/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #include <linux/kallsyms.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/utsname.h> #include <linux/hardirq.h> #include <linux/kdebug.h> #include <linux/module.h> #include <linux/ptrace.h> #include <linux/sched/debug.h> #include <linux/sched/task_stack.h> #include <linux/ftrace.h> #include <linux/kexec.h> #include <linux/bug.h> #include <linux/nmi.h> #include <linux/sysfs.h> #include <linux/kasan.h> #include <asm/cpu_entry_area.h> #include <asm/stacktrace.h> #include <asm/unwind.h> int panic_on_unrecovered_nmi; int panic_on_io_nmi; static int die_counter; static struct pt_regs exec_summary_regs; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info) { unsigned long *begin = task_stack_page(task); unsigned long *end = task_stack_page(task) + THREAD_SIZE; if (stack < begin || stack >= end) return false; info->type = STACK_TYPE_TASK; info->begin = begin; info->end = end; info->next_sp = NULL; return true; } bool in_entry_stack(unsigned long *stack, struct stack_info *info) { struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); void *begin = ss; void *end = ss + 1; if ((void *)stack < begin || (void *)stack >= end) return false; info->type = STACK_TYPE_ENTRY; info->begin = begin; info->end = end; info->next_sp = NULL; return true; } static void printk_stack_address(unsigned long address, int reliable, char *log_lvl) { touch_nmi_watchdog(); printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address); } /* * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: * * In case where we don't have the exact kernel image (which, if we did, we can * simply disassemble and navigate to the RIP), the purpose of the bigger * prologue is to have more context and to be able to correlate the code from * the different toolchains better. * * In addition, it helps in recreating the register allocation of the failing * kernel and thus make sense of the register dump. * * What is more, the additional complication of a variable length insn arch like * x86 warrants having longer byte sequence before rIP so that the disassembler * can "sync" up properly and find instruction boundaries when decoding the * opcode bytes. * * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random * guesstimate in attempt to achieve all of the above. */ void show_opcodes(struct pt_regs *regs, const char *loglvl) { #define PROLOGUE_SIZE 42 #define EPILOGUE_SIZE 21 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) u8 opcodes[OPCODE_BUFSIZE]; unsigned long prologue = regs->ip - PROLOGUE_SIZE; bool bad_ip; /* * Make sure userspace isn't trying to trick us into dumping kernel * memory by pointing the userspace instruction pointer at it. */ bad_ip = user_mode(regs) && __chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX); if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue, OPCODE_BUFSIZE)) { printk("%sCode: Bad RIP value.\n", loglvl); } else { printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); } } void show_ip(struct pt_regs *regs, const char *loglvl) { #ifdef CONFIG_X86_32 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); #else printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); #endif show_opcodes(regs, loglvl); } void show_iret_regs(struct pt_regs *regs) { show_ip(regs, KERN_DEFAULT); printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss, regs->sp, regs->flags); } static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, bool partial) { /* * These on_stack() checks aren't strictly necessary: the unwind code * has already validated the 'regs' pointer. The checks are done for * ordering reasons: if the registers are on the next stack, we don't * want to print them out yet. Otherwise they'll be shown as part of * the wrong stack. Later, when show_trace_log_lvl() switches to the * next stack, this function will be called again with the same regs so * they can be printed in the right context. */ if (!partial && on_stack(info, regs, sizeof(*regs))) { __show_regs(regs, SHOW_REGS_SHORT); } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, IRET_FRAME_SIZE)) { /* * When an interrupt or exception occurs in entry code, the * full pt_regs might not have been saved yet. In that case * just print the iret frame. */ show_iret_regs(regs); } } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, char *log_lvl) { struct unwind_state state; struct stack_info stack_info = {0}; unsigned long visit_mask = 0; int graph_idx = 0; bool partial = false; printk("%sCall Trace:\n", log_lvl); unwind_start(&state, task, regs, stack); stack = stack ? : get_stack_pointer(task, regs); regs = unwind_get_entry_regs(&state, &partial); /* * Iterate through the stacks, starting with the current stack pointer. * Each stack has a pointer to the next one. * * x86-64 can have several stacks: * - task stack * - interrupt stack * - HW exception stacks (double fault, nmi, debug, mce) * - entry stack * * x86-32 can have up to four stacks: * - task stack * - softirq stack * - hardirq stack * - entry stack */ for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { const char *stack_name; if (get_stack_info(stack, task, &stack_info, &visit_mask)) { /* * We weren't on a valid stack. It's possible that * we overflowed a valid stack into a guard page. * See if the next page up is valid so that we can * generate some kind of backtrace if this happens. */ stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); if (get_stack_info(stack, task, &stack_info, &visit_mask)) break; } stack_name = stack_type_name(stack_info.type); if (stack_name) printk("%s <%s>\n", log_lvl, stack_name); if (regs) show_regs_if_on_stack(&stack_info, regs, partial); /* * Scan the stack, printing any text addresses we find. At the * same time, follow proper stack frames with the unwinder. * * Addresses found during the scan which are not reported by * the unwinder are considered to be additional clues which are * sometimes useful for debugging and are prefixed with '?'