/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991,1992 Linus Torvalds * * entry_32.S contains the system-call and low-level fault and trap handling routines. * * Stack layout while running C code: * ptrace needs to have all registers on the stack. * If the order here is changed, it needs to be * updated in fork.c:copy_process(), signal.c:do_signal(), * ptrace.c and ptrace.h * * 0(%esp) - %ebx * 4(%esp) - %ecx * 8(%esp) - %edx * C(%esp) - %esi * 10(%esp) - %edi * 14(%esp) - %ebp * 18(%esp) - %eax * 1C(%esp) - %ds * 20(%esp) - %es * 24(%esp) - %fs * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS * 2C(%esp) - orig_eax * 30(%esp) - %eip * 34(%esp) - %cs * 38(%esp) - %eflags * 3C(%esp) - %oldesp * 40(%esp) - %oldss */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "calling.h" .section .entry.text, "ax" /* * We use macros for low-level operations which need to be overridden * for paravirtualization. The following will never clobber any registers: * INTERRUPT_RETURN (aka. "iret") * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax") * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit"). * * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY). * Allowing a register to be clobbered can shrink the paravirt replacement * enough to patch inline, increasing performance. */ #ifdef CONFIG_PREEMPTION # define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF #else # define preempt_stop(clobbers) #endif .macro TRACE_IRQS_IRET #ifdef CONFIG_TRACE_IRQFLAGS testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off? jz 1f TRACE_IRQS_ON 1: #endif .endm #define PTI_SWITCH_MASK (1 << PAGE_SHIFT) /* * User gs save/restore * * %gs is used for userland TLS and kernel only uses it for stack * canary which is required to be at %gs:20 by gcc. Read the comment * at the top of stackprotector.h for more info. * * Local labels 98 and 99 are used. */ #ifdef CONFIG_X86_32_LAZY_GS /* unfortunately push/pop can't be no-op */ .macro PUSH_GS pushl $0 .endm .macro POP_GS pop=0 addl $(4 + \pop), %esp .endm .macro POP_GS_EX .endm /* all the rest are no-op */ .macro PTGS_TO_GS .endm .macro PTGS_TO_GS_EX .endm .macro GS_TO_REG reg .endm .macro REG_TO_PTGS reg .endm .macro SET_KERNEL_GS reg .endm #else /* CONFIG_X86_32_LAZY_GS */ .macro PUSH_GS pushl %gs .endm .macro POP_GS pop=0 98: popl %gs .if \pop <> 0 add $\pop, %esp .endif .endm .macro POP_GS_EX .pushsection .fixup, "ax" 99: movl $0, (%esp) jmp 98b .popsection _ASM_EXTABLE(98b, 99b) .endm .macro PTGS_TO_GS 98: mov PT_GS(%esp), %gs .endm .macro PTGS_TO_GS_EX .pushsection .fixup, "ax" 99: movl $0, PT_GS(%esp) jmp 98b .popsection _ASM_EXTABLE(98b, 99b) .endm .macro GS_TO_REG reg movl %gs, \reg .endm .macro REG_TO_PTGS reg movl \reg, PT_GS(%esp) .endm .macro SET_KERNEL_GS reg movl $(__KERNEL_STACK_CANARY), \reg movl \reg, %gs .endm #endif /* CONFIG_X86_32_LAZY_GS */ /* Unconditionally switch to user cr3 */ .macro SWITCH_TO_USER_CR3 scratch_reg:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI movl %cr3, \scratch_reg orl $PTI_SWITCH_MASK, \scratch_reg movl \scratch_reg, %cr3 .Lend_\@: .endm .macro BUG_IF_WRONG_CR3 no_user_check=0 #ifdef CONFIG_DEBUG_ENTRY ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI .if \no_user_check == 0 /* coming from usermode? */ testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp) jz .Lend_\@ .endif /* On user-cr3? */ movl %cr3, %eax testl $PTI_SWITCH_MASK, %eax jnz .Lend_\@ /* From userspace with kernel cr3 - BUG */ ud2 .Lend_\@: #endif .endm /* * Switch to kernel cr3 if not already loaded and return current cr3 in * \scratch_reg */ .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI movl %cr3, \scratch_reg /* Test if we are already on kernel CR3 */ testl $PTI_SWITCH_MASK, \scratch_reg jz .Lend_\@ andl $(~PTI_SWITCH_MASK), \scratch_reg movl \scratch_reg, %cr3 /* Return original CR3 in \scratch_reg */ orl $PTI_SWITCH_MASK, \scratch_reg .Lend_\@: .endm #define CS_FROM_ENTRY_STACK (1 << 31) #define CS_FROM_USER_CR3 (1 << 30) #define CS_FROM_KERNEL (1 << 29) #define CS_FROM_ESPFIX (1 << 28) .macro FIXUP_FRAME /* * The high bits of the CS dword (__csh) are used for CS_FROM_*. * Clear them in case hardware didn't do this for us. */ andl $0x0000ffff, 4*4(%esp) #ifdef CONFIG_VM86 testl $X86_EFLAGS_VM, 5*4(%esp) jnz .Lfrom_usermode_no_fixup_\@ #endif testl $USER_SEGMENT_RPL_MASK, 4*4(%esp) jnz .Lfrom_usermode_no_fixup_\@ orl $CS_FROM_KERNEL, 4*4(%esp) /* * When we're here from kernel mode; the (exception) stack looks like: * * 6*4(%esp) - * 5*4(%esp) - flags * 4*4(%esp) - cs * 3*4(%esp) - ip * 2*4(%esp) - orig_eax * 1*4(%esp) - gs / function * 0*4(%esp) - fs * * Lets build a 5 entry IRET frame after that, such that struct pt_regs * is complete and in particular regs->sp is correct. This gives us * the original 6 enties as gap: * * 14*4(%esp) - * 13*4(%esp) - gap / flags * 12*4(%esp) - gap / cs * 11*4(%esp) - gap / ip * 10*4(%esp) - gap / orig_eax * 9*4(%esp) - gap / gs / function * 8*4(%esp) - gap / fs * 7*4(%esp) - ss * 6*4(%esp) - sp * 5*4(%esp) - flags * 4*4(%esp) - cs * 3*4(%esp) - ip * 2*4(%esp) - orig_eax * 1*4(%esp) - gs / function * 0*4(%esp) - fs */ pushl %ss # ss pushl %esp # sp (points at ss) addl $7*4, (%esp) # point sp back at the previous context pushl 7*4(%esp) # flags pushl 7*4(%esp) # cs pushl 7*4(%esp) # ip pushl 7*4(%esp) # orig_eax pushl 7*4(%esp) # gs / function pushl 7*4(%esp) # fs .Lfrom_usermode_no_fixup_\@: .endm .macro IRET_FRAME /* * We're called with %ds, %es, %fs, and %gs from the interrupted * frame, so we shouldn't use them. Also, we may be in ESPFIX * mode and therefore have a nonzero SS base and an offset ESP, * so any attempt to access the stack needs to use SS. (except for * accesses through %esp, which automatically use SS.) */ testl $CS_FROM_KERNEL, 1*4(%esp) jz .Lfinished_frame_\@ /* * Reconstruct the 3 entry IRET frame right after the (modified) * regs->sp without lowering %esp in between, such that an NMI in the * middle doesn't scribble our stack. */ pushl %eax pushl %ecx movl 5*4(%esp), %eax # (modified) regs->sp movl 4*4(%esp), %ecx # flags movl %ecx, %ss:-1*4(%eax) movl 3*4(%esp), %ecx # cs andl $0x0000ffff, %ecx movl %ecx, %ss:-2*4(%eax) movl 2*4(%esp), %ecx # ip movl %ecx, %ss:-3*4(%eax) movl 1*4(%esp), %ecx # eax movl %ecx, %ss:-4*4(%eax) popl %ecx lea -4*4(%eax), %esp popl %eax .Lfinished_frame_\@: .endm .macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0 cld .if \skip_gs == 0 PUSH_GS .endif pushl %fs pushl %eax movl $(__KERNEL_PERCPU), %eax movl %eax, %fs .if \unwind_espfix > 0 UNWIND_ESPFIX_STACK .endif popl %eax FIXUP_FRAME pushl %es pushl %ds pushl \pt_regs_ax pushl %ebp pushl %edi pushl %esi pushl %edx pushl %ecx pushl %ebx movl $(__USER_DS), %edx movl %edx, %ds movl %edx, %es .if \skip_gs == 0 SET_KERNEL_GS %edx .endif /* Switch to kernel stack if necessary */ .if \switch_stacks > 0 SWITCH_TO_KERNEL_STACK .endif .endm .macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0 SAVE_ALL unwind_espfix=\unwind_espfix BUG_IF_WRONG_CR3 /* * Now switch the CR3 when PTI is enabled. * * We can enter with either user or kernel cr3, the code will * store the old cr3 in \cr3_reg and switches to the kernel cr3 * if necessary. */ SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg .Lend_\@: .endm .macro RESTORE_INT_REGS popl %ebx popl %ecx popl %edx popl %esi popl %edi popl %ebp popl %eax .endm .macro RESTORE_REGS pop=0 RESTORE_INT_REGS 1: popl %ds 2: popl %es 3: popl %fs POP_GS \pop IRET_FRAME .pushsection .fixup, "ax" 4: movl $0, (%esp) jmp 1b 5: movl $0, (%esp) jmp 2b 6: movl $0, (%esp) jmp 3b .popsection _ASM_EXTABLE(1b, 4b) _ASM_EXTABLE(2b, 5b) _ASM_EXTABLE(3b, 6b) POP_GS_EX .endm .macro RESTORE_ALL_NMI cr3_reg:req pop=0 /* * Now switch the CR3 when PTI is enabled. * * We enter with kernel cr3 and switch the cr3 to the value * stored on \cr3_reg, which is either a user or a kernel cr3. */ ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI testl $PTI_SWITCH_MASK, \cr3_reg jz .Lswitched_\@ /* User cr3 in \cr3_reg - write it to hardware cr3 */ movl \cr3_reg, %cr3 .Lswitched_\@: BUG_IF_WRONG_CR3 RESTORE_REGS pop=\pop .endm .macro CHECK_AND_APPLY_ESPFIX #ifdef CONFIG_X86_ESPFIX32 #define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8) #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS /* * Warning: PT_OLDSS(%esp) contains the wrong/random values if we * are returning to the kernel. * See comments in process.c:copy_thread() for details. */ movb PT_OLDSS(%esp), %ah movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax jne .Lend_\@ # returning to user-space with LDT SS /* * Setup and switch to ESPFIX stack * * We're returning to userspace with a 16 bit stack. The CPU will not * restore the high word of ESP for us on executing iret... This is an * "official" bug of all the x86-compatible CPUs, which we can work * around to make dosemu and wine happy. We do this by preloading the * high word of ESP with the high word of the userspace ESP while * compensating for the offset by changing to the ESPFIX segment with * a base address that matches for the difference. */ mov %esp, %edx /* load kernel esp */ mov PT_OLDESP(%esp), %eax /* load userspace esp */ mov %dx, %ax /* eax: new kernel esp */ sub %eax, %edx /* offset (low word is 0) */ shr $16, %edx mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ pushl $__ESPFIX_SS pushl %eax /* new kernel esp */ /* * Disable interrupts, but do not irqtrace this section: we * will soon execute iret and the tracer was already set to * the irqstate after the IRET: */ DISABLE_INTERRUPTS(CLBR_ANY) lss (%esp), %esp /* switch to espfix segment */ .Lend_\@: #endif /* CONFIG_X86_ESPFIX32 */ .endm /* * Called with pt_regs fully populated and kernel segments loaded, * so we can access PER_CPU and use the integer registers. * * We need to be very careful here with the %esp switch, because an NMI * can happen everywhere. If the NMI handler finds itself on the * entry-stack, it will overwrite the task-stack and everything we * copied there. So allocate the stack-frame on the task-stack and * switch to it before we do any copying. */ .macro SWITCH_TO_KERNEL_STACK ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV BUG_IF_WRONG_CR3 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax /* * %eax now contains the entry cr3 and we carry it forward in * that register for the time this macro runs */ /* Are we on the entry stack? Bail out if not! */ movl PER_CPU_VAR(cpu_entry_area), %ecx addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx subl %esp, %ecx /* ecx = (end of entry_stack) - esp */ cmpl $SIZEOF_entry_stack, %ecx jae .Lend_\@ /* Load stack pointer into %esi and %edi */ movl %esp, %esi movl %esi, %edi /* Move %edi to the top of the entry stack */ andl $(MASK_entry_stack), %edi addl $(SIZEOF_entry_stack), %edi /* Load top of task-stack into %edi */ movl TSS_entry2task_stack(%edi), %edi /* Special case - entry from kernel mode via entry stack */ #ifdef CONFIG_VM86 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS movb PT_CS(%esp), %cl andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx #else movl PT_CS(%esp), %ecx andl $SEGMENT_RPL_MASK, %ecx #endif cmpl $USER_RPL, %ecx jb .Lentry_from_kernel_\@ /* Bytes to copy */ movl $PTREGS_SIZE, %ecx #ifdef CONFIG_VM86 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi) jz .Lcopy_pt_regs_\@ /* * Stack-frame contains 4 additional segment registers when * coming from VM86 mode */ addl $(4 * 4), %ecx #endif .Lcopy_pt_regs_\@: /* Allocate frame on task-stack */ subl %ecx, %edi /* Switch to task-stack */ movl %edi, %esp /* * We are now on the task-stack and can safely copy over the * stack-frame */ shrl $2, %ecx cld rep movsl jmp .Lend_\@ .Lentry_from_kernel_\@: /* * This handles the case when we enter the kernel from * kernel-mode and %esp points to the entry-stack. When this * happens we need to switch to the task-stack to run C code, * but switch back to the entry-stack again when we approach * iret and return to the interrupted code-path. This usually * happens when we hit an exception while restoring user-space * segment registers on the way back to user-space or when the * sysenter handler runs with eflags.tf set. * * When we switch to the task-stack here, we can't trust the * contents of the entry-stack anymore, as the exception handler * might be scheduled out or moved to another CPU. Therefore we * copy the complete entry-stack to the task-stack and set a * marker in the iret-frame (bit 31 of the CS dword) to detect * what we've done on the iret path. * * On the iret path we copy everything back and switch to the * entry-stack, so that the interrupted kernel code-path * continues on the same stack it was interrupted with. * * Be aware that an NMI can happen anytime in this code. * * %esi: Entry-Stack pointer (same as %esp) * %edi: Top of the task stack * %eax: CR3 on kernel entry */ /* Calculate number of bytes on the entry stack in %ecx */ movl %esi, %ecx /* %ecx to the top of entry-stack */ andl $(MASK_entry_stack), %ecx addl $(SIZEOF_entry_stack), %ecx /* Number of bytes on the entry stack to %ecx */ sub %esi, %ecx /* Mark stackframe as coming from entry stack */ orl $CS_FROM_ENTRY_STACK, PT_CS(%esp) /* * Test the cr3 used to enter the kernel and add a marker * so that we can switch back to it before iret. */ testl $PTI_SWITCH_MASK, %eax jz .Lcopy_pt_regs_\@ orl $CS_FROM_USER_CR3, PT_CS(%esp) /* * %esi and %edi are unchanged, %ecx contains the number of * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate * the stack-frame on task-stack and copy everything over */ jmp .Lcopy_pt_regs_\@ .Lend_\@: .endm /* * Switch back from the kernel stack to the entry stack. * * The %esp register must point to pt_regs on the task stack. It will * first calculate the size of the stack-frame to copy, depending on * whether we return to VM86 mode or not. With that it uses 'rep movsl' * to copy the contents of the stack over to the entry stack. * * We must be very careful here, as we can't trust the contents of the * task-stack once we switched to the entry-stack. When an NMI happens * while on the entry-stack, the NMI handler will switch back to the top * of the task stack, overwriting our stack-frame we are about to copy. * Therefore we switch the stack only after everything is copied over. */ .macro SWITCH_TO_ENTRY_STACK ALTERNATIVE "", "jmp .Lend_\@", X86_FEATURE_XENPV /* Bytes to copy */ movl $PTREGS_SIZE, %ecx #ifdef CONFIG_VM86 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp) jz .Lcopy_pt_regs_\@ /* Additional 4 registers to copy when returning to VM86 mode */ addl $(4 * 4), %ecx .Lcopy_pt_regs_\@: #endif /* Initialize source and destination for movsl */ movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi subl %ecx, %edi movl %esp, %esi /* Save future stack pointer in %ebx */ movl %edi, %ebx /* Copy over the stack-frame */ shrl $2, %ecx cld rep movsl /* * Switch to entry-stack - needs to happen after everything is * copied because the NMI handler will