/* * Copyright 2011 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * Linux interrupt vectors. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg) #define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR) #if CONFIG_KERNEL_PL == 1 || CONFIG_KERNEL_PL == 2 /* * Set "result" non-zero if ex1 holds the PL of the kernel * (with or without ICS being set). Note this works only * because we never find the PL at level 3. */ # define IS_KERNEL_EX1(result, ex1) andi result, ex1, CONFIG_KERNEL_PL #else # error Recode IS_KERNEL_EX1 for CONFIG_KERNEL_PL #endif .macro push_reg reg, ptr=sp, delta=-8 { st \ptr, \reg addli \ptr, \ptr, \delta } .endm .macro pop_reg reg, ptr=sp, delta=8 { ld \reg, \ptr addli \ptr, \ptr, \delta } .endm .macro pop_reg_zero reg, zreg, ptr=sp, delta=8 { move \zreg, zero ld \reg, \ptr addi \ptr, \ptr, \delta } .endm .macro push_extra_callee_saves reg PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51)) push_reg r51, \reg push_reg r50, \reg push_reg r49, \reg push_reg r48, \reg push_reg r47, \reg push_reg r46, \reg push_reg r45, \reg push_reg r44, \reg push_reg r43, \reg push_reg r42, \reg push_reg r41, \reg push_reg r40, \reg push_reg r39, \reg push_reg r38, \reg push_reg r37, \reg push_reg r36, \reg push_reg r35, \reg push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34) .endm .macro panic str .pushsection .rodata, "a" 1: .asciz "\str" .popsection { moveli r0, hw2_last(1b) } { shl16insli r0, r0, hw1(1b) } { shl16insli r0, r0, hw0(1b) jal panic } .endm /* * Unalign data exception fast handling: In order to handle * unaligned data access, a fast JIT version is generated and stored * in a specific area in user space. We first need to do a quick poke * to see if the JIT is available. We use certain bits in the fault * PC (3 to 9 is used for 16KB page size) as index to address the JIT * code area. The first 64bit word is the fault PC, and the 2nd one is * the fault bundle itself. If these 2 words both match, then we * directly "iret" to JIT code. If not, a slow path is invoked to * generate new JIT code. Note: the current JIT code WILL be * overwritten if it existed. So, ideally we can handle 128 unalign * fixups via JIT. For lookup efficiency and to effectively support * tight loops with multiple unaligned reference, a simple * direct-mapped cache is used. * * SPR_EX_CONTEXT_K_0 is modified to return to JIT code. * SPR_EX_CONTEXT_K_1 has ICS set. * SPR_EX_CONTEXT_0_0 is setup to user program's next PC. * SPR_EX_CONTEXT_0_1 = 0. */ .macro int_hand_unalign_fast vecnum, vecname .org (\vecnum << 8) intvec_\vecname: /* Put r3 in SPR_SYSTEM_SAVE_K_1. */ mtspr SPR_SYSTEM_SAVE_K_1, r3 mfspr r3, SPR_EX_CONTEXT_K_1 /* * Examine if exception comes from user without ICS set. * If not, just go directly to the slow path. */ bnez r3, hand_unalign_slow_nonuser mfspr r3, SPR_SYSTEM_SAVE_K_0 /* Get &thread_info->unalign_jit_tmp[0] in r3. */ bfexts r3, r3, 0, CPU_SHIFT-1 mm r3, zero, LOG2_THREAD_SIZE, 63 addli r3, r3, THREAD_INFO_UNALIGN_JIT_TMP_OFFSET /* * Save r0, r1, r2 into thread_info array r3 points to * from low to high memory in order. */ st_add r3, r0, 8 st_add r3, r1, 8 { st_add r3, r2, 8 andi r2, sp, 7 } /* Save stored r3 value so we can revert it on a page fault. */ mfspr r1, SPR_SYSTEM_SAVE_K_1 st r3, r1 { /* Generate a SIGBUS if sp is not 8-byte aligned. */ bnez r2, hand_unalign_slow_badsp } /* * Get the thread_info in r0; load r1 with pc. Set the low bit of sp * as an indicator to the page fault code in case we fault. */ { ori sp, sp, 1 mfspr r1, SPR_EX_CONTEXT_K_0 } /* Add the jit_info offset in thread_info; extract r1 [3:9] into r2. */ { addli r0, r3, THREAD_INFO_UNALIGN_JIT_BASE_OFFSET - \ (THREAD_INFO_UNALIGN_JIT_TMP_OFFSET + (3 * 8)) bfextu r2, r1, 3, (2 + PAGE_SHIFT - UNALIGN_JIT_SHIFT) } /* Load the jit_info; multiply r2 by 128. */ { ld r0, r0 shli r2, r2, UNALIGN_JIT_SHIFT } /* * If r0 is NULL, the JIT page is not mapped, so go to slow path; * add offset r2 to r0 at the same time. */ { beqz r0, hand_unalign_slow add r2, r0, r2 } /* * We are loading from userspace (both the JIT info PC and * instruction word, and the instruction word we executed) * and since either could fault while holding the interrupt * critical section, we must tag this region and check it in * do_page_fault() to handle it properly. */ ENTRY(__start_unalign_asm_code) /* Load first word of JIT in r0 and increment r2 by 8. */ ld_add r0, r2, 8 /* * Compare the PC with the 1st word in JIT; load the fault bundle * into r1. */ { cmpeq r0, r0, r1 ld r1, r1 } /* Go to slow path if PC doesn't match. */ beqz r0, hand_unalign_slow /* * Load the 2nd word of JIT, which is supposed to be the fault * bundle for a cache hit. Increment r2; after this bundle r2 will * point to the potential start of the JIT code we want to run. */ ld_add r0, r2, 