/* * apb_timer.c: Driver for Langwell APB timers * * (C) Copyright 2009 Intel Corporation * Author: Jacob Pan (jacob.jun.pan@intel.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. * * Note: * Langwell is the south complex of Intel Moorestown MID platform. There are * eight external timers in total that can be used by the operating system. * The timer information, such as frequency and addresses, is provided to the * OS via SFI tables. * Timer interrupts are routed via FW/HW emulated IOAPIC independently via * individual redirection table entries (RTE). * Unlike HPET, there is no master counter, therefore one of the timers are * used as clocksource. The overall allocation looks like: * - timer 0 - NR_CPUs for per cpu timer * - one timer for clocksource * - one timer for watchdog driver. * It is also worth notice that APB timer does not support true one-shot mode, * free-running mode will be used here to emulate one-shot mode. * APB timer can also be used as broadcast timer along with per cpu local APIC * timer, but by default APB timer has higher rating than local APIC timers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define APBT_MASK CLOCKSOURCE_MASK(32) #define APBT_SHIFT 22 #define APBT_CLOCKEVENT_RATING 110 #define APBT_CLOCKSOURCE_RATING 250 #define APBT_MIN_DELTA_USEC 200 #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) #define APBT_CLOCKEVENT0_NUM (0) #define APBT_CLOCKEVENT1_NUM (1) #define APBT_CLOCKSOURCE_NUM (2) static unsigned long apbt_address; static int apb_timer_block_enabled; static void __iomem *apbt_virt_address; static int phy_cs_timer_id; /* * Common DW APB timer info */ static uint64_t apbt_freq; static void apbt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt); static int apbt_next_event(unsigned long delta, struct clock_event_device *evt); static cycle_t apbt_read_clocksource(struct clocksource *cs); static void apbt_restart_clocksource(struct clocksource *cs); struct apbt_dev { struct clock_event_device evt; unsigned int num; int cpu; unsigned int irq; unsigned int tick; unsigned int count; unsigned int flags; char name[10]; }; static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); #ifdef CONFIG_SMP static unsigned int apbt_num_timers_used; static struct apbt_dev *apbt_devs; #endif static inline unsigned long apbt_readl_reg(unsigned long a) { return readl(apbt_virt_address + a); } static inline void apbt_writel_reg(unsigned long d, unsigned long a) { writel(d, apbt_virt_address + a); } static inline unsigned long apbt_readl(int n, unsigned long a) { return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); } static inline void apbt_writel(int n, unsigned long d, unsigned long a) { writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); } static inline void apbt_set_mapping(void) { struct sfi_timer_table_entry *mtmr; if (apbt_virt_address) { pr_debug("APBT base already mapped\n"); return; } mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); if (mtmr == NULL) { printk(KERN_ERR "Failed to get MTMR %d from SFI\n", APBT_CLOCKEVENT0_NUM); return; } apbt_address = (unsigned long)mtmr->phys_addr; if (!apbt_address) { printk(KERN_WARNING "No timer base from SFI, use default\n"); apbt_address = APBT_DEFAULT_BASE; } apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); if (apbt_virt_address) { pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ (void *)apbt_address, (void *)apbt_virt_address); } else { pr_debug("Failed mapping APBT phy address at %p\n",\ (void *)apbt_address); goto panic_noapbt; } apbt_freq = mtmr->freq_hz / USEC_PER_SEC; sfi_free_mtmr(mtmr); /* Now figure out the physical timer id for clocksource device */ mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); if (mtmr == NULL) goto panic_noapbt; /* Now figure out the physical timer id */ phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE; pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); return; panic_noapbt: panic("Failed to setup APB system timer\n"); } static inline void apbt_clear_mapping(void) { iounmap(apbt_virt_address); apbt_virt_address = NULL; } /* * APBT timer interrupt enable / disable */ static inline int is_apbt_capable(void) { return apbt_virt_address ? 