overwrite the task-stack * when on entry-stack */ movl %ebx, %esp .Lend_\@: .endm /* * This macro handles the case when we return to kernel-mode on the iret * path and have to switch back to the entry stack and/or user-cr3 * * See the comments below the .Lentry_from_kernel_\@ label in the * SWITCH_TO_KERNEL_STACK macro for more details. */ .macro PARANOID_EXIT_TO_KERNEL_MODE /* * Test if we entered the kernel with the entry-stack. Most * likely we did not, because this code only runs on the * return-to-kernel path. */ testl $CS_FROM_ENTRY_STACK, PT_CS(%esp) jz .Lend_\@ /* Unlikely slow-path */ /* Clear marker from stack-frame */ andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp) /* Copy the remaining task-stack contents to entry-stack */ movl %esp, %esi movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi /* Bytes on the task-stack to ecx */ movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx subl %esi, %ecx /* Allocate stack-frame on entry-stack */ subl %ecx, %edi /* * Save future stack-pointer, we must not switch until the * copy is done, otherwise the NMI handler could destroy the * contents of the task-stack we are about to copy. */ movl %edi, %ebx /* Do the copy */ shrl $2, %ecx cld rep movsl /* Safe to switch to entry-stack now */ movl %ebx, %esp /* * We came from entry-stack and need to check if we also need to * switch back to user cr3. */ testl $CS_FROM_USER_CR3, PT_CS(%esp) jz .Lend_\@ /* Clear marker from stack-frame */ andl $(~CS_FROM_USER_CR3), PT_CS(%esp) SWITCH_TO_USER_CR3 scratch_reg=%eax .Lend_\@: .endm /** * idtentry - Macro to generate entry stubs for simple IDT entries * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * @has_error_code: Hardware pushed error code on stack * @sane: Compatibility flag with 64bit */ .macro idtentry vector asmsym cfunc has_error_code:req sane=0 SYM_CODE_START(\asmsym) ASM_CLAC cld .if \has_error_code == 0 pushl $0 /* Clear the error code */ .endif /* Push the C-function address into the GS slot */ pushl $\cfunc /* Invoke the common exception entry */ jmp handle_exception SYM_CODE_END(\asmsym) .endm /* * Include the defines which emit the idt entries which are shared * shared between 32 and 64 bit. */ #include /* * %eax: prev task * %edx: next task */ .pushsection .text, "ax" SYM_CODE_START(__switch_to_asm) /* * Save callee-saved registers * This must match the order in struct inactive_task_frame */ pushl %ebp pushl %ebx pushl %edi pushl %esi /* * Flags are saved to prevent AC leakage. This could go * away if objtool would have 32bit support to verify * the STAC/CLAC correctness. */ pushfl /* switch stack */ movl %esp, TASK_threadsp(%eax) movl TASK_threadsp(%edx), %esp #ifdef CONFIG_STACKPROTECTOR movl TASK_stack_canary(%edx), %ebx movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset #endif #ifdef CONFIG_RETPOLINE /* * When switching from a shallower to a deeper call stack * the RSB may either underflow or use entries populated * with userspace addresses. On CPUs where those concerns * exist, overwrite the RSB with entries which capture * speculative execution to prevent attack. */ FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW #endif /* Restore flags or the incoming task to restore AC state. */ popfl /* restore callee-saved registers */ popl %esi popl %edi popl %ebx popl %ebp jmp __switch_to SYM_CODE_END(__switch_to_asm) .popsection /* * The unwinder expects the last frame on the stack to always be at the same * offset from the end of the page, which allows it to validate the stack. * Calling schedule_tail() directly would break that convention because its an * asmlinkage function so its argument has to be pushed on the stack. This * wrapper creates a proper "end of stack" frame header before the call. */ .pushsection .text, "ax" SYM_FUNC_START(schedule_tail_wrapper) FRAME_BEGIN pushl %eax call schedule_tail popl %eax FRAME_END ret SYM_FUNC_END(schedule_tail_wrapper) .popsection /* * A newly forked process directly context switches into this address. * * eax: prev task we switched from * ebx: kernel thread func (NULL for user thread) * edi: kernel thread arg */ .pushsection .text, "ax" SYM_CODE_START(ret_from_fork) call schedule_tail_wrapper testl %ebx, %ebx jnz 1f /* kernel threads are uncommon */ 2: /* When we fork, we trace the syscall return in the child, too. */ movl %esp, %eax call syscall_return_slowpath jmp .Lsyscall_32_done /* kernel thread */ 1: movl %edi, %eax CALL_NOSPEC ebx /* * A kernel thread is allowed to return here after successfully * calling do_execve(). Exit to userspace to complete the execve() * syscall. */ movl $0, PT_EAX(%esp) jmp 2b SYM_CODE_END(ret_from_fork) .popsection /* * Return to user mode is not as complex as all this looks, * but we want the default path for a system call return to * go as quickly as possible which is why some of this is * less clear than it otherwise should be. */ # userspace resumption stub bypassing syscall exit tracing SYM_CODE_START_LOCAL(ret_from_exception) preempt_stop(CLBR_ANY) ret_from_intr: #ifdef CONFIG_VM86 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax #else /* * We can be coming here from child spawned by kernel_thread(). */ movl PT_CS(%esp), %eax andl $SEGMENT_RPL_MASK, %eax #endif cmpl $USER_RPL, %eax jb restore_all_kernel # not returning to v8086 or userspace DISABLE_INTERRUPTS(CLBR_ANY) TRACE_IRQS_OFF movl %esp, %eax call prepare_exit_to_usermode jmp restore_all_switch_stack SYM_CODE_END(ret_from_exception) SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) /* * All code from here through __end_SYSENTER_singlestep_region is subject * to being single-stepped if a user program sets TF and executes SYSENTER. * There is absolutely nothing that we can do to prevent this from happening * (thanks Intel!). To keep our handling of this situation as simple as * possible, we handle TF just like AC and NT, except that our #DB handler * will ignore all of the single-step traps generated in this range. */ #ifdef CONFIG_XEN_PV /* * Xen doesn't set %esp to be precisely what the normal SYSENTER * entry point expects, so fix it up before using the normal path. */ SYM_CODE_START(xen_sysenter_target) addl $5*4, %esp /* remove xen-provided frame */ jmp .Lsysenter_past_esp SYM_CODE_END(xen_sysenter_target) #endif /* * 32-bit SYSENTER entry. * * 32-bit system calls through the vDSO's __kernel_vsyscall enter here * if X86_FEATURE_SEP is available. This is the preferred system call * entry on 32-bit systems. * * The SYSENTER instruction, in principle, should *only* occur in the * vDSO. In practice, a small number of Android devices were shipped * with a copy of Bionic that inlined a SYSENTER instruction. This * never happened in any of Google's Bionic versions -- it only happened * in a narrow range of Intel-provided versions. * * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. * IF and VM in RFLAGS are cleared (IOW: interrupts are off). * SYSENTER does not save anything on the stack, * and does not save old EIP (!!!), ESP, or EFLAGS. * * To avoid losing track of EFLAGS.VM (and thus potentially corrupting * user and/or vm86 state), we explicitly disable the SYSENTER * instruction in vm86 mode by reprogramming the MSRs. * * Arguments: * eax system call number * ebx arg1 * ecx arg2 * edx arg3 * esi arg4 * edi arg5 * ebp user stack * 0(%ebp) arg6 */ SYM_FUNC_START(entry_SYSENTER_32) /* * On entry-stack with all userspace-regs live - save and * restore eflags and %eax to use it as scratch-reg for the cr3 * switch. */ pushfl pushl %eax BUG_IF_WRONG_CR3 no_user_check=1 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax popl %eax popfl /* Stack empty again, switch to task stack */ movl TSS_entry2task_stack(%esp), %esp .Lsysenter_past_esp: pushl $__USER_DS /* pt_regs->ss */ pushl %ebp /* pt_regs->sp (stashed in bp) */ pushfl /* pt_regs->flags (except IF = 0) */ orl $X86_EFLAGS_IF, (%esp) /* Fix IF */ pushl $__USER_CS /* pt_regs->cs */ pushl $0 /* pt_regs->ip = 0 (placeholder) */ pushl %eax /* pt_regs->orig_ax */ SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */ /* * SYSENTER doesn't filter flags, so we need to clear NT, AC * and TF ourselves. To save a few cycles, we can check whether * either was set instead of doing an unconditional popfq. * This needs to happen before enabling interrupts so that * we don't get preempted with NT set. * * If TF is set, we will single-step all the way to here -- do_debug * will ignore all the traps. (Yes, this is slow, but so is * single-stepping in general. This allows us to avoid having * a more complicated code to handle the case where a user program * forces us to single-step through the SYSENTER entry code.) * * NB.: .Lsysenter_fix_flags is a label with the code under it moved * out-of-line as an optimization: NT is unlikely to be set in the * majority of the cases and instead of polluting the I$ unnecessarily, * we're keeping that code behind a branch which will predict as * not-taken and therefore its instructions won't be fetched. */ testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) jnz .Lsysenter_fix_flags .Lsysenter_flags_fixed: movl %esp, %eax call do_fast_syscall_32 /* XEN PV guests always use IRET path */ ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \ "jmp .Lsyscall_32_done", X86_FEATURE_XENPV STACKLEAK_ERASE /* Opportunistic SYSEXIT */ /* * Setup entry stack - we keep the pointer in %eax and do the * switch after almost all user-state is restored. */ /* Load entry stack pointer and allocate frame for eflags/eax */ movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax subl $(2*4), %eax /* Copy eflags and eax to entry stack */ movl PT_EFLAGS(%esp), %edi movl PT_EAX(%esp), %esi movl %edi, (%eax) movl %esi, 4(%eax) /* Restore user registers and segments */ movl PT_EIP(%esp), %edx /* pt_regs->ip */ movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ 1: mov PT_FS(%esp), %fs PTGS_TO_GS popl %ebx /* pt_regs->bx */ addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ popl %esi /* pt_regs->si */ popl %edi /* pt_regs->di */ popl %ebp /* pt_regs->bp */ /* Switch to entry stack */ movl %eax, %esp /* Now ready to switch the cr3 */ SWITCH_TO_USER_CR3 scratch_reg=%eax /* * Restore all flags except IF. (We restore IF separately because * STI gives a one-instruction window in which we won't be interrupted, * whereas POPF does not.) */ btrl $X86_EFLAGS_IF_BIT, (%esp) BUG_IF_WRONG_CR3 no_user_check=1 popfl popl %eax /* * Return back to the vDSO, which will pop ecx and edx. * Don't bother with DS and ES (they already contain __USER_DS). */ sti sysexit .pushsection .fixup, "ax" 2: movl $0, PT_FS(%esp) jmp 1b .popsection _ASM_EXTABLE(1b, 2b) PTGS_TO_GS_EX .Lsysenter_fix_flags: pushl $X86_EFLAGS_FIXED popfl jmp .Lsysenter_flags_fixed SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE) SYM_FUNC_END(entry_SYSENTER_32) /* * 32-bit legacy system call entry. * * 32-bit x86 Linux system calls traditionally used the INT $0x80 * instruction. INT $0x80 lands here. * * This entry point can be used by any 32-bit perform system calls. * Instances of INT $0x80 can be found inline in various programs and * libraries. It is also used by the vDSO's __kernel_vsyscall * fallback for hardware that doesn't support a faster entry method. * Restarted 32-bit system calls also fall back to INT $0x80 * regardless of what instruction was originally used to do the system * call. (64-bit programs can use INT $0x80 as well, but they can * only run on 64-bit kernels and therefore land in * entry_INT80_compat.) * * This is considered a slow path. It is not used by most libc * implementations on modern hardware except during process startup. * * Arguments: * eax system call number * ebx arg1 * ecx arg2 * edx arg3 * esi arg4 * edi arg5 * ebp arg6 */ SYM_FUNC_START(entry_INT80_32) ASM_CLAC pushl %eax /* pt_regs->orig_ax */ SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */ movl %esp, %eax call do_int80_syscall_32 .Lsyscall_32_done: STACKLEAK_ERASE restore_all_switch_stack: SWITCH_TO_ENTRY_STACK CHECK_AND_APPLY_ESPFIX /* Switch back to user CR3 */ SWITCH_TO_USER_CR3 scratch_reg=%eax BUG_IF_WRONG_CR3 /* Restore user state */ RESTORE_REGS pop=4 # skip orig_eax/error_code .Lirq_return: /* * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization * when returning from IPI handler and when returning from * scheduler to user-space. */ INTERRUPT_RETURN restore_all_kernel: #ifdef CONFIG_PREEMPTION DISABLE_INTERRUPTS(CLBR_ANY) cmpl $0, PER_CPU_VAR(__preempt_count) jnz .Lno_preempt testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ? jz .Lno_preempt call preempt_schedule_irq .Lno_preempt: #endif TRACE_IRQS_IRET PARANOID_EXIT_TO_KERNEL_MODE BUG_IF_WRONG_CR3 RESTORE_REGS 4 jmp .Lirq_return .section .fixup, "ax" SYM_CODE_START(asm_iret_error) pushl $0 # no error code pushl $iret_error #ifdef CONFIG_DEBUG_ENTRY /* * The stack-frame here is the one that iret faulted on, so its a * return-to-user frame. We are on kernel-cr3 because we come here from * the fixup code. This confuses the CR3 checker, so switch to user-cr3 * as the checker expects it. */ pushl %eax SWITCH_TO_USER_CR3 scratch_reg=%eax popl %eax #endif jmp handle_exception SYM_CODE_END(asm_iret_error) .previous _ASM_EXTABLE(.Lirq_return, asm_iret_error) SYM_FUNC_END(entry_INT80_32) .macro FIXUP_ESPFIX_STACK /* * Switch back for ESPFIX stack to the normal zerobased stack * * We can't call C functions using the ESPFIX stack. This code reads * the high word of the segment base from the GDT and swiches to the * normal stack and adjusts ESP with the matching offset. * * We might be on user CR3 here, so percpu data is not mapped and we can't * access the GDT through the percpu segment. Instead, use SGDT to find * the cpu_entry_area alias of the GDT. */ #ifdef CONFIG_X86_ESPFIX32 /* fixup the stack */ pushl %ecx subl $2*4, %esp sgdt (%esp) movl 2(%esp), %ecx /* GDT address */ /* * Careful: ECX is a linear pointer, so we need to force base * zero. %cs is the only known-linear segment we have right now. */ mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */ mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */ shl $16, %eax addl $2*4, %esp popl %ecx addl %esp, %eax /* the adjusted stack pointer */ pushl $__KERNEL_DS pushl %eax lss (%esp), %esp /* switch to the normal stack segment */ #endif .endm .macro UNWIND_ESPFIX_STACK /* It's safe to clobber %eax, all other regs need to be preserved */ #ifdef CONFIG_X86_ESPFIX32 movl %ss, %eax /* see if on espfix stack */ cmpw $__ESPFIX_SS, %ax jne .Lno_fixup_\@ /* switch to normal stack */ FIXUP_ESPFIX_STACK .Lno_fixup_\@: #endif .endm /* * Build the entry stubs with some assembler magic. * We pack 1 stub into every 8-byte block. */ .align 8 SYM_CODE_START(irq_entries_start) vector=FIRST_EXTERNAL_VECTOR .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) pushl $(~vector+0x80) /* Note: always in signed byte range */ vector=vector+1 jmp common_interrupt .align 8 .endr SYM_CODE_END(irq_entries_start) #ifdef CONFIG_X86_LOCAL_APIC .align 8 SYM_CODE_START(spurious_entries_start) vector=FIRST_SYSTEM_VECTOR .