// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 - Cambridge Greys Ltd * Copyright (C) 2011 - 2014 Cisco Systems Inc * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar */ #include #include #include #include #include #include #include #include #include #include #include #include #include extern void free_irqs(void); /* When epoll triggers we do not know why it did so * we can also have different IRQs for read and write. * This is why we keep a small irq_fd array for each fd - * one entry per IRQ type */ struct irq_entry { struct irq_entry *next; int fd; struct irq_fd *irq_array[MAX_IRQ_TYPE + 1]; }; static struct irq_entry *active_fds; static DEFINE_SPINLOCK(irq_lock); static DECLARE_BITMAP(irqs_allocated, NR_IRQS); static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs) { /* * irq->active guards against reentry * irq->pending accumulates pending requests * if pending is raised the irq_handler is re-run * until pending is cleared */ if (irq->active) { irq->active = false; do { irq->pending = false; do_IRQ(irq->irq, regs); } while (irq->pending && (!irq->purge)); if (!irq->purge) irq->active = true; } else { irq->pending = true; } } void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) { struct irq_entry *irq_entry; struct irq_fd *irq; int n, i, j; while (1) { /* This is now lockless - epoll keeps back-referencesto the irqs * which have trigger it so there is no need to walk the irq * list and lock it every time. We avoid locking by turning off * IO for a specific fd by executing os_del_epoll_fd(fd) before * we do any changes to the actual data structures */ n = os_waiting_for_events_epoll(); if (n <= 0) { if (n == -EINTR) continue; else break; } for (i = 0; i < n ; i++) { /* Epoll back reference is the entry with 3 irq_fd * leaves - one for each irq type. */ irq_entry = (struct irq_entry *) os_epoll_get_data_pointer(i); for (j = 0; j < MAX_IRQ_TYPE ; j++) { irq = irq_entry->irq_array[j]; if (irq == NULL) continue; if (os_epoll_triggered(i, irq->events) > 0) irq_io_loop(irq, regs); if (irq->purge) { irq_entry->irq_array[j] = NULL; kfree(irq); } } } } free_irqs(); } static int assign_epoll_events_to_irq(struct irq_entry *irq_entry) { int i; int events = 0; struct irq_fd *irq; for (i = 0; i < MAX_IRQ_TYPE ; i++) { irq = irq_entry->irq_array[i]; if (irq != NULL) events = irq->events | events; } if (events > 0) { /* os_add_epoll will call os_mod_epoll if this already exists */ return os_add_epoll_fd(events, irq_entry->fd, irq_entry); } /* No events - delete */ return os_del_epoll_fd(irq_entry->fd); } static int activate_fd(int irq, int fd, int type, void *dev_id) { struct irq_fd *new_fd; struct irq_entry *irq_entry; int i, err, events; unsigned long flags; err = os_set_fd_async(fd); if (err < 0) goto out; spin_lock_irqsave(&irq_lock, flags); /* Check if we have an entry for this fd */ err = -EBUSY; for (irq_entry = active_fds; irq_entry != NULL; irq_entry = irq_entry->next) { if (irq_entry->fd == fd) break; } if (irq_entry == NULL) { /* This needs to be atomic as it may be called from an * IRQ context. */ irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC); if (irq_entry == NULL) { printk(KERN_ERR "Failed to allocate new IRQ entry\n"); goto out_unlock; } irq_entry->fd = fd; for (i = 0; i < MAX_IRQ_TYPE; i++) irq_entry->irq_array[i] = NULL; irq_entry->next = active_fds; active_fds = irq_entry; } /* Check if we are trying to re-register an interrupt for a * particular fd */ if (irq_entry->irq_array[type] != NULL) { printk(KERN_ERR "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n", irq, fd, type, dev_id ); goto out_unlock; } else { /* New entry for this fd */ err = -ENOMEM; new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC); if (new_fd == NULL) goto out_unlock; events = os_event_mask(type); *new_fd = ((struct irq_fd) { .id = dev_id, .irq = irq, .type = type, .events = events, .active = true, .pending = false, .purge = false }); /* Turn off any IO on this fd - allows us to * avoid locking the IRQ loop */ os_del_epoll_fd(irq_entry->fd); irq_entry->irq_array[type] = new_fd; } /* Turn back IO on with the correct (new) IO event mask */ assign_epoll_events_to_irq(irq_entry); spin_unlock_irqrestore(&irq_lock, flags); maybe_sigio_broken(fd, (type != IRQ_NONE)); return 0; out_unlock: spin_unlock_irqrestore(&irq_lock, flags); out: return