8 /* No further accesses to userspace are done after this point. */ ENTRY(__end_unalign_asm_code) /* Compare the real bundle with what is saved in the JIT area. */ { cmpeq r0, r1, r0 mtspr SPR_EX_CONTEXT_0_1, zero } /* Go to slow path if the fault bundle does not match. */ beqz r0, hand_unalign_slow /* * A cache hit is found. * r2 points to start of JIT code (3rd word). * r0 is the fault pc. * r1 is the fault bundle. * Reset the low bit of sp. */ { mfspr r0, SPR_EX_CONTEXT_K_0 andi sp, sp, ~1 } /* Write r2 into EX_CONTEXT_K_0 and increment PC. */ { mtspr SPR_EX_CONTEXT_K_0, r2 addi r0, r0, 8 } /* * Set ICS on kernel EX_CONTEXT_K_1 in order to "iret" to * user with ICS set. This way, if the JIT fixup causes another * unalign exception (which shouldn't be possible) the user * process will be terminated with SIGBUS. Also, our fixup will * run without interleaving with external interrupts. * Each fixup is at most 14 bundles, so it won't hold ICS for long. */ { movei r1, PL_ICS_EX1(USER_PL, 1) mtspr SPR_EX_CONTEXT_0_0, r0 } { mtspr SPR_EX_CONTEXT_K_1, r1 addi r3, r3, -(3 * 8) } /* Restore r0..r3. */ ld_add r0, r3, 8 ld_add r1, r3, 8 ld_add r2, r3, 8 ld r3, r3 iret ENDPROC(intvec_\vecname) .endm #ifdef __COLLECT_LINKER_FEEDBACK__ .pushsection .text.intvec_feedback,"ax" intvec_feedback: .popsection #endif /* * Default interrupt handler. * * vecnum is where we'll put this code. * c_routine is the C routine we'll call. * * The C routine is passed two arguments: * - A pointer to the pt_regs state. * - The interrupt vector number. * * The "processing" argument specifies the code for processing * the interrupt. Defaults to "handle_interrupt". */ .macro __int_hand vecnum, vecname, c_routine,processing=handle_interrupt intvec_\vecname: /* Temporarily save a register so we have somewhere to work. */ mtspr SPR_SYSTEM_SAVE_K_1, r0 mfspr r0, SPR_EX_CONTEXT_K_1 /* * The unalign data fastpath code sets the low bit in sp to * force us to reset it here on fault. */ { blbs sp, 2f IS_KERNEL_EX1(r0, r0) } .ifc \vecnum, INT_DOUBLE_FAULT /* * For double-faults from user-space, fall through to the normal * register save and stack setup path. Otherwise, it's the * hypervisor giving us one last chance to dump diagnostics, and we * branch to the kernel_double_fault routine to do so. */ beqz r0, 1f j _kernel_double_fault 1: .else /* * If we're coming from user-space, then set sp to the top of * the kernel stack. Otherwise, assume sp is already valid. */ { bnez r0, 0f move r0, sp } .endif .ifc \c_routine, do_page_fault /* * The page_fault handler may be downcalled directly by the * hypervisor even when Linux is running and has ICS set. * * In this case the contents of EX_CONTEXT_K_1 reflect the * previous fault and can't be relied on to choose whether or * not to reinitialize the stack pointer. So we add a test * to see whether SYSTEM_SAVE_K_2 has the high bit set, * and if so we don't reinitialize sp, since we must be coming * from Linux. (In fact the precise case is !(val & ~1), * but any Linux PC has to have the high bit set.) * * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for * any path that turns into a downcall to one of our TLB handlers. * * FIXME: if we end up never using this path, perhaps we should * prevent the hypervisor from generating downcalls in this case. * The advantage of getting a downcall is we can panic in Linux. */ mfspr r0, SPR_SYSTEM_SAVE_K_2 { bltz r0, 0f /* high bit in S_S_1_2 is for a PC to use */ move r0, sp } .endif 2: /* * SYSTEM_SAVE_K_0 holds the cpu number in the high bits, and * the current stack top in the lower bits. So we recover * our starting stack value by sign-extending the low bits, then * point sp at the top aligned address on the actual stack page. */ mfspr r0, SPR_SYSTEM_SAVE_K_0 bfexts r0, r0, 0, CPU_SHIFT-1 0: /* * Align the stack mod 64 so we can properly predict what * cache lines we need to write-hint to reduce memory fetch * latency as we enter the kernel. The layout of memory is * as follows, with cache line 0 at the lowest VA, and cache * line 8 just below the r0 value this "andi" computes. * Note that we never write to cache line 8, and we skip * cache lines 1-3 for syscalls. * * cache line 8: ptregs padding (two words) * cache line 7: sp, lr, pc, ex1, faultnum, orig_r0, flags, cmpexch * cache line 6: r46...r53 (tp) * cache line 5: r38...r45 * cache line 4: r30...r37 * cache line 3: r22...r29 * cache line 2: r14...r21 * cache line 1: r6...r13 * cache line 0: 2 x frame, r0..r5 */ #if STACK_TOP_DELTA != 64 #error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs() #endif andi r0, r0, -64 /* * Push the first four registers on the stack, so that we can set * them to vector-unique values before we jump to the common code. * * Registers are pushed on the stack as a struct pt_regs, * with the sp initially