/* Performance counter support for sparc64. * * Copyright (C) 2009 David S. Miller * * This code is based almost entirely upon the x86 perf counter * code, which is: * * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra */ #include #include #include #include #include #include #include #include #include /* Sparc64 chips have two performance counters, 32-bits each, with * overflow interrupts generated on transition from 0xffffffff to 0. * The counters are accessed in one go using a 64-bit register. * * Both counters are controlled using a single control register. The * only way to stop all sampling is to clear all of the context (user, * supervisor, hypervisor) sampling enable bits. But these bits apply * to both counters, thus the two counters can't be enabled/disabled * individually. * * The control register has two event fields, one for each of the two * counters. It's thus nearly impossible to have one counter going * while keeping the other one stopped. Therefore it is possible to * get overflow interrupts for counters not currently "in use" and * that condition must be checked in the overflow interrupt handler. * * So we use a hack, in that we program inactive counters with the * "sw_count0" and "sw_count1" events. These count how many times * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an * unusual way to encode a NOP and therefore will not trigger in * normal code. */ #define MAX_HWCOUNTERS 2 #define MAX_PERIOD ((1UL << 32) - 1) #define PIC_UPPER_INDEX 0 #define PIC_LOWER_INDEX 1 #define PIC_UPPER_NOP 0x1c #define PIC_LOWER_NOP 0x14 struct cpu_hw_counters { struct perf_counter *counters[MAX_HWCOUNTERS]; unsigned long used_mask[BITS_TO_LONGS(MAX_HWCOUNTERS)]; unsigned long active_mask[BITS_TO_LONGS(MAX_HWCOUNTERS)]; int enabled; }; DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = { .enabled = 1, }; struct perf_event_map { u16 encoding; u8 pic_mask; #define PIC_NONE 0x00 #define PIC_UPPER 0x01 #define PIC_LOWER 0x02 }; struct sparc_pmu { const struct perf_event_map *(*event_map)(int); int max_events; int upper_shift; int lower_shift; int event_mask; int hv_bit; int irq_bit; }; static const struct perf_event_map ultra3i_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, }; static const struct perf_event_map *ultra3i_event_map(int event) { return &ultra3i_perfmon_event_map[event]; } static const struct sparc_pmu ultra3i_pmu = { .event_map = ultra3i_event_map, .max_events = ARRAY_SIZE(ultra3i_perfmon_event_map), .upper_shift = 11, .lower_shift = 4, .event_mask = 0x3f, }; static const struct sparc_pmu *sparc_pmu __read_mostly; static u64 event_encoding(u64 event, int idx) { if (idx == PIC_UPPER_INDEX) event <<= sparc_pmu->upper_shift; else event <<= sparc_pmu->lower_shift; return event; } static u64 mask_for_index(int idx) { return event_encoding(sparc_pmu->event_mask, idx); } static u64 nop_for_index(int idx) { return event_encoding(idx == PIC_UPPER_INDEX ? PIC_UPPER_NOP : PIC_LOWER_NOP, idx); } static inline void sparc_pmu_enable_counter(struct hw_perf_counter *hwc, int idx) { u64 val, mask = mask_for_index(idx); val = pcr_ops->read(); pcr_ops->write((val & ~mask) | hwc->config); } static inline void sparc_pmu_disable_counter(struct hw_perf_counter *hwc, int idx) { u64 mask = mask_for_index(idx); u64 nop = nop_for_index(idx); u64 val = pcr_ops->read(); pcr_ops->write((val & ~mask) | nop); } void hw_perf_enable(void) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); u64 val; int i; if (cpuc->enabled) return; cpuc->enabled = 1; barrier(); val = pcr_ops->read(); for (i = 0; i < MAX_HWCOUNTERS; i++) { struct perf_counter *cp = cpuc->counters[i]; struct hw_perf_counter *hwc; if (!cp) continue; hwc = &cp->hw; val |= hwc->config_base; } pcr_ops->write(val); } void hw_perf_disable(void) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); u64 val; if (!cpuc->enabled) return; cpuc->enabled = 0; val = pcr_ops->read(); val &= ~(PCR_UTRACE | PCR_STRACE | sparc_pmu->hv_bit | sparc_pmu->irq_bit); pcr_ops->write(val); } static u32 read_pmc(int idx) { u64 val; read_pic(val); if (idx == PIC_UPPER_INDEX) val >>= 32; return val & 0xffffffff; } static void write_pmc(int idx, u64 val) { u64 shift, mask, pic; shift = 0; if (idx == PIC_UPPER_INDEX) shift = 32; mask = ((u64) 0xffffffff) << shift; val <<= shift; read_pic(pic); pic &= ~mask; pic |= val; write_pic(pic); } static int sparc_perf_counter_set_period(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { s64 left = atomic64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; if (unlikely(left <= -period)) { left = period; atomic64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; atomic64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > MAX_PERIOD) left = MAX_PERIOD; atomic64_set(&hwc->prev_count, (u64)-left); write_pmc(idx, (u64)(-left) & 0xffffffff); perf_counter_update_userpage(counter); return ret; } static int sparc_pmu_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; if (test_and_set_bit(idx, cpuc->used_mask)) return -EAGAIN; sparc_pmu_disable_counter(hwc, idx); cpuc->counters[idx] = counter; set_bit(idx, cpuc->active_mask); sparc_perf_counter_set_period(counter, hwc, idx); sparc_pmu_enable_counter(hwc, idx); perf_counter_update_userpage(counter); return 