */ asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) : : "r"(rb), "r"(0), "i"(2), "i"(0), "r"(r)); for (i = 1; i < num_sets; i++) { unsigned long set = i * (1< TLB_INVAL_SCOPE_GLOBAL: Invalidate all TLBs. * TLB_INVAL_SCOPE_LPID: Invalidate TLB for current LPID. */ void __flush_tlb_power7(unsigned int action) { flush_tlb_206(POWER7_TLB_SETS, action); } void __flush_tlb_power8(unsigned int action) { flush_tlb_206(POWER8_TLB_SETS, action); } void __flush_tlb_power9(unsigned int action) { unsigned int num_sets; if (radix_enabled()) num_sets = POWER9_TLB_SETS_RADIX; else num_sets = POWER9_TLB_SETS_HASH; flush_tlb_300(num_sets, action); } /* flush SLBs and reload */ #ifdef CONFIG_PPC_STD_MMU_64 static void flush_and_reload_slb(void) { struct slb_shadow *slb; unsigned long i, n; /* Invalidate all SLBs */ asm volatile("slbmte %0,%0; slbia" : : "r" (0)); #ifdef CONFIG_KVM_BOOK3S_HANDLER /* * If machine check is hit when in guest or in transition, we will * only flush the SLBs and continue. */ if (get_paca()->kvm_hstate.in_guest) return; #endif /* For host kernel, reload the SLBs from shadow SLB buffer. */ slb = get_slb_shadow(); if (!slb) return; n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE); /* Load up the SLB entries from shadow SLB */ for (i = 0; i < n; i++) { unsigned long rb = be64_to_cpu(slb->save_area[i].esid); unsigned long rs = be64_to_cpu(slb->save_area[i].vsid); rb = (rb & ~0xFFFul) | i; asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb)); } } #endif static void flush_erat(void) { asm volatile(PPC_INVALIDATE_ERAT : : :"memory"); } #define MCE_FLUSH_SLB 1 #define MCE_FLUSH_TLB 2 #define MCE_FLUSH_ERAT 3 static int mce_flush(int what) { #ifdef CONFIG_PPC_STD_MMU_64 if (what == MCE_FLUSH_SLB) { flush_and_reload_slb(); return 1; } #endif if (what == MCE_FLUSH_ERAT) { flush_erat(); return 1; } if (what == MCE_FLUSH_TLB) { if (cur_cpu_spec && cur_cpu_spec->flush_tlb) { cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_GLOBAL); return 1; } } return 0; } #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42)) struct mce_ierror_table { unsigned long srr1_mask; unsigned long srr1_value; bool nip_valid; /* nip is a valid indicator of faulting address */ unsigned int error_type; unsigned int error_subtype; unsigned int initiator; unsigned int severity; }; static const struct mce_ierror_table mce_p7_ierror_table[] = { { 0x00000000001c0000, 0x0000000000040000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000001c0000, 0x0000000000080000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000001c0000, 0x00000000000c0000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000001c0000, 0x0000000000100000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */ MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000001c0000, 0x0000000000140000, true, MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000001c0000, 0x0000000000180000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000001c0000, 0x00000000001c0000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0, 0, 0, 0, 0, 0 } }; static const struct mce_ierror_table mce_p8_ierror_table[] = { { 0x00000000081c0000, 0x0000000000040000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000080000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x00000000000c0000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000100000, true, MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000140000, true, MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000180000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x00000000001c0000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000008000000, true, MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000008040000, true, MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0, 0, 0, 0, 0, 0 } }; static const struct mce_ierror_table mce_p9_ierror_table[] = { { 0x00000000081c0000, 0x0000000000040000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000080000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x00000000000c0000, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000100000, true, MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000140000, true, MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000000180000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x00000000001c0000, true, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_IFETCH_FOREIGN, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000008000000, true, MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000008040000, true, MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x00000000080c0000, true, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000008100000, true, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000000081c0000, 0x0000000008140000, false, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_STORE, MCE_INITIATOR_CPU, MCE_SEV_FATAL, }, /* ASYNC is fatal */ { 0x00000000081c0000, 0x0000000008180000, false, MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_FATAL, }, /* ASYNC is fatal */ { 0x00000000081c0000, 0x00000000081c0000, true, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0, 0, 0, 0, 0, 0 } }; struct mce_derror_table { unsigned long dsisr_value; bool dar_valid; /* dar is a valid indicator of faulting address */ unsigned int error_type; unsigned int error_subtype; unsigned int initiator; unsigned int severity; }; static const struct mce_derror_table mce_p7_derror_table[] = { { 0x00008000, false, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00004000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000800, true, MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000400, true, MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000100, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000080, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000040, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */ MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0, false, 0, 0, 0, 0 } }; static const struct mce_derror_table mce_p8_derror_table[] = { { 0x00008000, false, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00004000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00002000, true, MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00001000, true, MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000800, true, MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000400, true, MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000200, true, MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */ MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000100, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000080, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0, false, 0, 0, 0, 0 } }; static const struct mce_derror_table mce_p9_derror_table[] = { { 0x00008000, false, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00004000, true, MCE_ERROR_TYPE_UE, MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00002000, true, MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00001000, true, MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000800, true, MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000400, true, MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000200, false, MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000100, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000080, true, MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000040, true, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_LOAD, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000020, false, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000010, false, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0x00000008, false, MCE_ERROR_TYPE_RA, MCE_RA_ERROR_LOAD_STORE_FOREIGN, MCE_INITIATOR_CPU, MCE_SEV_ERROR_SYNC, }, { 0, false, 0, 0, 0, 0 } }; static int mce_handle_ierror(struct pt_regs *regs, const struct mce_ierror_table table[], struct mce_error_info *mce_err, uint64_t *addr) { uint64_t srr1 = regs->msr; int handled = 0; int i; *addr = 0; for (i = 0; table[i].srr1_mask; i++) { if ((srr1 & table[i].srr1_mask) != table[i].srr1_value) continue; /* attempt to correct the error */ switch (table[i].error_type) { case MCE_ERROR_TYPE_SLB: handled = mce_flush(MCE_FLUSH_SLB); break; case MCE_ERROR_TYPE_ERAT: handled = mce_flush(MCE_FLUSH_ERAT); break; case MCE_ERROR_TYPE_TLB: handled = mce_flush(MCE_FLUSH_TLB); break; } /* now fill in mce_error_info */ mce_err->error_type = table[i].error_type; switch (table[i].error_type) { case MCE_ERROR_TYPE_UE: mce_err->u.ue_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_SLB: mce_err->u.slb_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_ERAT: mce_err->u.erat_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_TLB: mce_err->u.tlb_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_USER: mce_err->u.user_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_RA: mce_err->u.ra_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_LINK: mce_err->u.link_error_type = table[i].error_subtype; break; } mce_err->severity = table[i].severity; mce_err->initiator = table[i].initiator; if (table[i].nip_valid) *addr = regs->nip; return handled; } mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN; mce_err->severity = MCE_SEV_ERROR_SYNC; mce_err->initiator = MCE_INITIATOR_CPU; return 0; } static int mce_handle_derror(struct pt_regs *regs, const struct mce_derror_table table[], struct mce_error_info *mce_err, uint64_t *addr) { uint64_t dsisr = regs->dsisr; int handled = 0; int found = 0; int i; *addr = 0; for (i = 0; table[i].dsisr_value; i++) { if (!(dsisr & table[i].dsisr_value)) continue; /* attempt to correct the error */ switch (table[i].error_type) { case MCE_ERROR_TYPE_SLB: if (mce_flush(MCE_FLUSH_SLB)) handled = 1; break; case MCE_ERROR_TYPE_ERAT: if (mce_flush(MCE_FLUSH_ERAT)) handled = 1; break; case MCE_ERROR_TYPE_TLB: if (mce_flush(MCE_FLUSH_TLB)) handled = 1; break; } /* * Attempt to handle multiple conditions, but only return * one. Ensure uncorrectable errors are first in the table * to match. */ if (found) continue; /* now fill in mce_error_info */ mce_err->error_type = table[i].error_type; switch (table[i].error_type) { case MCE_ERROR_TYPE_UE: mce_err->u.ue_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_SLB: mce_err->u.slb_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_ERAT: mce_err->u.erat_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_TLB: mce_err->u.tlb_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_USER: mce_err->u.user_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_RA: mce_err->u.ra_error_type = table[i].error_subtype; break; case MCE_ERROR_TYPE_LINK: mce_err->u.link_error_type = table[i].error_subtype; break; } mce_err->severity = table[i].severity; mce_err->initiator = table[i].initiator; if (table[i].dar_valid) *addr = regs->dar; found = 1; } if (found) return handled; mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN; mce_err->severity = MCE_SEV_ERROR_SYNC; mce_err->initiator = MCE_INITIATOR_CPU; return 0; } static long mce_handle_ue_error(struct pt_regs *regs) { long handled = 0; /* * On specific SCOM read via MMIO we may get a machine check * exception with SRR0 pointing inside opal. If that is the * case OPAL may have recovery address to re-read SCOM data in * different way and hence we can recover from this MC. */ if (ppc_md.mce_check_early_recovery) { if (ppc_md.mce_check_early_recovery(regs)) handled = 1; } return handled; } static long mce_handle_error(struct pt_regs *regs, const struct mce_derror_table dtable[], const struct mce_ierror_table itable[]) { struct mce_error_info mce_err = { 0 }; uint64_t addr; uint64_t srr1 = regs->msr; long handled; if (SRR1_MC_LOADSTORE(srr1)) handled = mce_handle_derror(regs, dtable, &mce_err, &addr); else handled = mce_handle_ierror(regs, itable, &mce_err, &addr); if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE) handled = mce_handle_ue_error(regs); save_mce_event(regs, handled, &mce_err, regs->nip, addr); return handled; } long __machine_check_early_realmode_p7(struct pt_regs *regs) { /* P7 DD1 leaves top bits of DSISR undefined */ regs->dsisr &= 0x0000ffff; return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table); } long __machine_check_early_realmode_p8(struct pt_regs *regs) { return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table); } long __machine_check_early_realmode_p9(struct pt_regs *regs) { /* * On POWER9 DD2.1 and below, it's possible to get a machine check * caused by a paste instruction where only DSISR bit 30 is set. This * will result in the MCE handler seeing an unknown event and the kernel * crashing. An MCE that occurs like this is spurious, so we don't need * to do anything in terms of servicing it. If there is something that * needs to be serviced, the CPU will raise the MCE again with the * correct DSISR so that it can be serviced properly. So detect this * case and mark it as handled. */ if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x40000000) return 1; return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table); }