just above the struct, and when we're * done, sp points to the base of the struct, minus * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code. * * This routine saves just the first four registers, plus the * stack context so we can do proper backtracing right away, * and defers to handle_interrupt to save the rest. * The backtracer needs pc, ex1, lr, sp, r52, and faultnum, * and needs sp set to its final location at the bottom of * the stack frame. */ addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP) wh64 r0 /* cache line 7 */ { st r0, lr addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR } { st r0, sp addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP } wh64 sp /* cache line 6 */ { st sp, r52 addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52) } wh64 sp /* cache line 0 */ { st sp, r1 addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1) } { st sp, r2 addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2) } { st sp, r3 addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3) } mfspr r0, SPR_EX_CONTEXT_K_0 .ifc \processing,handle_syscall /* * Bump the saved PC by one bundle so that when we return, we won't * execute the same swint instruction again. We need to do this while * we're in the critical section. */ addi r0, r0, 8 .endif { st sp, r0 addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC } mfspr r0, SPR_EX_CONTEXT_K_1 { st sp, r0 addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1 /* * Use r0 for syscalls so it's a temporary; use r1 for interrupts * so that it gets passed through unchanged to the handler routine. * Note that the .if conditional confusingly spans bundles. */ .ifc \processing,handle_syscall movei r0, \vecnum } { st sp, r0 .else movei r1, \vecnum } { st sp, r1 .endif addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM } mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */ { st sp, r0 addi sp, sp, -PTREGS_OFFSET_REG(0) - 8 } { st sp, zero /* write zero into "Next SP" frame pointer */ addi sp, sp, -8 /* leave SP pointing at bottom of frame */ } .ifc \processing,handle_syscall j handle_syscall .else /* Capture per-interrupt SPR context to registers. */ .ifc \c_routine, do_page_fault mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */ mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */ .else .ifc \vecnum, INT_ILL_TRANS mfspr r2, ILL_VA_PC .else .ifc \vecnum, INT_DOUBLE_FAULT mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */ .else .ifc \c_routine, do_trap mfspr r2, GPV_REASON .else .ifc \c_routine, handle_perf_interrupt mfspr r2, PERF_COUNT_STS .else .ifc \c_routine, handle_perf_interrupt mfspr r2, AUX_PERF_COUNT_STS .endif .endif .endif .endif .endif .endif /* Put function pointer in r0 */ moveli r0, hw2_last(\c_routine) shl16insli r0, r0, hw1(\c_routine) { shl16insli r0, r0, hw0(\c_routine) j \processing } .endif ENDPROC(intvec_\vecname) #ifdef __COLLECT_LINKER_FEEDBACK__ .pushsection .text.intvec_feedback,"ax" .org (\vecnum << 5) FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8) jrp lr .popsection #endif .endm /* * Save the rest of the registers that we didn't save in the actual * vector itself. We can't use r0-r10 inclusive here. */ .macro finish_interrupt_save, function /* If it's a syscall, save a proper orig_r0, otherwise just zero. */ PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0) { .ifc \function,handle_syscall st r52, r0 .else st r52, zero .endif PTREGS_PTR(r52, PTREGS_OFFSET_TP) } st r52, tp { mfspr tp, CMPEXCH_VALUE PTREGS_PTR(r52, PTREGS_OFFSET_CMPEXCH) } /* * For ordinary syscalls, we save neither caller- nor callee- * save registers, since the syscall invoker doesn't expect the * caller-saves to be saved, and the called kernel functions will * take care of saving the callee-saves for us. * * For interrupts we save just the caller-save registers. Saving * them is required (since the "caller" can't save them). Again, * the called kernel functions will restore the callee-save * registers for us appropriately. * * On return, we normally restore nothing special for syscalls, * and just the caller-save registers for interrupts. * * However, there are some important caveats to all this: * * - We always save a few callee-save registers to give us * some scratchpad registers to carry across function calls. * * - fork/vfork/etc require us to save all the callee-save * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below. * * - We always save r0..r5 and r10 for syscalls, since we need * to reload them a bit later for the actual kernel call, and * since we might need them for -ERESTARTNOINTR, etc. * * - Before invoking a signal handler, we save the unsaved * callee-save registers so they are visible to the * signal handler or any ptracer. * * - If the unsaved callee-save registers are modified, we set * a bit