1 : 0; } static struct clocksource clocksource_apbt = { .name = "apbt", .rating = APBT_CLOCKSOURCE_RATING, .read = apbt_read_clocksource, .mask = APBT_MASK, .shift = APBT_SHIFT, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = apbt_restart_clocksource, }; /* boot APB clock event device */ static struct clock_event_device apbt_clockevent = { .name = "apbt0", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = apbt_set_mode, .set_next_event = apbt_next_event, .shift = APBT_SHIFT, .irq = 0, .rating = APBT_CLOCKEVENT_RATING, }; /* * start count down from 0xffff_ffff. this is done by toggling the enable bit * then load initial load count to ~0. */ static void apbt_start_counter(int n) { unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(n, ctrl, APBTMR_N_CONTROL); apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); /* enable, mask interrupt */ ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); apbt_writel(n, ctrl, APBTMR_N_CONTROL); /* read it once to get cached counter value initialized */ apbt_read_clocksource(&clocksource_apbt); } static irqreturn_t apbt_interrupt_handler(int irq, void *data) { struct apbt_dev *dev = (struct apbt_dev *)data; struct clock_event_device *aevt = &dev->evt; if (!aevt->event_handler) { printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", dev->num); return IRQ_NONE; } aevt->event_handler(aevt); return IRQ_HANDLED; } static void apbt_restart_clocksource(struct clocksource *cs) { apbt_start_counter(phy_cs_timer_id); } /* Setup IRQ routing via IOAPIC */ #ifdef CONFIG_SMP static void apbt_setup_irq(struct apbt_dev *adev) { struct irq_chip *chip; struct irq_desc *desc; /* timer0 irq has been setup early */ if (adev->irq == 0) return; desc = irq_to_desc(adev->irq); chip = get_irq_chip(adev->irq); disable_irq(adev->irq); desc->status |= IRQ_MOVE_PCNTXT; irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); enable_irq(adev->irq); if (system_state == SYSTEM_BOOTING) if (request_irq(adev->irq, apbt_interrupt_handler, IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, adev->name, adev)) { printk(KERN_ERR "Failed request IRQ for APBT%d\n", adev->num); } } #endif static void apbt_enable_int(int n) { unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); /* clear pending intr */ apbt_readl(n, APBTMR_N_EOI); ctrl &= ~APBTMR_CONTROL_INT; apbt_writel(n, ctrl, APBTMR_N_CONTROL); } static void apbt_disable_int(int n) { unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); ctrl |= APBTMR_CONTROL_INT; apbt_writel(n, ctrl, APBTMR_N_CONTROL); } static int __init apbt_clockevent_register(void) { struct sfi_timer_table_entry *mtmr; struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); if (mtmr == NULL) { printk(KERN_ERR "Failed to get MTMR %d from SFI\n", APBT_CLOCKEVENT0_NUM); return -ENODEV; } /* * We need to calculate the scaled math multiplication factor for * nanosecond to apbt tick conversion. * mult = (nsec/cycle)*2^APBT_SHIFT */ apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz , NSEC_PER_SEC, APBT_SHIFT); /* Calculate the min / max delta */ apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, &apbt_clockevent); apbt_clockevent.min_delta_ns = clockevent_delta2ns( APBT_MIN_DELTA_USEC*apbt_freq, &apbt_clockevent); /* * Start apbt with the boot cpu mask and make it * global if not used for per cpu timer. */ apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); adev->num = smp_processor_id(); memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; global_clock_event = &adev->evt; printk(KERN_DEBUG "%s clockevent registered as global\n", global_clock_event->name); } if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, apbt_clockevent.name, adev)) { printk(KERN_ERR "Failed request IRQ for APBT%d\n", apbt_clockevent.irq); } clockevents_register_device(&adev->evt); /* Start APBT 0 interrupts */ apbt_enable_int(APBT_CLOCKEVENT0_NUM); sfi_free_mtmr(mtmr); return 0; } #ifdef CONFIG_SMP /* Should be called with per cpu */ void apbt_setup_secondary_clock(void) { struct apbt_dev *adev; struct clock_event_device *aevt; int cpu; /* Don't register boot CPU clockevent */ cpu = smp_processor_id(); if (cpu == boot_cpu_id) return; /* * We need to calculate the scaled math multiplication factor for * nanosecond to apbt tick conversion. * mult = (nsec/cycle)*2^APBT_SHIFT */ printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); adev = &per_cpu(cpu_apbt_dev, cpu); aevt = &adev->evt; memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); aevt->cpumask = cpumask_of(cpu); aevt->name = adev->name; aevt->mode = CLOCK_EVT_MODE_UNUSED; printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", cpu, aevt->name, *(u32 *)aevt->cpumask); apbt_setup_irq(adev); clockevents_register_device(aevt); apbt_enable_int(cpu); return; } /* * this notify handler process CPU hotplug events. in case of S0i3, nonboot * cpus are disabled/enabled frequently, for performance reasons, we keep the * per cpu timer irq registered so that we do need to do free_irq/request_irq. * * TODO: it might be more reliable to directly disable