// SPDX-License-Identifier: GPL-2.0-or-later /* * KVM paravirt_ops implementation * * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar * Copyright IBM Corporation, 2007 * Authors: Anthony Liguori */ #define pr_fmt(fmt) "kvm-guest: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_STATIC_KEY_FALSE_RO(kvm_async_pf_enabled); static int kvmapf = 1; static int __init parse_no_kvmapf(char *arg) { kvmapf = 0; return 0; } early_param("no-kvmapf", parse_no_kvmapf); static int steal_acc = 1; static int __init parse_no_stealacc(char *arg) { steal_acc = 0; return 0; } early_param("no-steal-acc", parse_no_stealacc); static DEFINE_PER_CPU_READ_MOSTLY(bool, async_pf_enabled); static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible; static int has_steal_clock = 0; static int has_guest_poll = 0; /* * No need for any "IO delay" on KVM */ static void kvm_io_delay(void) { } #define KVM_TASK_SLEEP_HASHBITS 8 #define KVM_TASK_SLEEP_HASHSIZE (1<list) { struct kvm_task_sleep_node *n = hlist_entry(p, typeof(*n), link); if (n->token == token) return n; } return NULL; } static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n) { u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; struct kvm_task_sleep_node *e; raw_spin_lock(&b->lock); e = _find_apf_task(b, token); if (e) { /* dummy entry exist -> wake up was delivered ahead of PF */ hlist_del(&e->link); raw_spin_unlock(&b->lock); kfree(e); return false; } n->token = token; n->cpu = smp_processor_id(); init_swait_queue_head(&n->wq); hlist_add_head(&n->link, &b->list); raw_spin_unlock(&b->lock); return true; } /* * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled * @token: Token to identify the sleep node entry * * Invoked from the async pagefault handling code or from the VM exit page * fault handler. In both cases RCU is watching. */ void kvm_async_pf_task_wait_schedule(u32 token) { struct kvm_task_sleep_node n; DECLARE_SWAITQUEUE(wait); lockdep_assert_irqs_disabled(); if (!kvm_async_pf_queue_task(token, &n)) return; for (;;) { prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); if (hlist_unhashed(&n.link)) break; local_irq_enable(); schedule(); local_irq_disable(); } finish_swait(&n.wq, &wait); } EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule); static void apf_task_wake_one(struct kvm_task_sleep_node *n) { hlist_del_init(&n->link); if (swq_has_sleeper(&n->wq)) swake_up_one(&n->wq); } static void apf_task_wake_all(void) { int i; for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; struct kvm_task_sleep_node *n; struct hlist_node *p, *next; raw_spin_lock(&b->lock); hlist_for_each_safe(p, next, &b->list) { n = hlist_entry(p, typeof(*n), link); if (n->cpu == smp_processor_id()) apf_task_wake_one(n); } raw_spin_unlock(&b->lock); } } void kvm_async_pf_task_wake(u32 token) { u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; struct kvm_task_sleep_node *n, *dummy = NULL; if (token == ~0) { apf_task_wake_all(); return; } again: raw_spin_lock(&b->lock); n = _find_apf_task(b, token); if (!n) { /* * Async #PF not yet handled, add a dummy entry for the token. * Allocating the token must be down outside of the raw lock * as the allocator is preemptible on PREEMPT_RT kernels. */ if (!dummy) { raw_spin_unlock(&b->lock); dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC); /* * Continue looping on allocation failure, eventually * the async #PF will be handled and allocating a new * node will be unnecessary. */ if (!dummy) cpu_relax(); /* * Recheck for async #PF completion before enqueueing * the dummy token to avoid duplicate list entries. */ goto again; } dummy->token = token; dummy->cpu = smp_processor_id(); init_swait_queue_head(&dummy->wq); hlist_add_head(&dummy->link, &b->list); dummy = NULL; } else { apf_task_wake_one(n); } raw_spin_unlock(&b->lock); /* A dummy token might be allocated and ultimately not used. */ kfree(dummy); } EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); noinstr u32 kvm_read_and_reset_apf_flags(void) { u32 flags = 0; if (__this_cpu_read(async_pf_enabled)) { flags = __this_cpu_read(apf_reason.flags); __this_cpu_write(apf_reason.flags, 0); } return flags; } EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags); noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token) { u32 flags = kvm_read_and_reset_apf_flags(); irqentry_state_t state; if (!flags) return false; state = irqentry_enter(regs); instrumentation_begin(); /* * If the host managed to inject an async #PF into an interrupt * disabled region, then die hard as this is not going to end well * and the host side is seriously broken. */ if (unlikely(!(regs->flags & X86_EFLAGS_IF))) panic("Host injected async #PF in interrupt disabled region\n"); if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { if (unlikely(!