/* * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include "mmu_decl.h" #include unsigned long __pmd_frag_nr; EXPORT_SYMBOL(__pmd_frag_nr); unsigned long __pmd_frag_size_shift; EXPORT_SYMBOL(__pmd_frag_size_shift); int (*register_process_table)(unsigned long base, unsigned long page_size, unsigned long tbl_size); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is called when relaxing access to a hugepage. It's also called in the page * fault path when we don't hit any of the major fault cases, ie, a minor * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have * handled those two for us, we additionally deal with missing execute * permission here on some processors */ int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { int changed; #ifdef CONFIG_DEBUG_VM WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); #endif changed = !pmd_same(*(pmdp), entry); if (changed) { /* * We can use MMU_PAGE_2M here, because only radix * path look at the psize. */ __ptep_set_access_flags(vma, pmdp_ptep(pmdp), pmd_pte(entry), address, MMU_PAGE_2M); } return changed; } int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); } /* * set a new huge pmd. We should not be called for updating * an existing pmd entry. That should go via pmd_hugepage_update. */ void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { #ifdef CONFIG_DEBUG_VM /* * Make sure hardware valid bit is not set. We don't do * tlb flush for this update. */ WARN_ON(pte_val(pmd_pte(*pmdp)) & _PAGE_PRESENT); assert_spin_locked(pmd_lockptr(mm, pmdp)); WARN_ON(!(pmd_trans_huge(pmd) || pmd_devmap(pmd))); #endif trace_hugepage_set_pmd(addr, pmd_val(pmd)); return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); } static void do_nothing(void *unused) { } /* * Serialize against find_current_mm_pte which does lock-less * lookup in page tables with local interrupts disabled. For huge pages * it casts pmd_t to pte_t. Since format of pte_t is different from * pmd_t we want to prevent transit from pmd pointing to page table * to pmd pointing to huge page (and back) while interrupts are disabled. * We clear pmd to possibly replace it with page table pointer in * different code paths. So make sure we wait for the parallel * find_current_mm_pte to finish. */ void serialize_against_pte_lookup(struct mm_struct *mm) { smp_mb(); smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); } /* * We use this to invalidate a pmdp entry before switching from a * hugepte to regular pmd entry. */ pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { unsigned long old_pmd; old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); /* * This ensures that generic code that rely on IRQ disabling * to prevent a parallel THP split work as expected. */ serialize_against_pte_lookup(vma->vm_mm); return __pmd(old_pmd); } static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) { return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); } pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) { unsigned long pmdv; pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; return pmd_set_protbits(__pmd(pmdv), pgprot); } pmd_t mk_pmd(struct page *page, pgprot_t pgprot) { return pfn_pmd(page_to_pfn(page), pgprot); } pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { unsigned long pmdv; pmdv = pmd_val(pmd); pmdv &= _HPAGE_CHG_MASK; return pmd_set_protbits(__pmd(pmdv), newprot); } /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a HUGE PMD entry in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux HUGE PMD entry. */ void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { if (radix_enabled()) prefetch((void *)addr); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* For use by kexec */ void mmu_cleanup_all(void) { if (radix_enabled()) radix__mmu_cleanup_all(); else if (mmu_hash_ops.hpte_clear_all) mmu_hash_ops.hpte_clear_all(); } #ifdef CONFIG_MEMORY_HOTPLUG int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid) { if (radix_enabled()) return radix__create_section_mapping(start, end, nid); return hash__create_section_mapping(start, end, nid); } int __meminit remove_section_mapping(unsigned long start, unsigned long end) { if (radix_enabled()) return radix__remove_section_mapping(start, end); return hash__remove_section_mapping(start, end); } #endif /* CONFIG_MEMORY_HOTPLUG */ void __init mmu_partition_table_init(void) { unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; unsigned long ptcr; BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); partition_tb = __va(memblock_alloc_base(patb_size, patb_size, MEMBLOCK_ALLOC_ANYWHERE)); /* Initialize the Partition Table with no entries */ memset((void *)partition_tb, 0, patb_size); /* * update partition table control register, * 64 K size. */ ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); mtspr(SPRN_PTCR, ptcr); powernv_set_nmmu_ptcr(ptcr); } void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, unsigned long dw1) { unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); partition_tb[lpid].patb0 = cpu_to_be64(dw0); partition_tb[lpid].patb1 = cpu_to_be64(dw1); /* * Global flush of TLBs and partition table caches for this lpid. * The type of flush (hash or radix) depends on what the previous * use of this partition ID was, not the new use. */ asm volatile("ptesync" : : : "memory"); if (old & PATB_HR) { asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1); } else { asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); } /* do we need fixup here ?