in pt_regs so we know to reload them from pt_regs * and not just rely on the kernel function unwinding. * (Done for ptrace register writes and SA_SIGINFO handler.) */ { st r52, tp PTREGS_PTR(r52, PTREGS_OFFSET_REG(33)) } wh64 r52 /* cache line 4 */ push_reg r33, r52 push_reg r32, r52 push_reg r31, r52 .ifc \function,handle_syscall push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30) push_reg TREG_SYSCALL_NR_NAME, r52, \ PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL .else push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30) wh64 r52 /* cache line 3 */ push_reg r29, r52 push_reg r28, r52 push_reg r27, r52 push_reg r26, r52 push_reg r25, r52 push_reg r24, r52 push_reg r23, r52 push_reg r22, r52 wh64 r52 /* cache line 2 */ push_reg r21, r52 push_reg r20, r52 push_reg r19, r52 push_reg r18, r52 push_reg r17, r52 push_reg r16, r52 push_reg r15, r52 push_reg r14, r52 wh64 r52 /* cache line 1 */ push_reg r13, r52 push_reg r12, r52 push_reg r11, r52 push_reg r10, r52 push_reg r9, r52 push_reg r8, r52 push_reg r7, r52 push_reg r6, r52 .endif push_reg r5, r52 st r52, r4 /* * If we will be returning to the kernel, we will need to * reset the interrupt masks to the state they had before. * Set DISABLE_IRQ in flags iff we came from kernel pl with * irqs disabled. */ mfspr r32, SPR_EX_CONTEXT_K_1 { IS_KERNEL_EX1(r22, r22) PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS) } beqzt r32, 1f /* zero if from user space */ IRQS_DISABLED(r32) /* zero if irqs enabled */ #if PT_FLAGS_DISABLE_IRQ != 1 # error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix #endif 1: .ifnc \function,handle_syscall /* Record the fact that we saved the caller-save registers above. */ ori r32, r32, PT_FLAGS_CALLER_SAVES .endif st r21, r32 /* * we've captured enough state to the stack (including in * particular our EX_CONTEXT state) that we can now release * the interrupt critical section and replace it with our * standard "interrupts disabled" mask value. This allows * synchronous interrupts (and profile interrupts) to punch * through from this point onwards. * * It's important that no code before this point touch memory * other than our own stack (to keep the invariant that this * is all that gets touched under ICS), and that no code after * this point reference any interrupt-specific SPR, in particular * the EX_CONTEXT_K_ values. */ .ifc \function,handle_nmi IRQ_DISABLE_ALL(r20) .else IRQ_DISABLE(r20, r21) .endif mtspr INTERRUPT_CRITICAL_SECTION, zero /* Load tp with our per-cpu offset. */ #ifdef CONFIG_SMP { mfspr r20, SPR_SYSTEM_SAVE_K_0 moveli r21, hw2_last(__per_cpu_offset) } { shl16insli r21, r21, hw1(__per_cpu_offset) bfextu r20, r20, CPU_SHIFT, 63 } shl16insli r21, r21, hw0(__per_cpu_offset) shl3add r20, r20, r21 ld tp, r20 #else move tp, zero #endif #ifdef __COLLECT_LINKER_FEEDBACK__ /* * Notify the feedback routines that we were in the * appropriate fixed interrupt vector area. Note that we * still have ICS set at this point, so we can't invoke any * atomic operations or we will panic. The feedback * routines internally preserve r0..r10 and r30 up. */ .ifnc \function,handle_syscall shli r20, r1, 5 .else moveli r20, INT_SWINT_1 << 5 .endif moveli r21, hw2_last(intvec_feedback) shl16insli r21, r21, hw1(intvec_feedback) shl16insli r21, r21, hw0(intvec_feedback) add r20, r20, r21 jalr r20 /* And now notify the feedback routines that we are here. */ FEEDBACK_ENTER(\function) #endif /* * Prepare the first 256 stack bytes to be rapidly accessible * without having to fetch the background data. */ addi r52, sp, -64 { wh64 r52 addi r52, r52, -64 } { wh64 r52 addi r52, r52, -64 } { wh64 r52 addi r52, r52, -64 } wh64 r52 #ifdef CONFIG_TRACE_IRQFLAGS .ifnc \function,handle_nmi /* * We finally have enough state set up to notify the irq * tracing code that irqs were disabled on entry to the handler. * The TRACE_IRQS_OFF call clobbers registers r0-r29. * For syscalls, we already have the register state saved away * on the stack, so we don't bother to do any register saves here, * and later we pop the registers back off the kernel stack. * For interrupt handlers, save r0-r3 in callee-saved registers. */ .ifnc \function,handle_syscall { move r30, r0; move r31, r1 } { move r32, r2; move r33, r3 } .endif TRACE_IRQS_OFF .ifnc \function,handle_syscall { move r0, r30; move r1, r31 } { move r2, r32; move r3, r33 } .endif .endif #endif .endm /* * Redispatch a downcall. */ .macro dc_dispatch vecnum, vecname .org (\vecnum << 8) intvec_\vecname: j _hv_downcall_dispatch ENDPROC(intvec_\vecname) .endm /* * Common code for most interrupts. The C function we're eventually * going to is in r0, and the faultnum is in r1; the original * values for those registers are on the stack. */ .pushsection .text.handle_interrupt,"ax" handle_interrupt: finish_interrupt_save