0; } static u64 sparc_perf_counter_update(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { int shift = 64 - 32; u64 prev_raw_count, new_raw_count; s64 delta; again: prev_raw_count = atomic64_read(&hwc->prev_count); new_raw_count = read_pmc(idx); if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; atomic64_add(delta, &counter->count); atomic64_sub(delta, &hwc->period_left); return new_raw_count; } static void sparc_pmu_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; clear_bit(idx, cpuc->active_mask); sparc_pmu_disable_counter(hwc, idx); barrier(); sparc_perf_counter_update(counter, hwc, idx); cpuc->counters[idx] = NULL; clear_bit(idx, cpuc->used_mask); perf_counter_update_userpage(counter); } static void sparc_pmu_read(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; sparc_perf_counter_update(counter, hwc, hwc->idx); } static void sparc_pmu_unthrottle(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; sparc_pmu_enable_counter(hwc, hwc->idx); } static atomic_t active_counters = ATOMIC_INIT(0); static DEFINE_MUTEX(pmc_grab_mutex); void perf_counter_grab_pmc(void) { if (atomic_inc_not_zero(&active_counters)) return; mutex_lock(&pmc_grab_mutex); if (atomic_read(&active_counters) == 0) { if (atomic_read(&nmi_active) > 0) { on_each_cpu(stop_nmi_watchdog, NULL, 1); BUG_ON(atomic_read(&nmi_active) != 0); } atomic_inc(&active_counters); } mutex_unlock(&pmc_grab_mutex); } void perf_counter_release_pmc(void) { if (atomic_dec_and_mutex_lock(&active_counters, &pmc_grab_mutex)) { if (atomic_read(&nmi_active) == 0) on_each_cpu(start_nmi_watchdog, NULL, 1); mutex_unlock(&pmc_grab_mutex); } } static void hw_perf_counter_destroy(struct perf_counter *counter) { perf_counter_release_pmc(); } static int __hw_perf_counter_init(struct perf_counter *counter) { struct perf_counter_attr *attr = &counter->attr; struct hw_perf_counter *hwc = &counter->hw; const struct perf_event_map *pmap; u64 enc; if (atomic_read(&nmi_active) < 0) return -ENODEV; if (attr->type != PERF_TYPE_HARDWARE) return -EOPNOTSUPP; if (attr->config >= sparc_pmu->max_events) return -EINVAL; perf_counter_grab_pmc(); counter->destroy = hw_perf_counter_destroy; /* We save the enable bits in the config_base. So to * turn off sampling just write 'config', and to enable * things write 'config | config_base'. */ hwc->config_base = sparc_pmu->irq_bit; if (!attr->exclude_user) hwc->config_base |= PCR_UTRACE; if (!attr->exclude_kernel) hwc->config_base |= PCR_STRACE; if (!attr->exclude_hv) hwc->config_base |= sparc_pmu->hv_bit; if (!hwc->sample_period) { hwc->sample_period = MAX_PERIOD; hwc->last_period = hwc->sample_period; atomic64_set(&hwc->period_left, hwc->sample_period); } pmap = sparc_pmu->event_map(attr->config); enc = pmap->encoding; if (pmap->pic_mask & PIC_UPPER) { hwc->idx = PIC_UPPER_INDEX; enc <<= sparc_pmu->upper_shift; } else { hwc->idx = PIC_LOWER_INDEX; enc <<= sparc_pmu->lower_shift; } hwc->config |= enc; return 0; } static const struct pmu pmu = { .enable = sparc_pmu_enable, .disable = sparc_pmu_disable, .read = sparc_pmu_read, .unthrottle = sparc_pmu_unthrottle, }; const struct pmu *hw_perf_counter_init(struct perf_counter *counter) { int err = __hw_perf_counter_init(counter); if (err) return ERR_PTR(err); return &pmu; } void perf_counter_print_debug(void) { unsigned long flags; u64 pcr, pic; int cpu; if (!sparc_pmu) return; local_irq_save(flags); cpu = smp_processor_id(); pcr = pcr_ops->read(); read_pic(pic); pr_info("\n"); pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n", cpu, pcr, pic); local_irq_restore(flags); } static int __kprobes perf_counter_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct perf_sample_data data; struct cpu_hw_counters *cpuc; struct pt_regs *regs; int idx; if (!atomic_read(&active_counters)) return NOTIFY_DONE; switch (cmd) { case DIE_NMI: break; default: return NOTIFY_DONE; } regs = args->regs; data.regs = regs; data.addr = 0; cpuc = &__get_cpu_var(cpu_hw_counters); for (idx = 0; idx < MAX_HWCOUNTERS; idx++) { struct perf_counter *counter = cpuc->counters[idx]; struct hw_perf_counter *hwc; u64 val; if (!test_bit(idx, cpuc->active_mask)) continue; hwc = &counter->hw; val = sparc_perf_counter_update(counter, hwc, idx); if (val & (1ULL << 31)) continue; data.period = counter->hw.last_period; if (!sparc_perf_counter_set_period(counter, hwc, idx)) continue; if (perf_counter_overflow(counter, 1, &data)) sparc_pmu_disable_counter(hwc, idx); } return NOTIFY_STOP; } static __read_mostly struct notifier_block perf_counter_nmi_notifier = { .notifier_call = perf_counter_nmi_handler, }; static bool __init supported_pmu(void) { if (!strcmp(sparc_pmu_type, "ultra3i")) { sparc_pmu = &ultra3i_pmu; return true; } return false; } void __init init_hw_perf_counters(void) { pr_info("Performance counters: "); if (!supported_pmu()) { pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); return; } pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); /* All sparc64 PMUs currently have 2 counters. But this simple * driver only supports one active counter at a time. */ perf_max_counters = 1; register_die_notifier(&perf_counter_nmi_notifier); }