err; } /* * Walk the IRQ list and dispose of any unused entries. * Should be done under irq_lock. */ static void garbage_collect_irq_entries(void) { int i; bool reap; struct irq_entry *walk; struct irq_entry *previous = NULL; struct irq_entry *to_free; if (active_fds == NULL) return; walk = active_fds; while (walk != NULL) { reap = true; for (i = 0; i < MAX_IRQ_TYPE ; i++) { if (walk->irq_array[i] != NULL) { reap = false; break; } } if (reap) { if (previous == NULL) active_fds = walk->next; else previous->next = walk->next; to_free = walk; } else { to_free = NULL; } walk = walk->next; kfree(to_free); } } /* * Walk the IRQ list and get the descriptor for our FD */ static struct irq_entry *get_irq_entry_by_fd(int fd) { struct irq_entry *walk = active_fds; while (walk != NULL) { if (walk->fd == fd) return walk; walk = walk->next; } return NULL; } /* * Walk the IRQ list and dispose of an entry for a specific * device, fd and number. Note - if sharing an IRQ for read * and writefor the same FD it will be disposed in either case. * If this behaviour is undesirable use different IRQ ids. */ #define IGNORE_IRQ 1 #define IGNORE_DEV (1<<1) static void do_free_by_irq_and_dev( struct irq_entry *irq_entry, unsigned int irq, void *dev, int flags ) { int i; struct irq_fd *to_free; for (i = 0; i < MAX_IRQ_TYPE ; i++) { if (irq_entry->irq_array[i] != NULL) { if ( ((flags & IGNORE_IRQ) || (irq_entry->irq_array[i]->irq == irq)) && ((flags & IGNORE_DEV) || (irq_entry->irq_array[i]->id == dev)) ) { /* Turn off any IO on this fd - allows us to * avoid locking the IRQ loop */ os_del_epoll_fd(irq_entry->fd); to_free = irq_entry->irq_array[i]; irq_entry->irq_array[i] = NULL; assign_epoll_events_to_irq(irq_entry); if (to_free->active) to_free->purge = true; else kfree(to_free); } } } } void free_irq_by_fd(int fd) { struct irq_entry *to_free; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); to_free = get_irq_entry_by_fd(fd); if (to_free != NULL) { do_free_by_irq_and_dev( to_free, -1, NULL, IGNORE_IRQ | IGNORE_DEV ); } garbage_collect_irq_entries(); spin_unlock_irqrestore(&irq_lock, flags); } EXPORT_SYMBOL(free_irq_by_fd); static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) { struct irq_entry *to_free; unsigned long flags; spin_lock_irqsave(&irq_lock, flags); to_free = active_fds; while (to_free != NULL) { do_free_by_irq_and_dev( to_free, irq, dev, 0 ); to_free = to_free->next; } garbage_collect_irq_entries(); spin_unlock_irqrestore(&irq_lock, flags); } void deactivate_fd(int fd, int irqnum) { struct irq_entry *to_free; unsigned long flags; os_del_epoll_fd(fd); spin_lock_irqsave(&irq_lock, flags); to_free = get_irq_entry_by_fd(fd); if (to_free != NULL) { do_free_by_irq_and_dev( to_free, irqnum, NULL, IGNORE_DEV ); } garbage_collect_irq_entries(); spin_unlock_irqrestore(&irq_lock, flags); ignore_sigio_fd(fd); } EXPORT_SYMBOL(deactivate_fd); /* * Called just before shutdown in order to provide a clean exec * environment in case the system is rebooting. No locking because * that would cause a pointless shutdown hang if something hadn't * released the lock. */ int deactivate_all_fds(void) { struct irq_entry *to_free; /* Stop IO. The IRQ loop has no lock so this is our * only way of making sure we are safe to dispose * of all IRQ handlers */ os_set_ioignore(); to_free = active_fds; while (to_free != NULL) { do_free_by_irq_and_dev( to_free, -1, NULL, IGNORE_IRQ | IGNORE_DEV ); to_free = to_free->next; } /* don't garbage collect - we can no longer call kfree() here */ os_close_epoll_fd(); return 0; } /* * do_IRQ handles all normal device IRQs (the special * SMP cross-CPU interrupts have their own specific * handlers). */ unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); irq_enter(); generic_handle_irq(irq); irq_exit(); set_irq_regs(old_regs); return 1; } void um_free_irq(int irq, void *dev) { if (WARN(irq < 0 || irq > NR_IRQS, "freeing invalid irq %d", irq)) return; free_irq_by_irq_and_dev(irq, dev); free_irq(irq, dev); clear_bit(irq, irqs_allocated); } EXPORT_SYMBOL(um_free_irq); int um_request_irq(int irq, int fd, int type, irq_handler_t handler, unsigned long irqflags, const char * devname, void *dev_id) { int err; if (irq == UM_IRQ_ALLOC) { int i; for (i = UM_FIRST_DYN_IRQ; i < NR_IRQS; i++) { if (!test_and_set_bit(i, irqs_allocated)) { irq = i; break; } } } if (irq < 