handle_interrupt /* Jump to the C routine; it should enable irqs as soon as possible. */ { jalr r0 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) } FEEDBACK_REENTER(handle_interrupt) { movei r30, 0 /* not an NMI */ j interrupt_return } STD_ENDPROC(handle_interrupt) /* * This routine takes a boolean in r30 indicating if this is an NMI. * If so, we also expect a boolean in r31 indicating whether to * re-enable the oprofile interrupts. * * Note that .Lresume_userspace is jumped to directly in several * places, and we need to make sure r30 is set correctly in those * callers as well. */ STD_ENTRY(interrupt_return) /* If we're resuming to kernel space, don't check thread flags. */ { bnez r30, .Lrestore_all /* NMIs don't special-case user-space */ PTREGS_PTR(r29, PTREGS_OFFSET_EX1) } ld r29, r29 IS_KERNEL_EX1(r29, r29) { beqzt r29, .Lresume_userspace move r29, sp } #ifdef CONFIG_PREEMPT /* Returning to kernel space. Check if we need preemption. */ EXTRACT_THREAD_INFO(r29) addli r28, r29, THREAD_INFO_FLAGS_OFFSET { ld r28, r28 addli r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET } { andi r28, r28, _TIF_NEED_RESCHED ld4s r29, r29 } beqzt r28, 1f bnez r29, 1f /* Disable interrupts explicitly for preemption. */ IRQ_DISABLE(r20,r21) TRACE_IRQS_OFF jal preempt_schedule_irq FEEDBACK_REENTER(interrupt_return) 1: #endif /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */ { moveli r27, hw2_last(_cpu_idle_nap) PTREGS_PTR(r29, PTREGS_OFFSET_PC) } { ld r28, r29 shl16insli r27, r27, hw1(_cpu_idle_nap) } { shl16insli r27, r27, hw0(_cpu_idle_nap) } { cmpeq r27, r27, r28 } { blbc r27, .Lrestore_all addi r28, r28, 8 } st r29, r28 j .Lrestore_all .Lresume_userspace: FEEDBACK_REENTER(interrupt_return) /* * Use r33 to hold whether we have already loaded the callee-saves * into ptregs. We don't want to do it twice in this loop, since * then we'd clobber whatever changes are made by ptrace, etc. */ { movei r33, 0 move r32, sp } /* Get base of stack in r32. */ EXTRACT_THREAD_INFO(r32) .Lretry_work_pending: /* * Disable interrupts so as to make sure we don't * miss an interrupt that sets any of the thread flags (like * need_resched or sigpending) between sampling and the iret. * Routines like schedule() or do_signal() may re-enable * interrupts before returning. */ IRQ_DISABLE(r20, r21) TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */ /* Check to see if there is any work to do before returning to user. */ { addi r29, r32, THREAD_INFO_FLAGS_OFFSET moveli r1, hw1_last(_TIF_ALLWORK_MASK) } { ld r29, r29 shl16insli r1, r1, hw0(_TIF_ALLWORK_MASK) } and r1, r29, r1 beqzt r1, .Lrestore_all /* * Make sure we have all the registers saved for signal * handling or notify-resume. Call out to C code to figure out * exactly what we need to do for each flag bit, then if * necessary, reload the flags and recheck. */ { PTREGS_PTR(r0, PTREGS_OFFSET_BASE) bnez r33, 1f } push_extra_callee_saves r0 movei r33, 1 1: jal do_work_pending bnez r0, .Lretry_work_pending /* * In the NMI case we * omit the call to single_process_check_nohz, which normally checks * to see if we should start or stop the scheduler tick, because * we can't call arbitrary Linux code from an NMI context. * We always call the homecache TLB deferral code to re-trigger * the deferral mechanism. * * The other chunk of responsibility this code has is to reset the * interrupt masks appropriately to reset irqs and NMIs. We have * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the * lockdep-type stuff, but we can't set ICS until afterwards, since * ICS can only be used in very tight chunks of code to avoid * tripping over various assertions that it is off. */ .Lrestore_all: PTREGS_PTR(r0, PTREGS_OFFSET_EX1) { ld r0, r0 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS) } { IS_KERNEL_EX1(r0, r0) ld r32, r32 } bnez r0, 1f j 2f #if PT_FLAGS_DISABLE_IRQ != 1 # error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use blbct below #endif 1: blbct r32, 2f IRQ_DISABLE(r20,r21) TRACE_IRQS_OFF movei r0, 1 mtspr INTERRUPT_CRITICAL_SECTION, r0 beqzt r30, .Lrestore_regs j 3f 2: TRACE_IRQS_ON IRQ_ENABLE_LOAD(r20, r21) movei r0, 1 mtspr INTERRUPT_CRITICAL_SECTION, r0 IRQ_ENABLE_APPLY(r20, r21) beqzt r30, .Lrestore_regs 3: /* * We now commit to returning from this interrupt, since we will be * doing things like setting EX_CONTEXT SPRs and unwinding the stack * frame. No calls should be made to any other code after this point. * This code should only be entered with ICS set. * r32 must still be set to ptregs.flags. * We launch loads to each cache line separately first, so we can * get some parallelism out of the memory subsystem. * We start zeroing caller-saved registers throughout, since * that will save some cycles if this turns out to be a syscall. */ .Lrestore_regs: /* * Rotate so we have