/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * Userspace interface to the pkey device driver * * Copyright IBM Corp. 2017, 2023 * * Author: Harald Freudenberger * */ #ifndef _UAPI_PKEY_H #define _UAPI_PKEY_H #include #include /* * Ioctl calls supported by the pkey device driver */ #define PKEY_IOCTL_MAGIC 'p' #define SECKEYBLOBSIZE 64 /* secure key blob size is always 64 bytes */ #define PROTKEYBLOBSIZE 80 /* protected key blob size is always 80 bytes */ #define MAXPROTKEYSIZE 64 /* a protected key blob may be up to 64 bytes */ #define MAXCLRKEYSIZE 32 /* a clear key value may be up to 32 bytes */ #define MAXAESCIPHERKEYSIZE 136 /* our aes cipher keys have always 136 bytes */ #define MINEP11AESKEYBLOBSIZE 256 /* min EP11 AES key blob size */ #define MAXEP11AESKEYBLOBSIZE 336 /* max EP11 AES key blob size */ /* Minimum size of a key blob */ #define MINKEYBLOBSIZE SECKEYBLOBSIZE /* defines for the type field within the pkey_protkey struct */ #define PKEY_KEYTYPE_AES_128 1 #define PKEY_KEYTYPE_AES_192 2 #define PKEY_KEYTYPE_AES_256 3 #define PKEY_KEYTYPE_ECC 4 #define PKEY_KEYTYPE_ECC_P256 5 #define PKEY_KEYTYPE_ECC_P384 6 #define PKEY_KEYTYPE_ECC_P521 7 #define PKEY_KEYTYPE_ECC_ED25519 8 #define PKEY_KEYTYPE_ECC_ED448 9 #define PKEY_KEYTYPE_AES_XTS_128 10 #define PKEY_KEYTYPE_AES_XTS_256 11 #define PKEY_KEYTYPE_HMAC_512 12 #define PKEY_KEYTYPE_HMAC_1024 13 /* the newer ioctls use a pkey_key_type enum for type information */ enum pkey_key_type { PKEY_TYPE_CCA_DATA = (__u32)1, PKEY_TYPE_CCA_CIPHER = (__u32)2, PKEY_TYPE_EP11 = (__u32)3, PKEY_TYPE_CCA_ECC = (__u32)0x1f, PKEY_TYPE_EP11_AES = (__u32)6, PKEY_TYPE_EP11_ECC = (__u32)7, PKEY_TYPE_PROTKEY = (__u32)8, PKEY_TYPE_UVSECRET = (__u32)9, }; /* the newer ioctls use a pkey_key_size enum for key size information */ enum pkey_key_size { PKEY_SIZE_AES_128 = (__u32)128, PKEY_SIZE_AES_192 = (__u32)192, PKEY_SIZE_AES_256 = (__u32)256, PKEY_SIZE_UNKNOWN = (__u32)0xFFFFFFFF, }; /* some of the newer ioctls use these flags */ #define PKEY_FLAGS_MATCH_CUR_MKVP 0x00000002 #define PKEY_FLAGS_MATCH_ALT_MKVP 0x00000004 /* keygenflags defines for CCA AES cipher keys */ #define PKEY_KEYGEN_XPRT_SYM 0x00008000 #define PKEY_KEYGEN_XPRT_UASY 0x00004000 #define PKEY_KEYGEN_XPRT_AASY 0x00002000 #define PKEY_KEYGEN_XPRT_RAW 0x00001000 #define PKEY_KEYGEN_XPRT_CPAC 0x00000800 #define PKEY_KEYGEN_XPRT_DES 0x00000080 #define PKEY_KEYGEN_XPRT_AES 0x00000040 #define PKEY_KEYGEN_XPRT_RSA 0x00000008 /* Struct to hold apqn target info (card/domain pair) */ struct pkey_apqn { __u16 card; __u16 domain; }; /* Struct to hold a CCA AES secure key blob */ struct pkey_seckey { __u8 seckey[SECKEYBLOBSIZE]; /* the secure key blob */ }; /* Struct to hold protected key and length info */ struct pkey_protkey { __u32 type; /* key type, one of the PKEY_KEYTYPE_AES values */ __u32 len; /* bytes actually stored in protkey[] */ __u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */ }; /* Struct to hold an AES clear key value */ struct pkey_clrkey { __u8 clrkey[MAXCLRKEYSIZE]; /* 16, 24, or 32 byte clear key value */ }; /* * EP11 key blobs of type PKEY_TYPE_EP11_AES and PKEY_TYPE_EP11_ECC * are ep11 blobs prepended by this header: */ struct ep11kblob_header { __u8 type; /* always 0x00 */ __u8 hver; /* header version, currently needs to be 0x00 */ __u16 len; /* total length in bytes (including this header) */ __u8 version; /* PKEY_TYPE_EP11_AES or PKEY_TYPE_EP11_ECC */ __u8 res0; /* unused */ __u16 bitlen; /* clear key bit len, 0 for unknown */ __u8 res1[8]; /* unused */ } __packed; /* * Generate CCA AES secure key. */ struct pkey_genseck { __u16 cardnr; /* in: card to use or FFFF for any */ __u16 domain; /* in: domain or FFFF for any */ __u32 keytype; /* in: key type to generate */ struct pkey_seckey seckey; /* out: the secure key blob */ }; #define PKEY_GENSECK _IOWR(PKEY_IOCTL_MAGIC, 0x01, struct pkey_genseck) /* * Construct CCA AES secure key from clear key value */ struct pkey_clr2seck { __u16 