*/ asm volatile("eieio; tlbsync; ptesync" : : : "memory"); } EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); static pmd_t *get_pmd_from_cache(struct mm_struct *mm) { void *pmd_frag, *ret; spin_lock(&mm->page_table_lock); ret = mm->context.pmd_frag; if (ret) { pmd_frag = ret + PMD_FRAG_SIZE; /* * If we have taken up all the fragments mark PTE page NULL */ if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) pmd_frag = NULL; mm->context.pmd_frag = pmd_frag; } spin_unlock(&mm->page_table_lock); return (pmd_t *)ret; } static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) { void *ret = NULL; struct page *page; gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; if (mm == &init_mm) gfp &= ~__GFP_ACCOUNT; page = alloc_page(gfp); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } atomic_set(&page->pt_frag_refcount, 1); ret = page_address(page); /* * if we support only one fragment just return the * allocated page. */ if (PMD_FRAG_NR == 1) return ret; spin_lock(&mm->page_table_lock); /* * If we find pgtable_page set, we return * the allocated page with single fragement * count. */ if (likely(!mm->context.pmd_frag)) { atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); mm->context.pmd_frag = ret + PMD_FRAG_SIZE; } spin_unlock(&mm->page_table_lock); return (pmd_t *)ret; } pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) { pmd_t *pmd; pmd = get_pmd_from_cache(mm); if (pmd) return pmd; return __alloc_for_pmdcache(mm); } void pmd_fragment_free(unsigned long *pmd) { struct page *page = virt_to_page(pmd); BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); if (atomic_dec_and_test(&page->pt_frag_refcount)) { pgtable_pmd_page_dtor(page); __free_page(page); } } static pte_t *get_pte_from_cache(struct mm_struct *mm) { void *pte_frag, *ret; spin_lock(&mm->page_table_lock); ret = mm->context.pte_frag; if (ret) { pte_frag = ret + PTE_FRAG_SIZE; /* * If we have taken up all the fragments mark PTE page NULL */ if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) pte_frag = NULL; mm->context.pte_frag = pte_frag; } spin_unlock(&mm->page_table_lock); return (pte_t *)ret; } static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel) { void *ret = NULL; struct page *page; if (!kernel) { page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT); if (!page) return NULL; if (!pgtable_page_ctor(page)) { __free_page(page); return NULL; } } else { page = alloc_page(PGALLOC_GFP); if (!page) return NULL; } atomic_set(&page->pt_frag_refcount, 1); ret = page_address(page); /* * if we support only one fragment just return the * allocated page. */ if (PTE_FRAG_NR == 1) return ret; spin_lock(&mm->page_table_lock); /* * If we find pgtable_page set, we return * the allocated page with single fragement * count. */ if (likely(!mm->context.pte_frag)) { atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR); mm->context.pte_frag = ret + PTE_FRAG_SIZE; } spin_unlock(&mm->page_table_lock); return (pte_t *)ret; } pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel) { pte_t *pte; pte = get_pte_from_cache(mm); if (pte) return pte; return __alloc_for_ptecache(mm, kernel); } void pte_fragment_free(unsigned long *table, int kernel) { struct page *page = virt_to_page(table); BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); if (atomic_dec_and_test(&page->pt_frag_refcount)) { if (!kernel) pgtable_page_dtor(page); __free_page(page); } } static inline void pgtable_free(void *table, int index) { switch (index) { case PTE_INDEX: pte_fragment_free(table, 0); break; case PMD_INDEX: pmd_fragment_free(table); break; case PUD_INDEX: kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); break; #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) /* 16M hugepd directory at pud level */ case HTLB_16M_INDEX: BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); break; /* 16G hugepd directory at the pgd level */ case HTLB_16G_INDEX: BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); break; #endif /* We don't free pgd table via RCU callback */ default: BUG(); } } #ifdef CONFIG_SMP void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) { unsigned long pgf = (unsigned long)table; BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); pgf |= index; tlb_remove_table(tlb, (void *)pgf); } void __tlb_remove_table(void *_table) { void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; return pgtable_free(table, index); } #else void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) { return pgtable_free(table, index); } #endif #ifdef CONFIG_PROC_FS atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; void arch_report_meminfo(struct seq_file *m) { /* * Hash maps the memory with one size mmu_linear_psize. * So don't bother to print these on hash */ if (!radix_enabled()) return; seq_printf(m, "DirectMap4k: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); seq_printf(m, "DirectMap64k: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); seq_printf(m, "DirectMap2M: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); seq_printf(m, "DirectMap1G: %8lu kB\n", atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); } #endif /* CONFIG_PROC_FS */