one high bit and one low bit to test. * - low bit says whether to restore all the callee-saved registers, * or just r30-r33, and r52 up. * - high bit (i.e. sign bit) says whether to restore all the * caller-saved registers, or just r0. */ #if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4 # error Rotate trick does not work :-) #endif { rotli r20, r32, 62 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0)) } /* * Load cache lines 0, 4, 6 and 7, in that order, then use * the last loaded value, which makes it likely that the other * cache lines have also loaded, at which point we should be * able to safely read all the remaining words on those cache * lines without waiting for the memory subsystem. */ pop_reg r0, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0) pop_reg r30, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_REG(30) pop_reg_zero r52, r3, sp, PTREGS_OFFSET_CMPEXCH - PTREGS_OFFSET_REG(52) pop_reg_zero r21, r27, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_CMPEXCH pop_reg_zero lr, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_EX1 { mtspr CMPEXCH_VALUE, r21 move r4, zero } pop_reg r21, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_PC { mtspr SPR_EX_CONTEXT_K_1, lr IS_KERNEL_EX1(lr, lr) } { mtspr SPR_EX_CONTEXT_K_0, r21 move r5, zero } /* Restore callee-saveds that we actually use. */ pop_reg_zero r31, r6 pop_reg_zero r32, r7 pop_reg_zero r33, r8, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33) /* * If we modified other callee-saveds, restore them now. * This is rare, but could be via ptrace or signal handler. */ { move r9, zero blbs r20, .Lrestore_callees } .Lcontinue_restore_regs: /* Check if we're returning from a syscall. */ { move r10, zero bltzt r20, 1f /* no, so go restore callee-save registers */ } /* * Check if we're returning to userspace. * Note that if we're not, we don't worry about zeroing everything. */ { addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29) bnez lr, .Lkernel_return } /* * On return from syscall, we've restored r0 from pt_regs, but we * clear the remainder of the caller-saved registers. We could * restore the syscall arguments, but there's not much point, * and it ensures user programs aren't trying to use the * caller-saves if we clear them, as well as avoiding leaking * kernel pointers into userspace. */ pop_reg_zero lr, r11, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR pop_reg_zero tp, r12, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP { ld sp, sp move r13, zero move r14, zero } { move r15, zero; move r16, zero } { move r17, zero; move r18, zero } { move r19, zero; move r20, zero } { move r21, zero; move r22, zero } { move r23, zero; move r24, zero } { move r25, zero; move r26, zero } /* Set r1 to errno if we are returning an error, otherwise zero. */ { moveli r29, 4096 sub r1, zero, r0 } { move r28, zero cmpltu r29, r1, r29 } { mnz r1, r29, r1 move r29, zero } iret /* * Not a syscall, so restore caller-saved registers. * First kick off loads for cache lines 1-3, which we're touching * for the first time here. */ .align 64 1: pop_reg r29, sp, PTREGS_OFFSET_REG(21) - PTREGS_OFFSET_REG(29) pop_reg r21, sp, PTREGS_OFFSET_REG(13) - PTREGS_OFFSET_REG(21) pop_reg r13, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(13) pop_reg r1 pop_reg r2 pop_reg r3 pop_reg r4 pop_reg r5 pop_reg r6 pop_reg r7 pop_reg r8 pop_reg r9 pop_reg r10 pop_reg r11 pop_reg r12, sp, 16 /* r13 already restored above */ pop_reg r14 pop_reg r15 pop_reg r16 pop_reg r17 pop_reg r18 pop_reg r19 pop_reg r20, sp, 16 /* r21 already restored above */ pop_reg r22 pop_reg r23 pop_reg r24 pop_reg r25 pop_reg r26 pop_reg r27 pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28) /* r29 already restored above */ bnez lr, .Lkernel_return pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP ld sp, sp iret /* * We can't restore tp when in kernel mode, since a thread might * have migrated from another cpu and brought a stale tp value. */ .Lkernel_return: pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR ld sp, sp iret /* Restore callee-saved registers from r34 to r51. */ .Lrestore_callees: addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29) pop_reg r34 pop_reg r35 pop_reg r36 pop_reg r37 pop_reg r38 pop_reg r39 pop_reg r40 pop_reg r41 pop_reg r42 pop_reg r43 pop_reg r44 pop_reg r45 pop_reg r46 pop_reg r47 pop_reg r48 pop_reg r49 pop_reg r50 pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51) j .Lcontinue_restore_regs STD_ENDPROC(interrupt_return) /* * "NMI" interrupts mask ALL interrupts before calling the * handler, and don't check thread flags, etc., on the way * back out. In general, the only things we do here for NMIs * are register save/restore and dataplane kernel-TLB management. * We don't (for example) deal with start/stop of the sched