cardnr; /* in: card to use or FFFF for any */ __u16 domain; /* in: domain or FFFF for any */ __u32 keytype; /* in: key type to generate */ struct pkey_clrkey clrkey; /* in: the clear key value */ struct pkey_seckey seckey; /* out: the secure key blob */ }; #define PKEY_CLR2SECK _IOWR(PKEY_IOCTL_MAGIC, 0x02, struct pkey_clr2seck) /* * Fabricate AES protected key from a CCA AES secure key */ struct pkey_sec2protk { __u16 cardnr; /* in: card to use or FFFF for any */ __u16 domain; /* in: domain or FFFF for any */ struct pkey_seckey seckey; /* in: the secure key blob */ struct pkey_protkey protkey; /* out: the protected key */ }; #define PKEY_SEC2PROTK _IOWR(PKEY_IOCTL_MAGIC, 0x03, struct pkey_sec2protk) /* * Fabricate AES protected key from clear key value */ struct pkey_clr2protk { __u32 keytype; /* in: key type to generate */ struct pkey_clrkey clrkey; /* in: the clear key value */ struct pkey_protkey protkey; /* out: the protected key */ }; #define PKEY_CLR2PROTK _IOWR(PKEY_IOCTL_MAGIC, 0x04, struct pkey_clr2protk) /* * Search for matching crypto card based on the Master Key * Verification Pattern provided inside a CCA AES secure key. */ struct pkey_findcard { struct pkey_seckey seckey; /* in: the secure key blob */ __u16 cardnr; /* out: card number */ __u16 domain; /* out: domain number */ }; #define PKEY_FINDCARD _IOWR(PKEY_IOCTL_MAGIC, 0x05, struct pkey_findcard) /* * Combined together: findcard + sec2prot */ struct pkey_skey2pkey { struct pkey_seckey seckey; /* in: the secure key blob */ struct pkey_protkey protkey; /* out: the protected key */ }; #define PKEY_SKEY2PKEY _IOWR(PKEY_IOCTL_MAGIC, 0x06, struct pkey_skey2pkey) /* * Verify the given CCA AES secure key for being able to be usable with * the pkey module. Check for correct key type and check for having at * least one crypto card being able to handle this key (master key * or old master key verification pattern matches). * Return some info about the key: keysize in bits, keytype (currently * only AES), flag if key is wrapped with an old MKVP. */ struct pkey_verifykey { struct pkey_seckey seckey; /* in: the secure key blob */ __u16 cardnr; /* out: card number */ __u16 domain; /* out: domain number */ __u16 keysize; /* out: key size in bits */ __u32 attributes; /* out: attribute bits */ }; #define PKEY_VERIFYKEY _IOWR(PKEY_IOCTL_MAGIC, 0x07, struct pkey_verifykey) #define PKEY_VERIFY_ATTR_AES 0x00000001 /* key is an AES key */ #define PKEY_VERIFY_ATTR_OLD_MKVP 0x00000100 /* key has old MKVP value */ /* * Generate AES random protected key. */ struct pkey_genprotk { __u32 keytype; /* in: key type to generate */ struct pkey_protkey protkey; /* out: the protected key */ }; #define PKEY_GENPROTK _IOWR(PKEY_IOCTL_MAGIC, 0x08, struct pkey_genprotk) /* * Verify an AES protected key. */ struct pkey_verifyprotk { struct pkey_protkey protkey; /* in: the protected key to verify */ }; #define PKEY_VERIFYPROTK _IOW(PKEY_IOCTL_MAGIC, 0x09, struct pkey_verifyprotk) /* * Transform an key blob (of any type) into a protected key */ struct pkey_kblob2pkey { __u8 __user *key; /* in: the key blob */ __u32 keylen; /* in: the key blob length */ struct pkey_protkey protkey; /* out: the protected key */ }; #define PKEY_KBLOB2PROTK _IOWR(PKEY_IOCTL_MAGIC, 0x0A, struct pkey_kblob2pkey) /* * Generate secure key, version 2. * Generate CCA AES secure key, CCA AES cipher key or EP11 AES secure key. * There needs to be a list of apqns given with at least one entry in there. * All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain * is not supported. The implementation walks through the list of apqns and * tries to send the request to each apqn without any further checking (like * card type or online state). If the apqn fails, simple the next one in the * list is tried until success (return 0) or the end of the list is reached * (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to * generate a list of apqns based on the key type to generate. * The keygenflags argument is passed to the