/* * linux/boot/head.S * * Copyright (C) 1991, 1992, 1993 Linus Torvalds */ /* * head.S contains the 32-bit startup code. * * NOTE!!! Startup happens at absolute address 0x00001000, which is also where * the page directory will exist. The startup code will be overwritten by * the page directory. [According to comments etc elsewhere on a compressed * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC] * * Page 0 is deliberately kept safe, since System Management Mode code in * laptops may need to access the BIOS data stored there. This is also * useful for future device drivers that either access the BIOS via VM86 * mode. */ /* * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996 */ .code32 .text #include #include #include #include #include #include #include #include #include __HEAD .code32 ENTRY(startup_32) cld /* * Test KEEP_SEGMENTS flag to see if the bootloader is asking * us to not reload segments */ testb $(1<<6), BP_loadflags(%esi) jnz 1f cli movl $(__KERNEL_DS), %eax movl %eax, %ds movl %eax, %es movl %eax, %ss 1: /* * Calculate the delta between where we were compiled to run * at and where we were actually loaded at. This can only be done * with a short local call on x86. Nothing else will tell us what * address we are running at. The reserved chunk of the real-mode * data at 0x1e4 (defined as a scratch field) are used as the stack * for this calculation. Only 4 bytes are needed. */ leal (BP_scratch+4)(%esi), %esp call 1f 1: popl %ebp subl $1b, %ebp /* setup a stack and make sure cpu supports long mode. */ movl $boot_stack_end, %eax addl %ebp, %eax movl %eax, %esp call verify_cpu testl %eax, %eax jnz no_longmode /* * Compute the delta between where we were compiled to run at * and where the code will actually run at. * * %ebp contains the address we are loaded at by the boot loader and %ebx * contains the address where we should move the kernel image temporarily * for safe in-place decompression. */ #ifdef CONFIG_RELOCATABLE movl %ebp, %ebx movl BP_kernel_alignment(%esi), %eax decl %eax addl %eax, %ebx notl %eax andl %eax, %ebx #else movl $LOAD_PHYSICAL_ADDR, %ebx #endif /* Target address to relocate to for decompression */ addl $z_extract_offset, %ebx /* * Prepare for entering 64 bit mode */ /* Load new GDT with the 64bit segments using 32bit descriptor */ leal gdt(%ebp), %eax movl %eax, gdt+2(%ebp) lgdt gdt(%ebp) /* Enable PAE mode */ movl $(X86_CR4_PAE), %eax movl %eax, %cr4 /* * Build early 4G boot pagetable */ /* Initialize Page tables to 0 */ leal pgtable(%ebx), %edi xorl %eax, %eax movl $((4096*6)/4), %ecx rep stosl /* Build Level 4 */ leal pgtable + 0(%ebx), %edi leal 0x1007 (%edi), %eax movl %eax, 0(%edi) /* Build Level 3 */ leal pgtable + 0x1000(%ebx), %edi leal 0x1007(%edi), %eax movl $4, %ecx 1: movl %eax, 0x00(%edi) addl $0x00001000, %eax addl $8, %edi decl %ecx jnz 1b /* Build Level 2 */ leal pgtable + 0x2000(%ebx), %edi movl $0x00000183, %eax movl $2048, %ecx 1: movl %eax, 0(%edi) addl $0x00200000, %eax addl $8, %edi decl %ecx jnz 1b /* Enable the boot page tables */ leal pgtable(%ebx), %eax movl %eax, %cr3 /* Enable Long mode in EFER (Extended Feature Enable Register) */ movl $MSR_EFER, %ecx rdmsr btsl $_EFER_LME, %eax wrmsr /* After gdt is loaded */ xorl %eax, %eax lldt %ax movl $0x20, %eax ltr %ax /* * Setup for the jump to 64bit mode * * When the jump is performend we will be in long mode but * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use * the new gdt/idt that has __KERNEL_CS with CS.L = 1. * We place all of the values on our mini stack so lret can * used to perform that far jump. */ pushl $__KERNEL_CS leal startup_64(%ebp), %eax pushl %eax /* Enter paged protected Mode, activating Long Mode */ movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */ movl %eax, %cr0 /* Jump from 32bit compatibility mode into 64bit mode. */ lret ENDPROC(startup_32) /* * Be careful here startup_64 needs to be at a predictable * address so I can export it in an ELF header. Bootloaders * should look at the ELF header to find this address, as * it may change in the future. */ .code64 .org 0x200 ENTRY(startup_64) /* * We come here either from startup_32 or directly from a * 64bit bootloader. If we come here from a bootloader we depend on * an identity mapped page table being provied that maps our * entire text+data+bss and hopefully all of memory. */ #ifdef CONFIG_EFI_STUB /* * The entry point for the PE/COFF executable is 0x210, so only * legacy boot loaders will execute this jmp. */ jmp preferred_addr .org 0x210 mov %rcx, %rdi mov %rdx, %rsi pushq %rdi pushq %rsi call make_boot_params cmpq $0,%rax je 1f mov %rax, %rdx popq %rsi popq %rdi .org 0x230,0x90 call efi_main movq %rax,%rsi cmpq $0,%rax jne 2f 1: /* EFI init failed, so hang. */ hlt jmp 1b 2: call 3f 3: popq %rax subq $3b, %rax subq BP_pref_address(%rsi), %rax add BP_code32_start(%esi), %eax leaq preferred_addr(%rax), %rax jmp *%rax preferred_addr: #endif /* Setup data segments. */ xorl %eax, %eax movl %eax, %ds movl %eax, %es movl %eax, %ss movl %eax, %fs movl %eax, %gs /* * Compute the decompressed kernel start address. It is where * we were loaded at aligned to a 2M boundary. %rbp contains the * decompressed kernel start address. * * If it is a relocatable kernel then decompress and run the kernel * from load address aligned to 2MB addr, otherwise decompress and * run the kernel from LOAD_PHYSICAL_ADDR * * We cannot rely on the calculation done in 32-bit mode, since we * may have been invoked via the 64-bit entry point. */ /* Start with the delta to where the kernel will run at. */ #ifdef CONFIG_RELOCATABLE leaq startup_32(%rip) /* - $startup_32 */, %rbp movl BP_kernel_alignment(%rsi), %eax decl %eax addq %rax, %rbp notq %rax andq %rax, %rbp #else movq $LOAD_PHYSICAL_ADDR, %rbp #endif /* Target address to relocate to for decompression */ leaq z_extract_offset(%rbp), %rbx /* Set up the stack */ leaq boot_stack_end(%rbx), %rsp /* Zero EFLAGS */ pushq $0 popfq /* * Copy the compressed kernel to the end of our buffer * where decompression in place becomes safe. */ pushq %rsi leaq (_bss-8)(%rip), %rsi leaq (_bss-8)(%rbx), %rdi movq $_bss /* - $startup_32 */, %rcx shrq $3, %rcx std rep movsq cld popq %rsi /* * Jump to the relocated address. */ leaq relocated(%rbx), %rax jmp *%rax .text relocated: /* * Clear BSS (stack is currently empty) */ xorl %eax, %eax leaq _bss(%rip), %rdi leaq _ebss(%rip), %rcx subq %rdi, %rcx shrq $3, %rcx rep stosq /* * Adjust our own GOT */ leaq _got(%rip), %rdx leaq _egot(%rip), %rcx 1: cmpq %rcx, %rdx jae 2f addq %rbx, (%rdx) addq $8, %rdx jmp 1b 2: /* * Do the decompression, and jump to the new kernel.. */ pushq %rsi /* Save the real mode argument */ movq %rsi, %rdi /* real mode address */ leaq boot_heap(%rip), %rsi /* malloc area for uncompression */ leaq input_data(%rip), %rdx /* input_data */ movl $z_input_len, %ecx /* input_len */ movq %rbp, %r8 /* output target address */ call decompress_kernel popq %rsi /* * Jump to the decompressed kernel. */ jmp *%rbp .code32 no_longmode: /* This isn't an x86-64 CPU so hang */ 1: hlt jmp 1b #include "../../kernel/verify_cpu.S" .data gdt: .word gdt_end - gdt .long gdt .word 0 .quad 0x0000000000000000 /* NULL descriptor */ .quad 0x00af9a000000ffff /* __KERNEL_CS */ .quad 0x00cf92000000ffff /* __KERNEL_DS */ .quad 0x0080890000000000 /* TS descriptor */ .quad 0x0000000000000000 /* TS continued */ gdt_end: /* * Stack and heap for uncompression */ .bss .balign 4 boot_heap: .fill BOOT_HEAP_SIZE, 1, 0 boot_stack: .fill BOOT_STACK_SIZE, 1, 0 boot_stack_end: /* * Space for page tables (not in .bss so not zeroed) */ .section ".pgtable","a",@nobits .balign 4096 pgtable: .fill 6*4096, 1, 0