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR) pushl $(~vector+0x80) /* Note: always in signed byte range */ vector=vector+1 jmp common_spurious .align 8 .endr SYM_CODE_END(spurious_entries_start) SYM_CODE_START_LOCAL(common_spurious) ASM_CLAC addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */ SAVE_ALL switch_stacks=1 ENCODE_FRAME_POINTER TRACE_IRQS_OFF movl %esp, %eax call smp_spurious_interrupt jmp ret_from_intr SYM_CODE_END(common_spurious) #endif /* * the CPU automatically disables interrupts when executing an IRQ vector, * so IRQ-flags tracing has to follow that: */ .p2align CONFIG_X86_L1_CACHE_SHIFT SYM_CODE_START_LOCAL(common_interrupt) ASM_CLAC addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */ SAVE_ALL switch_stacks=1 ENCODE_FRAME_POINTER TRACE_IRQS_OFF movl %esp, %eax call do_IRQ jmp ret_from_intr SYM_CODE_END(common_interrupt) #define BUILD_INTERRUPT3(name, nr, fn) \ SYM_FUNC_START(name) \ ASM_CLAC; \ pushl $~(nr); \ SAVE_ALL switch_stacks=1; \ ENCODE_FRAME_POINTER; \ TRACE_IRQS_OFF \ movl %esp, %eax; \ call fn; \ jmp ret_from_intr; \ SYM_FUNC_END(name) #define BUILD_INTERRUPT(name, nr) \ BUILD_INTERRUPT3(name, nr, smp_##name); \ /* The include is where all of the SMP etc. interrupts come from */ #include #ifdef CONFIG_PARAVIRT SYM_CODE_START(native_iret) iret _ASM_EXTABLE(native_iret, asm_iret_error) SYM_CODE_END(native_iret) #endif #ifdef CONFIG_XEN_PV /* * See comment in entry_64.S for further explanation * * Note: This is not an actual IDT entry point. It's a XEN specific entry * point and therefore named to match the 64-bit trampoline counterpart. */ SYM_FUNC_START(xen_asm_exc_xen_hypervisor_callback) /* * Check to see if we got the event in the critical * region in xen_iret_direct, after we've reenabled * events and checked for pending events. This simulates * iret instruction's behaviour where it delivers a * pending interrupt when enabling interrupts: */ cmpl $xen_iret_start_crit, (%esp) jb 1f cmpl $xen_iret_end_crit, (%esp) jae 1f call xen_iret_crit_fixup 1: pushl $-1 /* orig_ax = -1 => not a system call */ SAVE_ALL ENCODE_FRAME_POINTER mov %esp, %eax call xen_pv_evtchn_do_upcall jmp handle_exception_return SYM_FUNC_END(xen_asm_exc_xen_hypervisor_callback) /* * Hypervisor uses this for application faults while it executes. * We get here for two reasons: * 1. Fault while reloading DS, ES, FS or GS * 2. Fault while executing IRET * Category 1 we fix up by reattempting the load, and zeroing the segment * register if the load fails. * Category 2 we fix up by jumping to do_iret_error. We cannot use the * normal Linux return path in this case because if we use the IRET hypercall * to pop the stack frame we end up in an infinite loop of failsafe callbacks. * We distinguish between categories by maintaining a status value in EAX. */ SYM_FUNC_START(xen_failsafe_callback) pushl %eax movl $1, %eax 1: mov 4(%esp), %ds 2: mov 8(%esp), %es 3: mov 12(%esp), %fs 4: mov 16(%esp), %gs /* EAX == 0 => Category 1 (Bad segment) EAX != 0 => Category 2 (Bad IRET) */ testl %eax, %eax popl %eax lea 16(%esp), %esp jz 5f jmp asm_iret_error 5: pushl $-1 /* orig_ax = -1 => not a system call */ SAVE_ALL ENCODE_FRAME_POINTER jmp ret_from_exception .section .fixup, "ax" 6: xorl %eax, %eax movl %eax, 4(%esp) jmp 1b 7: xorl %eax, %eax movl %eax, 8(%esp) jmp 2b 8: xorl %eax, %eax movl %eax, 12(%esp) jmp 3b 9: xorl %eax, %eax movl %eax, 16(%esp) jmp 4b .previous _ASM_EXTABLE(1b, 6b) _ASM_EXTABLE(2b, 7b) _ASM_EXTABLE(3b, 8b) _ASM_EXTABLE(4b, 9b) SYM_FUNC_END(xen_failsafe_callback) #endif /* CONFIG_XEN_PV */ #ifdef CONFIG_XEN_PVHVM BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR, xen_evtchn_do_upcall) #endif #if IS_ENABLED(CONFIG_HYPERV) BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR, hyperv_vector_handler) BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR, hyperv_reenlightenment_intr) BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR, hv_stimer0_vector_handler) #endif /* CONFIG_HYPERV */ SYM_CODE_START(page_fault) ASM_CLAC pushl $do_page_fault jmp common_exception_read_cr2 SYM_CODE_END(page_fault) SYM_CODE_START_LOCAL_NOALIGN(common_exception_read_cr2) /* the function address is in %gs's slot on the stack */ SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 ENCODE_FRAME_POINTER /* fixup %gs */ GS_TO_REG %ecx movl PT_GS(%esp), %edi REG_TO_PTGS %ecx SET_KERNEL_GS %ecx GET_CR2_INTO(%ecx) # might clobber %eax /* fixup orig %eax */ movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart TRACE_IRQS_OFF movl %esp, %eax # pt_regs pointer CALL_NOSPEC edi jmp ret_from_exception SYM_CODE_END(common_exception_read_cr2) SYM_CODE_START_LOCAL_NOALIGN(common_exception) /* the function address is in %gs's slot on the stack */ SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 ENCODE_FRAME_POINTER /* fixup %gs */ GS_TO_REG %ecx movl PT_GS(%esp), %edi # get the function address REG_TO_PTGS %ecx SET_KERNEL_GS %ecx /* fixup orig %eax */ movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart TRACE_IRQS_OFF movl %esp, %eax # pt_regs pointer CALL_NOSPEC edi jmp ret_from_exception SYM_CODE_END(common_exception) SYM_CODE_START_LOCAL_NOALIGN(handle_exception) /* the function address is in %gs's slot on the stack */ SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1 ENCODE_FRAME_POINTER /* fixup %gs */ GS_TO_REG %ecx movl PT_GS(%esp), %edi # get the function address REG_TO_PTGS %ecx SET_KERNEL_GS %ecx /* fixup orig %eax */ movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart movl %esp, %eax # pt_regs pointer CALL_NOSPEC edi handle_exception_return: #ifdef CONFIG_VM86 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax #else /* * We can be coming here from child spawned by kernel_thread(). */ movl PT_CS(%esp), %eax andl $SEGMENT_RPL_MASK, %eax #endif cmpl $USER_RPL, %eax # returning to v8086 or userspace ? jnb ret_to_user PARANOID_EXIT_TO_KERNEL_MODE BUG_IF_WRONG_CR3 RESTORE_REGS 4 jmp .Lirq_return ret_to_user: movl %esp, %eax jmp restore_all_switch_stack SYM_CODE_END(handle_exception) SYM_CODE_START(asm_exc_double_fault) 1: /* * This is a task gate handler, not an interrupt gate handler. * The error code is on the stack, but the stack is otherwise * empty. Interrupts are off. Our state is sane with the following * exceptions: * * - CR0.TS is set. "TS" literally means "task switched". * - EFLAGS.NT is set because we're a "nested task". * - The doublefault TSS has back_link set and has been marked busy. * - TR points to the doublefault TSS and the normal TSS is busy. * - CR3 is the normal kernel PGD. This would be delightful, except * that the CPU didn't bother to save the old CR3 anywhere. This * would make it very awkward to return back to the context we came * from. * * The rest of EFLAGS is sanitized for us, so we don't need to * worry about AC or DF. * * Don't even bother popping the error code. It's always zero, * and ignoring it makes us a bit more robust against buggy * hypervisor task gate implementations. * * We will manually undo the task switch instead of doing a * task-switching IRET. */ clts /* clear CR0.TS */ pushl $X86_EFLAGS_FIXED popfl /* clear EFLAGS.NT */ call doublefault_shim /* We don't support returning, so we have no IRET here. */ 1: hlt jmp 1b SYM_CODE_END(asm_exc_double_fault) /* * NMI is doubly nasty. It can happen on the first instruction of * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 * switched stacks. We handle both conditions by simply checking whether we * interrupted kernel code running on the SYSENTER stack. */ SYM_CODE_START(asm_exc_nmi) ASM_CLAC #ifdef CONFIG_X86_ESPFIX32 /* * ESPFIX_SS is only ever set on the return to user path * after we've switched to the entry stack. */ pushl %eax movl %ss, %eax cmpw $__ESPFIX_SS, %ax popl %eax je .Lnmi_espfix_stack #endif pushl %eax # pt_regs->orig_ax SAVE_ALL_NMI cr3_reg=%edi ENCODE_FRAME_POINTER xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer /* Are we currently on the SYSENTER stack? */ movl PER_CPU_VAR(cpu_entry_area), %ecx addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx subl %eax, %ecx /* ecx = (end of entry_stack) - esp */ cmpl $SIZEOF_entry_stack, %ecx jb .Lnmi_from_sysenter_stack /* Not on SYSENTER stack. */ call exc_nmi jmp .Lnmi_return .Lnmi_from_sysenter_stack: /* * We're on the SYSENTER stack. Switch off. No one (not even debug) * is using the thread stack right now, so it's safe for us to use it. */ movl %esp, %ebx movl PER_CPU_VAR(cpu_current_top_of_stack), %esp call exc_nmi movl %ebx, %esp .Lnmi_return: #ifdef CONFIG_X86_ESPFIX32 testl $CS_FROM_ESPFIX, PT_CS(%esp) jnz .Lnmi_from_espfix #endif CHECK_AND_APPLY_ESPFIX RESTORE_ALL_NMI cr3_reg=%edi pop=4 jmp .Lirq_return #ifdef CONFIG_X86_ESPFIX32 .Lnmi_espfix_stack: /* * Create the pointer to LSS back */ pushl %ss pushl %esp addl $4, (%esp) /* Copy the (short) IRET frame */ pushl 4*4(%esp) # flags pushl 4*4(%esp) # cs pushl 4*4(%esp) # ip pushl %eax # orig_ax SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1 ENCODE_FRAME_POINTER /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */ xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp) xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer jmp .Lnmi_from_sysenter_stack .Lnmi_from_espfix: RESTORE_ALL_NMI cr3_reg=%edi /* * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to * fix up the gap and long frame: * * 3 - original frame (exception) * 2 - ESPFIX block (above) * 6 - gap (FIXUP_FRAME) * 5 - long frame (FIXUP_FRAME) * 1 - orig_ax */ lss (1+5+6)*4(%esp), %esp # back to espfix stack jmp .Lirq_return #endif SYM_CODE_END(asm_exc_nmi) .pushsection .text, "ax" SYM_CODE_START(rewind_stack_do_exit) /* Prevent any naive code from trying to unwind to our caller. */ xorl %ebp, %ebp movl PER_CPU_VAR(cpu_current_top_of_stack), %esi leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp call do_exit 1: jmp 1b SYM_CODE_END(rewind_stack_do_exit) .popsection