low level generation functions * individual for the key type and has a key type specific meaning. When * generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_* * flags to widen the export possibilities. By default a cipher key is * only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC). * The keygenflag argument for generating an EP11 AES key should either be 0 * to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and * XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags. */ struct pkey_genseck2 { struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets*/ __u32 apqn_entries; /* in: # of apqn target list entries */ enum pkey_key_type type; /* in: key type to generate */ enum pkey_key_size size; /* in: key size to generate */ __u32 keygenflags; /* in: key generation flags */ __u8 __user *key; /* in: pointer to key blob buffer */ __u32 keylen; /* in: available key blob buffer size */ /* out: actual key blob size */ }; #define PKEY_GENSECK2 _IOWR(PKEY_IOCTL_MAGIC, 0x11, struct pkey_genseck2) /* * Generate secure key from clear key value, version 2. * Construct an CCA AES secure key, CCA AES cipher key or EP11 AES secure * key from a given clear key value. * There needs to be a list of apqns given with at least one entry in there. * All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain * is not supported. The implementation walks through the list of apqns and * tries to send the request to each apqn without any further checking (like * card type or online state). If the apqn fails, simple the next one in the * list is tried until success (return 0) or the end of the list is reached * (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to * generate a list of apqns based on the key type to generate. * The keygenflags argument is passed to the low level generation functions * individual for the key type and has a key type specific meaning. When * generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_* * flags to widen the export possibilities. By default a cipher key is * only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC). * The keygenflag argument for generating an EP11 AES key should either be 0 * to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and * XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags. */ struct pkey_clr2seck2 { struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */ __u32 apqn_entries; /* in: # of apqn target list entries */ enum pkey_key_type type; /* in: key type to generate */ enum pkey_key_size size; /* in: key size to generate */ __u32 keygenflags; /* in: key generation flags */ struct pkey_clrkey clrkey; /* in: the clear key value */ __u8 __user *key; /* in: pointer to key blob buffer */ __u32 keylen; /* in: available key blob buffer size */ /* out: actual key blob size */ }; #define PKEY_CLR2SECK2 _IOWR(PKEY_IOCTL_MAGIC, 0x12, struct pkey_clr2seck2) /* * Verify the given secure key, version 2. * Check for correct key type. If cardnr and domain are given (are not * 0xFFFF) also check if this apqn is able to handle this type of key. * If cardnr and/or domain is 0xFFFF, on return these values are filled * with one apqn able to handle this key. * The function also checks for the master key verification patterns * of the key matching to the current or alternate mkvp of the apqn. * For CCA AES secure keys and CCA AES cipher keys this means to check * the key's mkvp against the current or old mkvp of the apqns. The flags * field is updated with some additional info about the apqn mkvp * match: If the current mkvp matches to the key's mkvp then the * PKEY_FLAGS_MATCH_CUR_MKVP bit is set, if the alternate mkvp matches to * the key's mkvp the PKEY_FLAGS_MATCH_ALT_MKVP is set. For CCA keys the * alternate mkvp is the old master key verification pattern. * CCA AES secure keys are also checked to have the CPACF export allowed * bit enabled (XPRTCPAC) in the kmf1 field. * EP11 keys are also supported and the wkvp of the key is checked against * the current wkvp of the apqns. There is no alternate for this type of * key and so on a match the flag PKEY_FLAGS_MATCH_CUR_MKVP always is set. * EP11 keys are also checked to have XCP_BLOB_PROTKEY_EXTRACTABLE set. * The ioctl returns 0 as long as the given or found apqn matches to * matches with the current or alternate mkvp to the key's mkvp. If the given * apqn does not match or there is no such apqn found, -1 with errno * ENODEV is returned. */ struct pkey_verifykey2 { __u8 __user *key; /* in: pointer to key blob */ __u32 keylen; /* in: key blob size */ __u16 cardnr; /* in/out: card number */ __u16 domain; /* in/out: domain number */ enum pkey_key_type type; /* out: the key type */ enum pkey_key_size size; /* out: the key size */ __u32 flags; /* out: additional key info flags */ }; #define PKEY_VERIFYKEY2 _IOWR(PKEY_IOCTL_MAGIC, 0x17, struct pkey_verifykey2) /* * Transform a key blob into a protected key, version 2. * There needs to be a list of apqns given with at least one entry in there. * All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain * is not supported. The implementation walks through the list of apqns and * tries to send the request to each apqn without any further checking (like * card type or online state). If the apqn fails, simple the next one in the * list is tried until success (return 0) or the end of the list is reached * (return -1 with errno ENODEV). You may use the PKEY_APQNS4K ioctl to * generate a list of apqns based on the key. * Deriving ECC protected keys from ECC secure keys is not supported with * this ioctl, use PKEY_KBLOB2PROTK3 for this purpose. */ struct pkey_kblob2pkey2 { __u8 __user *key; /* in: pointer to key blob */ __u32 keylen; /* in: key blob size */ struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */ __u32 apqn_entries; /* in: # of apqn target list entries */ struct pkey_protkey protkey; /* out: the protected key */ }; #define PKEY_KBLOB2PROTK2 _IOWR(PKEY_IOCTL_MAGIC, 0x1A, struct pkey_kblob2pkey2) /* * Build a list of APQNs based on a key blob given. * Is able to find out which type of secure key is given (CCA AES secure * key, CCA AES cipher key, CCA ECC private key, EP11 AES key, EP11 ECC private * key) and tries to find all matching crypto cards based on the MKVP and maybe * other criteria (like CCA AES cipher keys need a CEX5C or higher, EP11 keys * with BLOB_PKEY_EXTRACTABLE need a CEX7 and EP11 api version 4). The list of * APQNs is further filtered by the key's mkvp which needs to match to either * the current mkvp (CCA and EP11) or the alternate mkvp (old mkvp, CCA adapters * only) of the apqns. The flags argument may be used to limit the matching * apqns. If the PKEY_FLAGS_MATCH_CUR_MKVP is given, only the current mkvp of * each apqn is compared. Likewise with the PKEY_FLAGS_MATCH_ALT_MKVP. If both * are given, it is assumed to return apqns where either the current or the * alternate mkvp matches. At least one of the matching flags needs to be given. * The flags argument for EP11 keys has no further action and is currently * ignored (but needs to be given as PKEY_FLAGS_MATCH_CUR_MKVP) as there is only * the wkvp from the key to match against the apqn's wkvp. * The list of matching apqns is stored into the space given by the apqns * argument and the number of stored entries goes into apqn_entries. If the list * is empty (apqn_entries is 0) the apqn_entries field is updated to the number * of apqn targets found and the ioctl returns with 0. If apqn_entries is > 0 * but the number of apqn targets does not fit into the list, the apqn_targets * field is updated with the number of required entries but there are no apqn * values stored in the list and the ioctl returns with ENOSPC. If no matching * APQN is found, the ioctl returns with 0 but the apqn_entries value is 0. */ struct pkey_apqns4key { __u8 __user *key; /* in: pointer to key blob */ __u32 keylen; /* in: key blob size */ __u32 flags; /* in: match controlling flags */ struct pkey_apqn __user *apqns; /* in/out: ptr to list of apqn targets*/ __u32 apqn_entries; /* in: max # of apqn entries in the list */ /* out: # apqns stored into the list */ }; #define PKEY_APQNS4K _IOWR(PKEY_IOCTL_MAGIC, 0x1B, struct pkey_apqns4key) /* * Build a list of APQNs based on a key type given. * Build a list of APQNs based on a given key type and maybe further * restrict the list by given master key verification patterns. * For different key types there may be different ways to match the * master key verification patterns. For CCA keys (CCA data key and CCA * cipher key) the first 8 bytes of cur_mkvp refer to the current AES mkvp value * of the apqn and the first 8 bytes of the alt_mkvp refer to the old AES mkvp. * For CCA ECC keys it is similar but the match is against the APKA current/old * mkvp. The flags argument controls if the apqns current and/or alternate mkvp * should match. If the PKEY_FLAGS_MATCH_CUR_MKVP is given, only the current * mkvp of each apqn is compared. Likewise with the PKEY_FLAGS_MATCH_ALT_MKVP. * If both are given, it is assumed to return apqns where either the * current or the alternate mkvp matches. If no match flag is given * (flags is 0) the mkvp values are ignored for the match process. * For EP11 keys there is only the current wkvp. So if the apqns should also * match to a given wkvp, then the PKEY_FLAGS_MATCH_CUR_MKVP flag should be * set. The wkvp value is 32 bytes but only the leftmost 16 bytes are compared * against the leftmost 16 byte of the wkvp of the apqn. * The list of matching apqns is stored into the space given by the apqns * argument and the number of stored entries goes into apqn_entries. If the list * is empty (apqn_entries is 0) the apqn_entries field is updated to the number * of apqn targets found and the ioctl returns with 0. If apqn_entries is > 0 * but the number of apqn targets does not fit into the list, the apqn_targets * field is updated with the number of required entries but there are no apqn * values stored in the list and the ioctl returns with ENOSPC. If no matching * APQN is found, the ioctl returns with 0 but the apqn_entries value is 0. */ struct pkey_apqns4keytype { enum pkey_key_type type; /* in: key type */ __u8 cur_mkvp[32]; /* in: current mkvp */ __u8 alt_mkvp[32]; /* in: alternate mkvp */ __u32 flags; /* in: match controlling flags */ struct pkey_apqn __user *apqns; /* in/out: ptr to list of apqn targets*/ __u32 apqn_entries; /* in: max # of apqn entries in the list */ /* out: # apqns stored into the list */ }; #define PKEY_APQNS4KT _IOWR(PKEY_IOCTL_MAGIC, 0x1C, struct pkey_apqns4keytype) /* * Transform a key blob into a protected key, version 3. * The difference to version 2 of this ioctl is that the protected key * buffer is now explicitly and not within a struct pkey_protkey any more. * So this ioctl is also able to handle EP11 and CCA ECC secure keys and * provide ECC protected keys. * There needs to be a list of apqns given with at least one entry in there. * All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain * is not supported. The implementation walks through the list of apqns and * tries to send the request to each apqn without any further checking (like * card type or online state). If the apqn fails, simple the next one in the * list is tried until success (return 0) or the end of the list is reached * (return -1 with errno ENODEV). You may use the PKEY_APQNS4K ioctl to * generate a list of apqns based on the key. */ struct pkey_kblob2pkey3 { __u8 __user *key; /* in: pointer to key blob */ __u32 keylen; /* in: key blob size */ struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */ __u32 apqn_entries; /* in: # of apqn target list entries */ __u32 pkeytype; /* out: prot key type (enum pkey_key_type) */ __u32 pkeylen; /* in/out: size of pkey buffer/actual len of pkey */ __u8 __user *pkey; /* in: pkey blob buffer space ptr */ }; #define PKEY_KBLOB2PROTK3 _IOWR(PKEY_IOCTL_MAGIC, 0x1D, struct pkey_kblob2pkey3) #endif /* _UAPI_PKEY_H */