/* * arch/sh/kernel/time.c * * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> * Copyright (C) 2002 - 2006 Paul Mundt * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org> * * Some code taken from i386 version. * Copyright (C) 1991, 1992, 1995 Linus Torvalds */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/profile.h> #include <linux/timex.h> #include <linux/sched.h> #include <asm/clock.h> #include <asm/rtc.h> #include <asm/timer.h> #include <asm/kgdb.h> struct sys_timer *sys_timer; /* Move this somewhere more sensible.. */ DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); /* Dummy RTC ops */ static void null_rtc_get_time(struct timespec *tv) { tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0); tv->tv_nsec = 0; } static int null_rtc_set_time(const time_t secs) { return 0; } void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time; int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time; /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long __attribute__ ((weak)) sched_clock(void) { return (unsigned long long)jiffies * (1000000000 / HZ); } #ifndef CONFIG_GENERIC_TIME void do_gettimeofday(struct timeval *tv) { unsigned long flags; unsigned long seq; unsigned long usec, sec; do { /* * Turn off IRQs when grabbing xtime_lock, so that * the sys_timer get_offset code doesn't have to handle it. */ seq = read_seqbegin_irqsave(&xtime_lock, flags); usec = get_timer_offset(); sec = xtime.tv_sec; usec += xtime.tv_nsec / NSEC_PER_USEC; } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } EXPORT_SYMBOL(do_gettimeofday); int do_settimeofday(struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); /* * This is revolting. We need to set "xtime" correctly. However, the * value in this location is the value at the most recent update of * wall time. Discover what correction gettimeofday() would have * made, and then undo it! */ nsec -= get_timer_offset() * NSEC_PER_USEC; wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); ntp_clear(); write_sequnlock_irq(&xtime_lock); clock_was_set(); return 0; } EXPORT_SYMBOL(do_settimeofday); #endif /* !CONFIG_GENERIC_TIME */ /* last time the RTC clock got updated */ static long last_rtc_update; /* * handle_timer_tick() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ void handle_timer_tick(void) { do_timer(1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif if (current->pid) profile_tick(CPU_PROFILING); #ifdef CONFIG_HEARTBEAT if (sh_mv.mv_heartbeat != NULL) sh_mv.mv_heartbeat(); #endif /* * If we have an externally synchronized Linux clock, then update * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (rtc_sh_set_time(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* do it again in 60s */ last_rtc_update = xtime.tv_sec - 600; } } #ifdef CONFIG_PM int timer_suspend(struct sys_device *dev, pm_message_t state) { struct sys_timer *sys_timer = container_of(dev, struct sys_timer, dev); sys_timer->ops->stop(); return 0; } int timer_resume(struct sys_device *dev) { struct sys_timer *sys_timer = container_of(dev, struct sys_timer, dev); sys_timer->ops->start(); return 0; } #else #define timer_suspend NULL #define timer_resume NULL #endif static struct sysdev_class timer_sysclass = { set_kset_name("timer"), .suspend = timer_suspend, .resume = timer_resume, }; #ifdef CONFIG_NO_IDLE_HZ static int timer_dyn_tick_enable(void) { struct dyn_tick_timer *dyn_tick = sys_timer->dyn_tick; unsigned long flags; int ret = -ENODEV; if (dyn_tick) { spin_lock_irqsave(&dyn_tick->lock, flags); ret = 0; if (!(dyn_tick->state & DYN_TICK_ENABLED)) { ret = dyn_tick->enable(); if (ret == 0) dyn_tick->state |= DYN_TICK_ENABLED; } spin_unlock_irqrestore(&dyn_tick->lock, flags); } return ret; } static int timer_dyn_tick_disable(void) { struct dyn_tick_timer *dyn_tick = sys_timer->dyn_tick; unsigned long flags; int ret = -ENODEV; if (dyn_tick) { spin_lock_irqsave(&dyn_tick->lock, flags); ret = 0; if (dyn_tick->state & DYN_TICK_ENABLED) { ret = dyn_tick->disable(); if (ret == 0) dyn_tick->state &= ~DYN_TICK_ENABLED; } spin_unlock_irqrestore(&dyn_tick->lock, flags); } return ret; } /* * Reprogram the system timer for at least the calculated time interval. * This function should be called from the idle thread with IRQs disabled, * immediately before sleeping. */ void timer_dyn_reprogram(void) { struct dyn_tick_timer *dyn_tick = sys_timer->dyn_tick; unsigned long next, seq, flags; if (!dyn_tick) return; spin_lock_irqsave(&dyn_tick->lock, flags); if (dyn_tick->state & DYN_TICK_ENABLED) { next = next_timer_interrupt(); do { seq = read_seqbegin(&xtime_lock); dyn_tick->reprogram(next - jiffies); } while (read_seqretry(&xtime_lock, seq)); } spin_unlock_irqrestore(&dyn_tick->lock, flags); } static ssize_t timer_show_dyn_tick(struct sys_device *dev, char *buf) { return sprintf(buf, "%i\n", (sys_timer->dyn_tick->state & DYN_TICK_ENABLED) >> 1); } static ssize_t timer_set_dyn_tick(struct sys_device *dev, const char *buf, size_t count) { unsigned int enable = simple_strtoul(buf, NULL, 2); if (enable) timer_dyn_tick_enable(); else timer_dyn_tick_disable(); return count; } static SYSDEV_ATTR(dyn_tick, 0644, timer_show_dyn_tick, timer_set_dyn_tick); /* * dyntick=enable|disable */ static char dyntick_str[4] __initdata = ""; static int __init dyntick_setup(char *str) { if (str) strlcpy(dyntick_str, str, sizeof(dyntick_str)); return 1; } __setup("dyntick=", dyntick_setup); #endif static int __init timer_init_sysfs(void) { int ret = sysdev_class_register(&timer_sysclass); if (ret != 0) return ret; sys_timer->dev.cls = &timer_sysclass; ret = sysdev_register(&sys_timer->dev); #ifdef CONFIG_NO_IDLE_HZ if (ret == 0 && sys_timer->dyn_tick) { ret = sysdev_create_file(&sys_timer->dev, &attr_dyn_tick); /* * Turn on dynamic tick after calibrate delay * for correct bogomips */ if (ret == 0 && dyntick_str[0] == 'e') ret = timer_dyn_tick_enable(); } #endif return ret; } device_initcall(timer_init_sysfs); void (*board_time_init)(void); void __init time_init(void) { if (board_time_init) board_time_init(); clk_init(); rtc_sh_get_time(&xtime); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); /* * Find the timer to use as the system timer, it will be * initialized for us. */ sys_timer = get_sys_timer(); printk(KERN_INFO "Using %s for system timer\n", sys_timer->name); #ifdef CONFIG_NO_IDLE_HZ if (sys_timer->dyn_tick) spin_lock_init(&sys_timer->dyn_tick->lock); #endif #if defined(CONFIG_SH_KGDB) /* * Set up kgdb as requested. We do it here because the serial * init uses the timer vars we just set up for figuring baud. */ kgdb_init(); #endif }