tick. */ .pushsection .text.handle_nmi,"ax" handle_nmi: finish_interrupt_save handle_nmi { jalr r0 PTREGS_PTR(r0, PTREGS_OFFSET_BASE) } FEEDBACK_REENTER(handle_nmi) { movei r30, 1 move r31, r0 } j interrupt_return STD_ENDPROC(handle_nmi) /* * Parallel code for syscalls to handle_interrupt. */ .pushsection .text.handle_syscall,"ax" handle_syscall: finish_interrupt_save handle_syscall /* Enable irqs. */ TRACE_IRQS_ON IRQ_ENABLE(r20, r21) /* Bump the counter for syscalls made on this tile. */ moveli r20, hw2_last(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) shl16insli r20, r20, hw1(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) shl16insli r20, r20, hw0(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) add r20, r20, tp ld4s r21, r20 { addi r21, r21, 1 move r31, sp } { st4 r20, r21 EXTRACT_THREAD_INFO(r31) } /* Trace syscalls, if requested. */ addi r31, r31, THREAD_INFO_FLAGS_OFFSET { ld r30, r31 moveli r32, _TIF_SYSCALL_ENTRY_WORK } and r30, r30, r32 { addi r30, r31, THREAD_INFO_STATUS_OFFSET - THREAD_INFO_FLAGS_OFFSET beqzt r30, .Lrestore_syscall_regs } { PTREGS_PTR(r0, PTREGS_OFFSET_BASE) jal do_syscall_trace_enter } FEEDBACK_REENTER(handle_syscall) /* * We always reload our registers from the stack at this * point. They might be valid, if we didn't build with * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not * doing syscall tracing, but there are enough cases now that it * seems simplest just to do the reload unconditionally. */ .Lrestore_syscall_regs: { ld r30, r30 PTREGS_PTR(r11, PTREGS_OFFSET_REG(0)) } pop_reg r0, r11 pop_reg r1, r11 pop_reg r2, r11 pop_reg r3, r11 pop_reg r4, r11 pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5) { ld TREG_SYSCALL_NR_NAME, r11 moveli r21, __NR_syscalls } /* Ensure that the syscall number is within the legal range. */ { moveli r20, hw2(sys_call_table) #ifdef CONFIG_COMPAT blbs r30, .Lcompat_syscall #endif } { cmpltu r21, TREG_SYSCALL_NR_NAME, r21 shl16insli r20, r20, hw1(sys_call_table) } { blbc r21, .Linvalid_syscall shl16insli r20, r20, hw0(sys_call_table) } .Lload_syscall_pointer: shl3add r20, TREG_SYSCALL_NR_NAME, r20 ld r20, r20 /* Jump to syscall handler. */ jalr r20 .Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */ /* * Write our r0 onto the stack so it gets restored instead * of whatever the user had there before. * In compat mode, sign-extend r0 before storing it. */ { PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) blbct r30, 1f } addxi r0, r0, 0 1: st r29, r0 .Lsyscall_sigreturn_skip: FEEDBACK_REENTER(handle_syscall) /* Do syscall trace again, if requested. */ { ld r30, r31 moveli r32, _TIF_SYSCALL_EXIT_WORK } and r0, r30, r32 { andi r0, r30, _TIF_SINGLESTEP beqzt r0, 1f } { PTREGS_PTR(r0, PTREGS_OFFSET_BASE) jal do_syscall_trace_exit } FEEDBACK_REENTER(handle_syscall) andi r0, r30, _TIF_SINGLESTEP 1: beqzt r0, 2f /* Single stepping -- notify ptrace. */ { movei r0, SIGTRAP jal ptrace_notify } FEEDBACK_REENTER(handle_syscall) 2: { movei r30, 0 /* not an NMI */ j .Lresume_userspace /* jump into middle of interrupt_return */ } #ifdef CONFIG_COMPAT .Lcompat_syscall: /* * Load the base of the compat syscall table in r20, and * range-check the syscall number (duplicated from 64-bit path). * Sign-extend all the user's passed arguments to make them consistent. * Also save the original "r(n)" values away in "r(11+n)" in * case the syscall table entry wants to validate them. */ moveli r20, hw2(compat_sys_call_table) { cmpltu r21, TREG_SYSCALL_NR_NAME, r21 shl16insli r20, r20, hw1(compat_sys_call_table) } { blbc r21, .Linvalid_syscall shl16insli r20, r20, hw0(compat_sys_call_table) } { move r11, r0; addxi r0, r0, 0 } { move r12, r1; addxi r1, r1, 0 } { move r13, r2; addxi r2, r2, 0 } { move r14, r3; addxi r3, r3, 0 } { move r15, r4; addxi r4, r4, 0 } { move r16, r5; addxi r5, r5, 0 } j .Lload_syscall_pointer #endif .Linvalid_syscall: /* Report an invalid syscall back to the user program */ { PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) movei r28, -ENOSYS } st r29, r28 { movei r30, 0 /* not an NMI */ j .Lresume_userspace /* jump into middle of interrupt_return */ } STD_ENDPROC(handle_syscall) /* Return the address for oprofile to suppress in backtraces. */ STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall) lnk r0 { addli r0, r0, .Lhandle_syscall_link - . jrp lr } STD_ENDPROC(handle_syscall_link_address) STD_ENTRY(ret_from_fork) jal sim_notify_fork jal schedule_tail FEEDBACK_REENTER(ret_from_fork) { movei r30, 0 /* not an NMI */ j .Lresume_userspace /* jump into middle of interrupt_return */ } STD_ENDPROC(ret_from_fork) STD_ENTRY(ret_from_kernel_thread) jal sim_notify_fork jal schedule_tail FEEDBACK_REENTER(ret_from_fork) { move r0, r31 jalr r30 } FEEDBACK_REENTER(ret_from_kernel_thread) { movei r30, 0 /* not an NMI */ j .Lresume_userspace /* jump into middle of interrupt_return */ } STD_ENDPROC(ret_from_kernel_thread) /* Various stub interrupt handlers and syscall handlers */ STD_ENTRY_LOCAL(_kernel_double_fault) mfspr r1, SPR_EX_CONTEXT_K_0 move r2, lr move r3, sp move r4, r52 addi sp, sp, -C_ABI_SAVE_AREA_SIZE j kernel_double_fault STD_ENDPROC(_kernel_double_fault) STD_ENTRY_LOCAL(bad_intr) mfspr r2, SPR_EX_CONTEXT_K_0 panic "Unhandled interrupt %#x: PC %#lx" STD_ENDPROC(bad_intr) /* * Special-case sigreturn to not write r0 to the stack on return. * This is technically more efficient, but it also avoids difficulties * in the 64-bit OS when handling 32-bit compat code, since we must not * sign-extend r0 for the sigreturn return-value case. */ #define PTREGS_SYSCALL_SIGRETURN(x, reg) \ STD_ENTRY(_##x); \ addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \ { \ PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \ j x \ }; \ STD_ENDPROC(_##x) PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0) #ifdef CONFIG_COMPAT PTREGS_SYSCALL_SIGRETURN(compat_sys_rt_sigreturn, r0) #endif /* Save additional callee-saves to pt_regs and jump to standard function. */ STD_ENTRY(_sys_clone) push_extra_callee_saves r4 j sys_clone STD_ENDPROC(_sys_clone) /* * Recover r3, r2, r1 and r0 here saved by unalign fast vector. * The vector area limit is 32 bundles, so we handle the reload here. * r0, r1, r2 are in thread_info from low to high memory in order. * r3 points to location the original r3 was saved. * We put this code in the __HEAD section so it can be reached * via a conditional branch from the fast path. */ __HEAD hand_unalign_slow: andi sp, sp, ~1 hand_unalign_slow_badsp: addi r3, r3, -(3 * 8) ld_add r0, r3, 8 ld_add r1, r3, 8 ld r2, r3 hand_unalign_slow_nonuser: mfspr r3, SPR_SYSTEM_SAVE_K_1 __int_hand INT_UNALIGN_DATA, UNALIGN_DATA_SLOW, int_unalign /* The unaligned data support needs to read all the registers. */ int_unalign: push_extra_callee_saves r0 j do_unaligned ENDPROC(hand_unalign_slow) /* Fill the return address stack with nonzero entries. */ STD_ENTRY(fill_ra_stack) { move r0, lr jal 1f } 1: jal 2f 2: jal 3f 3: jal 4f 4: jrp r0 STD_ENDPROC(fill_ra_stack) .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt .org (\vecnum << 8) __int_hand \vecnum, \vecname, \c_routine, \processing .endm /* Include .intrpt array of interrupt vectors */ .section ".intrpt", "ax" .global intrpt_start intrpt_start: #ifndef CONFIG_USE_PMC #define handle_perf_interrupt bad_intr #endif #ifndef CONFIG_HARDWALL #define do_hardwall_trap bad_intr #endif int_hand INT_MEM_ERROR, MEM_ERROR, do_trap int_hand INT_SINGLE_STEP_3, SINGLE_STEP_3, bad_intr #if CONFIG_KERNEL_PL == 2 int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, gx_singlestep_handle int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, bad_intr #else int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, bad_intr int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, gx_singlestep_handle #endif int_hand INT_SINGLE_STEP_0, SINGLE_STEP_0, bad_intr int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr int_hand INT_ITLB_MISS, ITLB_MISS, do_page_fault int_hand INT_ILL, ILL, do_trap int_hand INT_GPV, GPV, do_trap int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap int_hand INT_SWINT_3, SWINT_3, do_trap int_hand INT_SWINT_2, SWINT_2, do_trap int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall int_hand INT_SWINT_0, SWINT_0, do_trap int_hand INT_ILL_TRANS, ILL_TRANS, do_trap int_hand_unalign_fast INT_UNALIGN_DATA, UNALIGN_DATA int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault int_hand INT_IDN_FIREWALL, IDN_FIREWALL, do_hardwall_trap int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr int_hand INT_IPI_3, IPI_3, bad_intr #if CONFIG_KERNEL_PL == 2 int_hand INT_IPI_2, IPI_2, tile_dev_intr int_hand INT_IPI_1, IPI_1, bad_intr #else int_hand INT_IPI_2, IPI_2, bad_intr int_hand INT_IPI_1, IPI_1, tile_dev_intr #endif int_hand INT_IPI_0, IPI_0, bad_intr int_hand INT_PERF_COUNT, PERF_COUNT, \ handle_perf_interrupt, handle_nmi int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \ handle_perf_interrupt, handle_nmi int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr #if CONFIG_KERNEL_PL == 2 dc_dispatch INT_INTCTRL_2, INTCTRL_2 int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr #else int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr dc_dispatch INT_INTCTRL_1, INTCTRL_1 #endif int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \ hv_message_intr int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, bad_intr int_hand INT_I_ASID, I_ASID, bad_intr int_hand INT_D_ASID, D_ASID, bad_intr int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap /* Synthetic interrupt delivered only by the simulator */ int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint