// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2016, Rashmica Gupta, IBM Corp. * * This traverses the kernel pagetables and dumps the * information about the used sections of memory to * /sys/kernel/debug/kernel_pagetables. * * Derived from the arm64 implementation: * Copyright (c) 2014, The Linux Foundation, Laura Abbott. * (C) Copyright 2008 Intel Corporation, Arjan van de Ven. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ptdump.h" /* * To visualise what is happening, * * - PTRS_PER_P** = how many entries there are in the corresponding P** * - P**_SHIFT = how many bits of the address we use to index into the * corresponding P** * - P**_SIZE is how much memory we can access through the table - not the * size of the table itself. * P**={PGD, PUD, PMD, PTE} * * * Each entry of the PGD points to a PUD. Each entry of a PUD points to a * PMD. Each entry of a PMD points to a PTE. And every PTE entry points to * a page. * * In the case where there are only 3 levels, the PUD is folded into the * PGD: every PUD has only one entry which points to the PMD. * * The page dumper groups page table entries of the same type into a single * description. It uses pg_state to track the range information while * iterating over the PTE entries. When the continuity is broken it then * dumps out a description of the range - ie PTEs that are virtually contiguous * with the same PTE flags are chunked together. This is to make it clear how * different areas of the kernel virtual memory are used. * */ struct pg_state { struct seq_file *seq; const struct addr_marker *marker; unsigned long start_address; unsigned long start_pa; unsigned long last_pa; unsigned int level; u64 current_flags; bool check_wx; unsigned long wx_pages; }; struct addr_marker { unsigned long start_address; const char *name; }; static struct addr_marker address_markers[] = { { 0, "Start of kernel VM" }, { 0, "vmalloc() Area" }, { 0, "vmalloc() End" }, #ifdef CONFIG_PPC64 { 0, "isa I/O start" }, { 0, "isa I/O end" }, { 0, "phb I/O start" }, { 0, "phb I/O end" }, { 0, "I/O remap start" }, { 0, "I/O remap end" }, { 0, "vmemmap start" }, #else { 0, "Early I/O remap start" }, { 0, "Early I/O remap end" }, #ifdef CONFIG_HIGHMEM { 0, "Highmem PTEs start" }, { 0, "Highmem PTEs end" }, #endif { 0, "Fixmap start" }, { 0, "Fixmap end" }, #endif #ifdef CONFIG_KASAN { 0, "kasan shadow mem start" }, { 0, "kasan shadow mem end" }, #endif { -1, NULL }, }; #define pt_dump_seq_printf(m, fmt, args...) \ ({ \ if (m) \ seq_printf(m, fmt, ##args); \ }) #define pt_dump_seq_putc(m, c) \ ({ \ if (m) \ seq_putc(m, c); \ }) static void dump_flag_info(struct pg_state *st, const struct flag_info *flag, u64 pte, int num) { unsigned int i; for (i = 0; i < num; i++, flag++) { const char *s = NULL; u64 val; /* flag not defined so don't check it */ if (flag->mask == 0) continue; /* Some 'flags' are actually values */ if (flag->is_val) { val = pte & flag->val; if (flag->shift) val = val >> flag->shift; pt_dump_seq_printf(st->seq, " %s:%llx", flag->set, val); } else { if ((pte & flag->mask) == flag->val) s = flag->set; else s = flag->clear; if (s) pt_dump_seq_printf(st->seq, " %s", s); } st->current_flags &= ~flag->mask; } if (st->current_flags != 0) pt_dump_seq_printf(st->seq, " unknown flags:%llx", st->current_flags); } static void dump_addr(struct pg_state *st, unsigned long addr) { static const char units[] = "KMGTPE"; const char *unit = units; unsigned long delta; #ifdef CONFIG_PPC64 #define REG "0x%016lx" #else #define REG "0x%08lx" #endif pt_dump_seq_printf(st->seq, REG "-" REG " ", st->start_address, addr - 1); if (st->start_pa == st->last_pa && st->start_address + PAGE_SIZE != addr) { pt_dump_seq_printf(st->seq, "[" REG "]", st->start_pa); delta = PAGE_SIZE >> 10; } else { pt_dump_seq_printf(st->seq, " " REG " ", st->start_pa); delta = (addr - st->start_address) >> 10; } /* Work out what appropriate unit to use */ while (!(delta & 1023) && unit[1]) { delta >>= 10; unit++; } pt_dump_seq_printf(st->seq, "%9lu%c", delta, *unit); } static void note_prot_wx(struct pg_state *st, unsigned long addr) { pte_t pte = __pte(st->current_flags); if (!IS_ENABLED(CONFIG_PPC_DEBUG_WX) || !st->check_wx) return; if (!pte_write(pte) || !pte_exec(pte)) return; WARN_ONCE(1, "powerpc/mm: Found insecure W+X mapping at address %p/%pS\n", (void *)st->start_address, (void *)st->start_address); st->wx_pages += (addr - st->start_address) / PAGE_SIZE; } static void note_page(struct pg_state *st, unsigned long addr, unsigned int level, u64 val) { u64 flag = val & pg_level[level].mask; u64 pa = val & PTE_RPN_MASK; /* At first no level is set */ if (!st->level) { st->level = level; st->current_flags = flag; st->start_address = addr; st->start_pa = pa; st->last_pa = pa; pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name); /* * Dump the section of virtual memory when: * - the PTE flags from one entry to the next differs. * - we change levels in the tree. * - the address is in a different section of memory and is thus * used for a different purpose, regardless of the flags. * - the pa of this page is not adjacent to the last inspected page */ } else if (flag != st->current_flags || level != st->level || addr >= st->marker[1].start_address || (pa != st->last_pa + PAGE_SIZE && (pa != st->start_pa || st->start_pa != st->last_pa))) { /* Check the PTE flags */ if (st->current_flags) { note_prot_wx(st, addr); dump_addr(st, addr); /* Dump all the flags */ if (pg_level[st->level].flag) dump_flag_info(st, pg_level[st->level].flag, st->current_flags, pg_level[st->level].num); pt_dump_seq_putc(st->seq, '\n'); } /* * Address indicates we have passed the end of the * current section of virtual memory */ while (addr >= st->marker[1].start_address) { st->marker++; pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name); } st->start_address = addr; st->start_pa = pa; st->last_pa = pa; st->current_flags = flag; st->level = level; } else { st->last_pa = pa; } } static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start) { pte_t *pte = pte_offset_kernel(pmd, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PTE; i++, pte++) { addr = start + i * PAGE_SIZE; note_page(st, addr, 4, pte_val(*pte)); } } static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start) { pmd_t *pmd = pmd_offset(pud, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PMD; i++, pmd++) { addr = start + i * PMD_SIZE; if (!pmd_none(*pmd) && !pmd_is_leaf(*pmd)) /* pmd exists */ walk_pte(st, pmd, addr); else note_page(st, addr, 3, pmd_val(*pmd)); } } static void walk_pud(struct pg_state *st, p4d_t *p4d, unsigned long start) { pud_t *pud = pud_offset(p4d, 0); unsigned long addr; unsigned int i; for (i = 0; i < PTRS_PER_PUD; i++, pud++) { addr = start + i * PUD_SIZE; if (!pud_none(*pud) && !pud_is_leaf(*pud)) /* pud exists */ walk_pmd(st, pud, addr); else note_page(st, addr, 2, pud_val(*pud)); } } static void walk_pagetables(struct pg_state *st) { unsigned int i; unsigned long addr = st->start_address & PGDIR_MASK; pgd_t *pgd = pgd_offset_k(addr); /* * Traverse the linux pagetable structure and dump pages that are in * the hash pagetable. */ for (i = pgd_index(addr); i < PTRS_PER_PGD; i++, pgd++, addr += PGDIR_SIZE) { p4d_t *p4d = p4d_offset(pgd, 0); if (!p4d_none(*p4d) && !p4d_is_leaf(*p4d)) /* pgd exists */ walk_pud(st, p4d, addr); else note_page(st, addr, 1, p4d_val(*p4d)); } } static void populate_markers(void) { int i = 0; address_markers[i++].start_address = PAGE_OFFSET; address_markers[i++].start_address = VMALLOC_START; address_markers[i++].start_address = VMALLOC_END; #ifdef CONFIG_PPC64 address_markers[i++].start_address = ISA_IO_BASE; address_markers[i++].start_address = ISA_IO_END; address_markers[i++].start_address = PHB_IO_BASE; address_markers[i++].start_address = PHB_IO_END; address_markers[i++].start_address = IOREMAP_BASE; address_markers[i++].start_address = IOREMAP_END; /* What is the ifdef about? */ #ifdef CONFIG_PPC_BOOK3S_64 address_markers[i++].start_address = H_VMEMMAP_START; #else address_markers[i++].start_address = VMEMMAP_BASE; #endif #else /* !CONFIG_PPC64 */ address_markers[i++].start_address = ioremap_bot; address_markers[i++].start_address = IOREMAP_TOP; #ifdef CONFIG_HIGHMEM address_markers[i++].start_address = PKMAP_BASE; address_markers[i++].start_address = PKMAP_ADDR(LAST_PKMAP); #endif address_markers[i++].start_address = FIXADDR_START; address_markers[i++].start_address = FIXADDR_TOP; #ifdef CONFIG_KASAN address_markers[i++].start_address = KASAN_SHADOW_START; address_markers[i++].start_address = KASAN_SHADOW_END; #endif #endif /* CONFIG_PPC64 */ } static int ptdump_show(struct seq_file *m, void *v) { struct pg_state st = { .seq = m, .marker = address_markers, .start_address = PAGE_OFFSET, }; #ifdef CONFIG_PPC64 if (!radix_enabled()) st.start_address = KERN_VIRT_START; #endif /* Traverse kernel page tables */ walk_pagetables(&st); note_page(&st, 0, 0, 0); return 0; } static int ptdump_open(struct inode *inode, struct file *file) { return single_open(file, ptdump_show, NULL); } static const struct file_operations ptdump_fops = { .open = ptdump_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void build_pgtable_complete_mask(void) { unsigned int i, j; for (i = 0; i < ARRAY_SIZE(pg_level); i++) if (pg_level[i].flag) for (j = 0; j < pg_level[i].num; j++) pg_level[i].mask |= pg_level[i].flag[j].mask; } #ifdef CONFIG_PPC_DEBUG_WX void ptdump_check_wx(void) { struct pg_state st = { .seq = NULL, .marker = address_markers, .check_wx = true, .start_address = PAGE_OFFSET, }; #ifdef CONFIG_PPC64 if (!radix_enabled()) st.start_address = KERN_VIRT_START; #endif walk_pagetables(&st); if (st.wx_pages) pr_warn("Checked W+X mappings: FAILED, %lu W+X pages found\n", st.wx_pages); else pr_info("Checked W+X mappings: passed, no W+X pages found\n"); } #endif static int ptdump_init(void) { populate_markers(); build_pgtable_complete_mask(); debugfs_create_file("kernel_page_tables", 0400, NULL, NULL, &ptdump_fops); return 0; } device_initcall(ptdump_init);