/* * Common interrupt code for 32 and 64 bit */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); EXPORT_PER_CPU_SYMBOL(irq_stat); DEFINE_PER_CPU(struct pt_regs *, irq_regs); EXPORT_PER_CPU_SYMBOL(irq_regs); atomic_t irq_err_count; /* Function pointer for generic interrupt vector handling */ void (*x86_platform_ipi_callback)(void) = NULL; /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves. */ void ack_bad_irq(unsigned int irq) { if (printk_ratelimit()) pr_err("unexpected IRQ trap at vector %02x\n", irq); /* * Currently unexpected vectors happen only on SMP and APIC. * We _must_ ack these because every local APIC has only N * irq slots per priority level, and a 'hanging, unacked' IRQ * holds up an irq slot - in excessive cases (when multiple * unexpected vectors occur) that might lock up the APIC * completely. * But only ack when the APIC is enabled -AK */ ack_APIC_irq(); } #define irq_stats(x) (&per_cpu(irq_stat, x)) /* * /proc/interrupts printing for arch specific interrupts */ int arch_show_interrupts(struct seq_file *p, int prec) { int j; seq_printf(p, "%*s: ", prec, "NMI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); seq_puts(p, " Non-maskable interrupts\n"); #ifdef CONFIG_X86_LOCAL_APIC seq_printf(p, "%*s: ", prec, "LOC"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); seq_puts(p, " Local timer interrupts\n"); seq_printf(p, "%*s: ", prec, "SPU"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); seq_puts(p, " Spurious interrupts\n"); seq_printf(p, "%*s: ", prec, "PMI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); seq_puts(p, " Performance monitoring interrupts\n"); seq_printf(p, "%*s: ", prec, "IWI"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); seq_puts(p, " IRQ work interrupts\n"); seq_printf(p, "%*s: ", prec, "RTR"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); seq_puts(p, " APIC ICR read retries\n"); #endif if (x86_platform_ipi_callback) { seq_printf(p, "%*s: ", prec, "PLT"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); seq_puts(p, " Platform interrupts\n"); } #ifdef CONFIG_SMP seq_printf(p, "%*s: ", prec, "RES"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); seq_puts(p, " Rescheduling interrupts\n"); seq_printf(p, "%*s: ", prec, "CAL"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_call_count - irq_stats(j)->irq_tlb_count); seq_puts(p, " Function call interrupts\n"); seq_printf(p, "%*s: ", prec, "TLB"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); seq_puts(p, " TLB shootdowns\n"); #endif #ifdef CONFIG_X86_THERMAL_VECTOR seq_printf(p, "%*s: ", prec, "TRM"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); seq_puts(p, " Thermal event interrupts\n"); #endif #ifdef CONFIG_X86_MCE_THRESHOLD seq_printf(p, "%*s: ", prec, "THR"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); seq_puts(p, " Threshold APIC interrupts\n"); #endif #ifdef CONFIG_X86_MCE_AMD seq_printf(p, "%*s: ", prec, "DFR"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); seq_puts(p, " Deferred Error APIC interrupts\n"); #endif #ifdef CONFIG_X86_MCE seq_printf(p, "%*s: ", prec, "MCE"); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); seq_puts(p, " Machine check exceptions\n"); seq_printf(p, "%*s: ", prec, "MCP"); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); seq_puts(p, " Machine check polls\n"); #endif #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) seq_printf(p, "%*s: ", prec, "HYP"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count); seq_puts(p, " Hypervisor callback interrupts\n"); #endif seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); #if defined(CONFIG_X86_IO_APIC) seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); #endif #ifdef CONFIG_HAVE_KVM seq_printf(p, "%*s: ", prec, "PIN"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); seq_puts(p, " Posted-interrupt notification event\n"); seq_printf(p, "%*s: ", prec, "PIW"); for_each_online_cpu(j) seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_wakeup_ipis); seq_puts(p, " Posted-interrupt wakeup event\n"); #endif return 0; } /* * /proc/stat helpers */ u64 arch_irq_stat_cpu(unsigned int cpu) { u64 sum = irq_stats(cpu)->__nmi_count; #ifdef CONFIG_X86_LOCAL_APIC sum += irq_stats(cpu)->apic_timer_irqs; sum += irq_stats(cpu)->irq_spurious_count; sum += irq_stats(cpu)->apic_perf_irqs; sum += irq_stats(cpu)->apic_irq_work_irqs; sum += irq_stats(cpu)->icr_read_retry_count; #endif if (x86_platform_ipi_callback) sum += irq_stats(cpu)->x86_platform_ipis; #ifdef CONFIG_SMP sum += irq_stats(cpu)->irq_resched_count; sum += irq_stats(cpu)->irq_call_count; #endif #ifdef CONFIG_X86_THERMAL_VECTOR sum += irq_stats(cpu)->irq_thermal_count; #endif #ifdef CONFIG_X86_MCE_THRESHOLD sum += irq_stats(cpu)->irq_threshold_count; #endif #ifdef CONFIG_X86_MCE sum += per_cpu(mce_exception_count, cpu); sum += per_cpu(mce_poll_count, cpu); #endif return sum; } u64 arch_irq_stat(void) { u64 sum = atomic_read(&irq_err_count); return sum; } /* * do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). */ __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); /* high bit used in ret_from_ code */ unsigned vector = ~regs->orig_ax; unsigned irq; /* * NB: Unlike exception entries, IRQ entries do not reliably * handle context tracking in the low-level entry code. This is * because syscall entries execute briefly with IRQs on before * updating context tracking state, so we can take an IRQ from * kernel mode with CONTEXT_USER. The low-level entry code only * updates the context if we came from user mode, so we won't * switch to CONTEXT_KERNEL. We'll fix that once the syscall * code is cleaned up enough that we can cleanly defer enabling * IRQs. */ entering_irq(); /* entering_irq() tells RCU that we're not quiescent. Check it. */ rcu_lockdep_assert(rcu_is_watching(), "IRQ failed to wake up RCU"); irq = __this_cpu_read(vector_irq[vector]); if (!handle_irq(irq, regs)) { ack_APIC_irq(); if (irq != VECTOR_RETRIGGERED) { pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n", __func__, smp_processor_id(), vector, irq); } else { __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); } } exiting_irq(); set_irq_regs(old_regs); return 1; } /* * Handler for X86_PLATFORM_IPI_VECTOR. */ void __smp_x86_platform_ipi(void) { inc_irq_stat(x86_platform_ipis); if (x86_platform_ipi_callback) x86_platform_ipi_callback(); } __visible void smp_x86_platform_ipi(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); entering_ack_irq(); __smp_x86_platform_ipi(); exiting_irq(); set_irq_regs(old_regs); } #ifdef CONFIG_HAVE_KVM static void dummy_handler(void) {} static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) { if (handler) kvm_posted_intr_wakeup_handler = handler; else kvm_posted_intr_wakeup_handler = dummy_handler; } EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); /* * Handler for POSTED_INTERRUPT_VECTOR. */ __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); entering_ack_irq(); inc_irq_stat(kvm_posted_intr_ipis); exiting_irq(); set_irq_regs(old_regs); } /* * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. */ __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); entering_ack_irq(); inc_irq_stat(kvm_posted_intr_wakeup_ipis); kvm_posted_intr_wakeup_handler(); exiting_irq(); set_irq_regs(old_regs); } #endif __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); entering_ack_irq(); trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); __smp_x86_platform_ipi(); trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); exiting_irq(); set_irq_regs(old_regs); } EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); #ifdef CONFIG_HOTPLUG_CPU /* These two declarations are only used in check_irq_vectors_for_cpu_disable() * below, which is protected by stop_machine(). Putting them on the stack * results in a stack frame overflow. Dynamically allocating could result in a * failure so declare these two cpumasks as global. */ static struct cpumask affinity_new, online_new; /* * This cpu is going to be removed and its vectors migrated to the remaining * online cpus. Check to see if there are enough vectors in the remaining cpus. * This function is protected by stop_machine(). */ int check_irq_vectors_for_cpu_disable(void) { int irq, cpu; unsigned int this_cpu, vector, this_count, count; struct irq_desc *desc; struct irq_data *data; this_cpu = smp_processor_id(); cpumask_copy(&online_new, cpu_online_mask); cpumask_clear_cpu(this_cpu, &online_new); this_count = 0; for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { irq = __this_cpu_read(vector_irq[vector]); if (irq >= 0) { desc = irq_to_desc(irq); if (!desc) continue; /* * Protect against concurrent action removal, * affinity changes etc. */ raw_spin_lock(&desc->lock); data = irq_desc_get_irq_data(desc); cpumask_copy(&affinity_new, data->affinity); cpumask_clear_cpu(this_cpu, &affinity_new); /* Do not count inactive or per-cpu irqs. */ if (!irq_has_action(irq) || irqd_is_per_cpu(data)) { raw_spin_unlock(&desc->lock); continue; } raw_spin_unlock(&desc->lock); /* * A single irq may be mapped to multiple * cpu's vector_irq[] (for example IOAPIC cluster * mode). In this case we have two * possibilities: * * 1) the resulting affinity mask is empty; that is * this the down'd cpu is the last cpu in the irq's * affinity mask, or * * 2) the resulting affinity mask is no longer * a subset of the online cpus but the affinity * mask is not zero; that is the down'd cpu is the * last online cpu in a user set affinity mask. */ if (cpumask_empty(&affinity_new) || !cpumask_subset(&affinity_new, &online_new)) this_count++; } } count = 0; for_each_online_cpu(cpu) { if (cpu == this_cpu) continue; /* * We scan from FIRST_EXTERNAL_VECTOR to first system * vector. If the vector is marked in the used vectors * bitmap or an irq is assigned to it, we don't count * it as available. * * As this is an inaccurate snapshot anyway, we can do * this w/o holding vector_lock. */ for (vector = FIRST_EXTERNAL_VECTOR; vector < first_system_vector; vector++) { if (!test_bit(vector, used_vectors) && per_cpu(vector_irq, cpu)[vector] < 0) count++; } } if (count < this_count) { pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", this_cpu, this_count, count); return -ERANGE; } return 0; } /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ void fixup_irqs(void) { unsigned int irq, vector; static int warned; struct irq_desc *desc; struct irq_data *data; struct irq_chip *chip; int ret; for_each_irq_desc(irq, desc) { int break_affinity = 0; int set_affinity = 1; const struct cpumask *affinity; if (!desc) continue; if (irq == 2) continue; /* interrupt's are disabled at this point */ raw_spin_lock(&desc->lock); data = irq_desc_get_irq_data(desc); affinity = data->affinity; if (!irq_has_action(irq) || irqd_is_per_cpu(data) || cpumask_subset(affinity, cpu_online_mask)) { raw_spin_unlock(&desc->lock); continue; } /* * Complete the irq move. This cpu is going down and for * non intr-remapping case, we can't wait till this interrupt * arrives at this cpu before completing the irq move. */ irq_force_complete_move(irq); if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { break_affinity = 1; affinity = cpu_online_mask; } chip = irq_data_get_irq_chip(data); if (!irqd_can_move_in_process_context(data) && chip->irq_mask) chip->irq_mask(data); if (chip->irq_set_affinity) { ret = chip->irq_set_affinity(data, affinity, true); if (ret == -ENOSPC) pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq); } else { if (!(warned++)) set_affinity = 0; } /* * We unmask if the irq was not marked masked by the * core code. That respects the lazy irq disable * behaviour. */ if (!irqd_can_move_in_process_context(data) && !irqd_irq_masked(data) && chip->irq_unmask) chip->irq_unmask(data); raw_spin_unlock(&desc->lock); if (break_affinity && set_affinity) pr_notice("Broke affinity for irq %i\n", irq); else if (!set_affinity) pr_notice("Cannot set affinity for irq %i\n", irq); } /* * We can remove mdelay() and then send spuriuous interrupts to * new cpu targets for all the irqs that were handled previously by * this cpu. While it works, I have seen spurious interrupt messages * (nothing wrong but still...). * * So for now, retain mdelay(1) and check the IRR and then send those * interrupts to new targets as this cpu is already offlined... */ mdelay(1); /* * We can walk the vector array of this cpu without holding * vector_lock because the cpu is already marked !online, so * nothing else will touch it. */ for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { unsigned int irr; if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED) continue; irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); if (irr & (1 << (vector % 32))) { irq = __this_cpu_read(vector_irq[vector]); desc = irq_to_desc(irq); raw_spin_lock(&desc->lock); data = irq_desc_get_irq_data(desc); chip = irq_data_get_irq_chip(data); if (chip->irq_retrigger) { chip->irq_retrigger(data); __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); } raw_spin_unlock(&desc->lock); } if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); } } #endif