. * This also serves as a failsafe option in case the unwinder * goes off in the weeds. */ for (; stack < stack_info.end; stack++) { unsigned long real_addr; int reliable = 0; unsigned long addr = READ_ONCE_NOCHECK(*stack); unsigned long *ret_addr_p = unwind_get_return_address_ptr(&state); if (!__kernel_text_address(addr)) continue; /* * Don't print regs->ip again if it was already printed * by show_regs_if_on_stack(). */ if (regs && stack == ®s->ip) goto next; if (stack == ret_addr_p) reliable = 1; /* * When function graph tracing is enabled for a * function, its return address on the stack is * replaced with the address of an ftrace handler * (return_to_handler). In that case, before printing * the "real" address, we want to print the handler * address as an "unreliable" hint that function graph * tracing was involved. */ real_addr = ftrace_graph_ret_addr(task, &graph_idx, addr, stack); if (real_addr != addr) printk_stack_address(addr, 0, log_lvl); printk_stack_address(real_addr, reliable, log_lvl); if (!reliable) continue; next: /* * Get the next frame from the unwinder. No need to * check for an error: if anything goes wrong, the rest * of the addresses will just be printed as unreliable. */ unwind_next_frame(&state); /* if the frame has entry regs, print them */ regs = unwind_get_entry_regs(&state, &partial); if (regs) show_regs_if_on_stack(&stack_info, regs, partial); } if (stack_name) printk("%s </%s>\n", log_lvl, stack_name); } } void show_stack(struct task_struct *task, unsigned long *sp) { task = task ? : current; /* * Stack frames below this one aren't interesting. Don't show them * if we're printing for %current. */ if (!sp && task == current) sp = get_stack_pointer(current, NULL); show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT); } void show_stack_regs(struct pt_regs *regs) { show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); } static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; static int die_owner = -1; static unsigned int die_nest_count; unsigned long oops_begin(void) { int cpu; unsigned long flags; oops_enter(); /* racy, but better than risking deadlock. */ raw_local_irq_save(flags); cpu = smp_processor_id(); if (!arch_spin_trylock(&die_lock)) { if (cpu == die_owner) /* nested oops. should stop eventually */; else arch_spin_lock(&die_lock); } die_nest_count++; die_owner = cpu; console_verbose(); bust_spinlocks(1); return flags; } NOKPROBE_SYMBOL(oops_begin); void __noreturn rewind_stack_do_exit(int signr); void oops_end(unsigned long flags, struct pt_regs *regs, int signr) { if (regs && kexec_should_crash(current)) crash_kexec(regs); bust_spinlocks(0); die_owner = -1; add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); die_nest_count--; if (!die_nest_count) /* Nest count reaches zero, release the lock. */ arch_spin_unlock(&die_lock); raw_local_irq_restore(flags); oops_exit(); /* Executive summary in case the oops scrolled away */ __show_regs(&exec_summary_regs, SHOW_REGS_ALL); if (!signr) return; if (in_interrupt()) panic("Fatal exception in interrupt"); if (panic_on_oops) panic("Fatal exception"); /* * We're not going to return, but we might be on an IST stack or * have very little stack space left. Rewind the stack and kill * the task. * Before we rewind the stack, we have to tell KASAN that we're going to * reuse the task stack and that existing poisons are invalid. */ kasan_unpoison_task_stack(current); rewind_stack_do_exit(signr); } NOKPROBE_SYMBOL(oops_end); int __die(const char *str, struct pt_regs *regs, long err) { /* Save the regs of the first oops for the executive summary later. */ if (!die_counter) exec_summary_regs = *regs; printk(KERN_DEFAULT "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "", IS_ENABLED(CONFIG_SMP) ? " SMP" : "", debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); show_regs(regs); print_modules(); if (notify_die(DIE_OOPS, str, regs, err, current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) return 1; return 0; } NOKPROBE_SYMBOL(__die); /* * This is gone through when something in the kernel has done something bad * and is about to be terminated: */ void die(const char *str, struct pt_regs *regs, long err) { unsigned long flags = oops_begin(); int sig = SIGSEGV; if (__die(str, regs, err)) sig = 0; oops_end(flags, regs, sig); } void show_regs(struct pt_regs *regs) { show_regs_print_info(KERN_DEFAULT); __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL); /* * When in-kernel, we also print out the stack at the time of the fault.. */ if (!user_mode(regs)) show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); }