0) return -ENOSPC; if (fd != -1) { err = activate_fd(irq, fd, type, dev_id); if (err) goto error; } err = request_irq(irq, handler, irqflags, devname, dev_id); if (err < 0) goto error; return irq; error: clear_bit(irq, irqs_allocated); return err; } EXPORT_SYMBOL(um_request_irq); /* * irq_chip must define at least enable/disable and ack when * the edge handler is used. */ static void dummy(struct irq_data *d) { } /* This is used for everything other than the timer. */ static struct irq_chip normal_irq_type = { .name = "SIGIO", .irq_disable = dummy, .irq_enable = dummy, .irq_ack = dummy, .irq_mask = dummy, .irq_unmask = dummy, }; static struct irq_chip alarm_irq_type = { .name = "SIGALRM", .irq_disable = dummy, .irq_enable = dummy, .irq_ack = dummy, .irq_mask = dummy, .irq_unmask = dummy, }; void __init init_IRQ(void) { int i; irq_set_chip_and_handler(TIMER_IRQ, &alarm_irq_type, handle_edge_irq); for (i = 1; i < NR_IRQS; i++) irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); /* Initialize EPOLL Loop */ os_setup_epoll(); } /* * IRQ stack entry and exit: * * Unlike i386, UML doesn't receive IRQs on the normal kernel stack * and switch over to the IRQ stack after some preparation. We use * sigaltstack to receive signals on a separate stack from the start. * These two functions make sure the rest of the kernel won't be too * upset by being on a different stack. The IRQ stack has a * thread_info structure at the bottom so that current et al continue * to work. * * to_irq_stack copies the current task's thread_info to the IRQ stack * thread_info and sets the tasks's stack to point to the IRQ stack. * * from_irq_stack copies the thread_info struct back (flags may have * been modified) and resets the task's stack pointer. * * Tricky bits - * * What happens when two signals race each other? UML doesn't block * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal * could arrive while a previous one is still setting up the * thread_info. * * There are three cases - * The first interrupt on the stack - sets up the thread_info and * handles the interrupt * A nested interrupt interrupting the copying of the thread_info - * can't handle the interrupt, as the stack is in an unknown state * A nested interrupt not interrupting the copying of the * thread_info - doesn't do any setup, just handles the interrupt * * The first job is to figure out whether we interrupted stack setup. * This is done by xchging the signal mask with thread_info->pending. * If the value that comes back is zero, then there is no setup in * progress, and the interrupt can be handled. If the value is * non-zero, then there is stack setup in progress. In order to have * the interrupt handled, we leave our signal in the mask, and it will * be handled by the upper handler after it has set up the stack. * * Next is to figure out whether we are the outer handler or a nested * one. As part of setting up the stack, thread_info->real_thread is * set to non-NULL (and is reset to NULL on exit). This is the * nesting indicator. If it is non-NULL, then the stack is already * set up and the handler can run. */ static unsigned long pending_mask; unsigned long to_irq_stack(unsigned long *mask_out) { struct thread_info *ti; unsigned long mask, old; int nested; mask = xchg(&pending_mask, *mask_out); if (mask != 0) { /* * If any interrupts come in at this point, we want to * make sure that their bits aren't lost by our * putting our bit in. So, this loop accumulates bits * until xchg returns the same value that we put in. * When that happens, there were no new interrupts, * and pending_mask contains a bit for each interrupt * that came in. */ old = *mask_out; do { old |= mask; mask = xchg(&pending_mask, old); } while (mask != old); return 1; } ti = current_thread_info(); nested = (ti->real_thread != NULL); if (!nested) { struct task_struct *task; struct thread_info *tti; task = cpu_tasks[ti->cpu].task; tti = task_thread_info(task); *ti = *tti; ti->real_thread = tti; task->stack = ti; } mask = xchg(&pending_mask, 0); *mask_out |= mask | nested; return 0; } unsigned long from_irq_stack(int nested) { struct thread_info *ti, *to; unsigned long mask; ti = current_thread_info(); pending_mask = 1; to = ti->real_thread; current->stack = to; ti->real_thread = NULL; *to = *ti; mask = xchg(&pending_mask, 0); return mask & ~1; }