percpu clockevent device * without the notifier chain. currently, cpu 0 may get interrupts from other * cpu timers during the offline process due to the ordering of notification. * the extra interrupt is harmless. */ static int apbt_cpuhp_notify(struct notifier_block *n, unsigned long action, void *hcpu) { unsigned long cpu = (unsigned long)hcpu; struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); switch (action & 0xf) { case CPU_DEAD: apbt_disable_int(cpu); if (system_state == SYSTEM_RUNNING) pr_debug("skipping APBT CPU %lu offline\n", cpu); else if (adev) { pr_debug("APBT clockevent for cpu %lu offline\n", cpu); free_irq(adev->irq, adev); } break; default: pr_debug("APBT notified %lu, no action\n", action); } return NOTIFY_OK; } static __init int apbt_late_init(void) { if (mrst_timer_options == MRST_TIMER_LAPIC_APBT || !apb_timer_block_enabled) return 0; /* This notifier should be called after workqueue is ready */ hotcpu_notifier(apbt_cpuhp_notify, -20); return 0; } fs_initcall(apbt_late_init); #else void apbt_setup_secondary_clock(void) {} #endif /* CONFIG_SMP */ static void apbt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { unsigned long ctrl; uint64_t delta; int timer_num; struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); BUG_ON(!apbt_virt_address); timer_num = adev->num; pr_debug("%s CPU %d timer %d mode=%d\n", __func__, first_cpu(*evt->cpumask), timer_num, mode); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; delta >>= apbt_clockevent.shift; ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); ctrl |= APBTMR_CONTROL_MODE_PERIODIC; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); /* * DW APB p. 46, have to disable timer before load counter, * may cause sync problem. */ ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); udelay(1); pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); break; /* APB timer does not have one-shot mode, use free running mode */ case CLOCK_EVT_MODE_ONESHOT: ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); /* * set free running mode, this mode will let timer reload max * timeout which will give time (3min on 25MHz clock) to rearm * the next event, therefore emulate the one-shot mode. */ ctrl &= ~APBTMR_CONTROL_ENABLE; ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); /* write again to set free running mode */ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); /* * DW APB p. 46, load counter with all 1s before starting free * running mode. */ apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); ctrl &= ~APBTMR_CONTROL_INT; ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: apbt_disable_int(timer_num); ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); break; case CLOCK_EVT_MODE_RESUME: apbt_enable_int(timer_num); break; } } static int apbt_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned long ctrl; int timer_num; struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); timer_num = adev->num; /* Disable timer */ ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); /* write new count */ apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); return 0; } /* * APB timer clock is not in sync with pclk on Langwell, which translates to * unreliable read value caused by sampling error. the error does not add up * overtime and only happens when sampling a 0 as a 1 by mistake. so the time * would go backwards. the following code is trying to prevent time traveling * backwards. little bit paranoid. */ static cycle_t apbt_read_clocksource(struct clocksource *cs) { unsigned long t0, t1, t2; static unsigned long last_read; bad_count: t1 = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE); t2 = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE); if (unlikely(t1 < t2)) { pr_debug("APBT: read current count error %lx:%lx:%lx\n", t1, t2, t2 - t1); goto bad_count; } /* * check against cached last read, makes sure time does not go back. * it could be a normal rollover but we will do tripple check anyway */ if (unlikely(t2 > last_read)) { /* check if we have a normal rollover */ unsigned long raw_intr_status = apbt_readl_reg(APBTMRS_RAW_INT_STATUS); /* * cs timer interrupt is masked but raw intr bit is set if * rollover occurs. then we read EOI reg to clear it. */ if (raw_intr_status & (1 << phy_cs_timer_id)) { apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); goto out; } pr_debug("APB CS going back %lx:%lx:%lx ", t2, last_read, t2 - last_read); bad_count_x3: pr_debug("triple check enforced\n"); t0 = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE); udelay(1); t1 = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE); udelay(1); t2 = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE); if ((t2 > t1) || (t1 > t0)) { printk(KERN_ERR "Error: APB CS tripple check failed\n"); goto bad_count_x3; } } out: last_read = t2; return (cycle_t)~t2; } static int apbt_clocksource_register(void) { u64 start, now; cycle_t t1; /* Start the counter, use timer 2 as source, timer 0/1 for event */ apbt_start_counter(phy_cs_timer_id); /* Verify whether apbt counter works */ t1 = apbt_read_clocksource(&clocksource_apbt); rdtscll(start); /* * We don't know the TSC frequency yet, but waiting for * 200000 TSC cycles is safe: * 4 GHz == 50us * 1 GHz == 200us */ do { rep_nop(); rdtscll(now); } while ((now - start) < 200000UL); /* APBT is the only always on clocksource, it has to work! */ if (t1 == apbt_read_clocksource(&clocksource_apbt)) panic("APBT counter not counting. APBT disabled\n"); /* * initialize and register APBT clocksource * convert that to ns/clock cycle * mult = (ns/c) * 2^APBT_SHIFT */ clocksource_apbt.mult = div_sc(MSEC_PER_SEC, (unsigned long) apbt_freq, APBT_SHIFT); clocksource_register(&clocksource_apbt); return 0; } /* * Early setup the APBT timer, only use timer 0 for booting then switch to * per CPU timer if possible. * returns 1 if per cpu apbt is setup * returns 0 if no per cpu apbt is chosen * panic if set up failed, this is the only platform timer on Moorestown. */ void __init apbt_time_init(void) { #ifdef CONFIG_SMP int i; struct sfi_timer_table_entry *p_mtmr; unsigned int percpu_timer; struct apbt_dev *adev; #endif if (apb_timer_block_enabled) return; apbt_set_mapping(); if (apbt_virt_address) { pr_debug("Found APBT version 0x%lx\n",\ apbt_readl_reg(APBTMRS_COMP_VERSION)); } else goto out_noapbt; /* * Read the frequency and check for a sane value, for ESL model * we extend the possible clock range to allow time scaling. */ if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); goto out_noapbt; } if (apbt_clocksource_register()) { pr_debug("APBT has failed to register clocksource\n"); goto out_noapbt; } if (!apbt_clockevent_register()) apb_timer_block_enabled = 1; else { pr_debug("APBT has failed to register clockevent\n"); goto out_noapbt; } #ifdef CONFIG_SMP /* kernel cmdline disable apb timer, so we will use lapic timers */ if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { printk(KERN_INFO "apbt: disabled per cpu timer\n"); return; } pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); if (num_possible_cpus() <= sfi_mtimer_num) { percpu_timer = 1; apbt_num_timers_used = num_possible_cpus(); } else { percpu_timer = 0; apbt_num_timers_used = 1; adev = &per_cpu(cpu_apbt_dev, 0); adev->flags &= ~APBT_DEV_USED; } pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); /* here we set up per CPU timer data structure */ apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, GFP_KERNEL); if (!apbt_devs) { printk(KERN_ERR "Failed to allocate APB timer devices\n"); return; } for (i = 0; i < apbt_num_timers_used; i++) { adev = &per_cpu(cpu_apbt_dev, i); adev->num = i; adev->cpu = i; p_mtmr = sfi_get_mtmr(i); if (p_mtmr) { adev->tick = p_mtmr->freq_hz; adev->irq = p_mtmr->irq; } else printk(KERN_ERR "Failed to get timer for cpu %d\n", i); adev->count = 0; sprintf(adev->name, "apbt%d", i); } #endif return; out_noapbt: apbt_clear_mapping(); apb_timer_block_enabled = 0; panic("failed to enable APB timer\n"); } static inline void apbt_disable(int n) { if (is_apbt_capable()) { unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(n, ctrl, APBTMR_N_CONTROL); } } /* called before apb_timer_enable, use early map */ unsigned long apbt_quick_calibrate() { int i, scale; u64 old, new; cycle_t t1, t2; unsigned long khz = 0; u32 loop, shift; apbt_set_mapping(); apbt_start_counter(phy_cs_timer_id); /* check if the timer can count down, otherwise return */ old = apbt_read_clocksource(&clocksource_apbt); i = 10000; while (--i) { if (old != apbt_read_clocksource(&clocksource_apbt)) break; } if (!i) goto failed; /* count 16 ms */ loop = (apbt_freq * 1000) << 4; /* restart the timer to ensure it won't get to 0 in the calibration */ apbt_start_counter(phy_cs_timer_id); old = apbt_read_clocksource(&clocksource_apbt); old += loop; t1 = __native_read_tsc(); do { new = apbt_read_clocksource(&clocksource_apbt); } while (new < old); t2 = __native_read_tsc(); shift = 5; if (unlikely(loop >> shift == 0)) { printk(KERN_INFO "APBT TSC calibration failed, not enough resolution\n"); return 0; } scale = (int)div_u64((t2 - t1), loop >> shift); khz = (scale * apbt_freq * 1000) >> shift; printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); return khz; failed: return 0; }