(user_mode(regs)))) panic("Host injected async #PF in kernel mode\n"); /* Page is swapped out by the host. */ kvm_async_pf_task_wait_schedule(token); } else { WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags); } instrumentation_end(); irqentry_exit(regs, state); return true; } DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt) { struct pt_regs *old_regs = set_irq_regs(regs); u32 token; apic_eoi(); inc_irq_stat(irq_hv_callback_count); if (__this_cpu_read(async_pf_enabled)) { token = __this_cpu_read(apf_reason.token); kvm_async_pf_task_wake(token); __this_cpu_write(apf_reason.token, 0); wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1); } set_irq_regs(old_regs); } static void __init paravirt_ops_setup(void) { pv_info.name = "KVM"; if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) pv_ops.cpu.io_delay = kvm_io_delay; #ifdef CONFIG_X86_IO_APIC no_timer_check = 1; #endif } static void kvm_register_steal_time(void) { int cpu = smp_processor_id(); struct kvm_steal_time *st = &per_cpu(steal_time, cpu); if (!has_steal_clock) return; wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); pr_debug("stealtime: cpu %d, msr %llx\n", cpu, (unsigned long long) slow_virt_to_phys(st)); } static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; static notrace __maybe_unused void kvm_guest_apic_eoi_write(void) { /** * This relies on __test_and_clear_bit to modify the memory * in a way that is atomic with respect to the local CPU. * The hypervisor only accesses this memory from the local CPU so * there's no need for lock or memory barriers. * An optimization barrier is implied in apic write. */ if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) return; apic_native_eoi(); } static void kvm_guest_cpu_init(void) { if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { u64 pa; WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled)); pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR); wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); __this_cpu_write(async_pf_enabled, true); pr_debug("setup async PF for cpu %d\n", smp_processor_id()); } if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { unsigned long pa; /* Size alignment is implied but just to make it explicit. */ BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); __this_cpu_write(kvm_apic_eoi, 0); pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) | KVM_MSR_ENABLED; wrmsrl(MSR_KVM_PV_EOI_EN, pa); } if (has_steal_clock) kvm_register_steal_time(); } static void kvm_pv_disable_apf(void) { if (!__this_cpu_read(async_pf_enabled)) return; wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); __this_cpu_write(async_pf_enabled, false); pr_debug("disable async PF for cpu %d\n", smp_processor_id()); } static void kvm_disable_steal_time(void) { if (!has_steal_clock) return; wrmsr(MSR_KVM_STEAL_TIME, 0, 0); } static u64 kvm_steal_clock(int cpu) { u64 steal; struct kvm_steal_time *src; int version; src = &per_cpu(steal_time, cpu); do { version = src->version; virt_rmb(); steal = src->steal; virt_rmb(); } while ((version & 1) || (version != src->version)); return steal; } static inline void __set_percpu_decrypted(void *ptr, unsigned long size) { early_set_memory_decrypted((unsigned long) ptr, size); } /* * Iterate through all possible CPUs and map the memory region pointed * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. * * Note: we iterate through all possible CPUs to ensure that CPUs * hotplugged will have their per-cpu variable already mapped as * decrypted. */ static void __init sev_map_percpu_data(void) { int cpu; if (cc_vendor != CC_VENDOR_AMD || !cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) return; for_each_possible_cpu(cpu) { __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); } } static void kvm_guest_cpu_offline(bool shutdown) { kvm_disable_steal_time(); if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) wrmsrl(MSR_KVM_PV_EOI_EN, 0); if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) wrmsrl(MSR_KVM_MIGRATION_CONTROL, 0); kvm_pv_disable_apf(); if (!shutdown) apf_task_wake_all(); kvmclock_disable(); } static int kvm_cpu_online(unsigned int cpu) { unsigned long flags; local_irq_save(flags); kvm_guest_cpu_init(); local_irq_restore(flags); return 0; } #ifdef CONFIG_SMP static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask); static bool pv_tlb_flush_supported(void) { return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && !kvm_para_has_hint(KVM_HINTS_REALTIME) && kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) && !boot_cpu_has(X86_FEATURE_MWAIT) && (num_possible_cpus() != 1)); } static bool pv_ipi_supported(void) { return (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI) && (num_possible_cpus() != 1)); } static bool pv_sched_yield_supported(void) { return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) && !kvm_para_has_hint(KVM_HINTS_REALTIME) && kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) && !boot_cpu_has(X86_FEATURE_MWAIT) && (num_possible_cpus() != 1)); } #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) static void __send_ipi_mask(const struct cpumask *mask, int vector) { unsigned long flags; int cpu, min = 0, max = 0; #ifdef CONFIG_X86_64 __uint128_t ipi_bitmap = 0; #else u64 ipi_bitmap = 0; #endif u32 apic_id, icr; long ret; if (cpumask_empty(mask)) return; local_irq_save(flags); switch (vector) { default: icr = APIC_DM_FIXED | vector; break; case NMI_VECTOR: icr = APIC_DM_NMI; break; } for_each_cpu(cpu, mask) { apic_id = per_cpu(x86_cpu_to_apicid, cpu); if (!ipi_bitmap) { min = max = apic_id; } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { ipi_bitmap <<= min - apic_id; min = apic_id; } else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) { max = apic_id < max ? max : apic_id; } else { ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", ret); min = max = apic_id; ipi_bitmap = 0; } __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); } if (ipi_bitmap) { ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", ret); } local_irq_restore(flags); } static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) { __send_ipi_mask(mask, vector); } static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); const struct cpumask *local_mask; cpumask_copy(new_mask, mask); cpumask_clear_cpu(this_cpu, new_mask); local_mask = new_mask; __send_ipi_mask(local_mask, vector); } static int __init setup_efi_kvm_sev_migration(void) { efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled"; efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID; efi_status_t status; unsigned long size; bool enabled; if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) || !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) return 0; if (!efi_enabled(EFI_BOOT)) return 0; if (!efi_enabled(EFI_RUNTIME_SERVICES)) { pr_info("%s : EFI runtime services are not enabled\n", __func__); return 0; } size = sizeof(enabled); /* Get variable contents into buffer */ status = efi.get_variable(efi_sev_live_migration_enabled, &efi_variable_guid, NULL, &size, &enabled); if (status == EFI_NOT_FOUND) { pr_info("%s : EFI live migration variable not found\n", __func__); return 0; } if (status != EFI_SUCCESS) { pr_info("%s : EFI variable retrieval failed\n", __func__); return 0; } if (enabled == 0) { pr_info("%s: live migration disabled in EFI\n", __func__); return 0; } pr_info("%s : live migration enabled in EFI\n", __func__); wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY); return 1; } late_initcall(setup_efi_kvm_sev_migration); /* * Set the IPI entry points */ static __init void kvm_setup_pv_ipi(void) { apic_update_callback(send_IPI_mask, kvm_send_ipi_mask); apic_update_callback(send_IPI_mask_allbutself, kvm_send_ipi_mask_allbutself); pr_info("setup PV IPIs\n"); } static void kvm_smp_send_call_func_ipi(const struct cpumask *mask) { int cpu; native_send_call_func_ipi(mask); /* Make sure other vCPUs get a chance to run if they need to. */ for_each_cpu(cpu, mask) { if (!idle_cpu(cpu) && vcpu_is_preempted(cpu)) { kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu)); break; } } } static void kvm_flush_tlb_multi(const struct cpumask *cpumask, const struct flush_tlb_info *info) { u8 state; int cpu; struct kvm_steal_time *src; struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); cpumask_copy(flushmask, cpumask); /* * We have to call flush only on online vCPUs. And * queue flush_on_enter for pre-empted vCPUs */ for_each_cpu(cpu, flushmask) { /* * The local vCPU is never preempted, so we do not explicitly * skip check for local vCPU - it will never be cleared from * flushmask. */ src = &per_cpu(steal_time, cpu); state = READ_ONCE(src->preempted); if ((state & KVM_VCPU_PREEMPTED)) { if (try_cmpxchg(&src->preempted, &state, state | KVM_VCPU_FLUSH_TLB)) __cpumask_clear_cpu(cpu, flushmask); } } native_flush_tlb_multi(flushmask, info); } static __init int kvm_alloc_cpumask(void) { int cpu; if (!kvm_para_available() || nopv) return 0; if (pv_tlb_flush_supported() || pv_ipi_supported()) for_each_possible_cpu(cpu) { zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu), GFP_KERNEL, cpu_to_node(cpu)); } return 0; } arch_initcall(kvm_alloc_cpumask); static void __init kvm_smp_prepare_boot_cpu(void) { /* * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() * shares the guest physical address with the hypervisor. */ sev_map_percpu_data(); kvm_guest_cpu_init(); native_smp_prepare_boot_cpu(); kvm_spinlock_init(); } static int kvm_cpu_down_prepare(unsigned int cpu) { unsigned long flags; local_irq_save(flags); kvm_guest_cpu_offline(false); local_irq_restore(flags); return 0; } #endif static int kvm_suspend(void) { u64 val = 0; kvm_guest_cpu_offline(false); #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) rdmsrl(MSR_KVM_POLL_CONTROL, val); has_guest_poll = !(val & 1); #endif return 0; } static void kvm_resume(void) { kvm_cpu_online(raw_smp_processor_id()); #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll) wrmsrl(MSR_KVM_POLL_CONTROL, 0); #endif } static struct syscore_ops kvm_syscore_ops = { .suspend = kvm_suspend, .resume = kvm_resume, }; static void kvm_pv_guest_cpu_reboot(void *unused) { kvm_guest_cpu_offline(true); } static int kvm_pv_reboot_notify(struct notifier_block *nb, unsigned long code, void *unused) { if (code == SYS_RESTART) on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); return NOTIFY_DONE; } static struct notifier_block kvm_pv_reboot_nb = { .notifier_call = kvm_pv_reboot_notify, }; /* * After a PV feature is registered, the host will keep writing to the * registered memory location. If the guest happens to shutdown, this memory * won't be valid. In cases like kexec, in which you install a new kernel, this * means a random memory location will be kept being written. */ #ifdef CONFIG_CRASH_DUMP static void kvm_crash_shutdown(struct pt_regs *regs) { kvm_guest_cpu_offline(true); native_machine_crash_shutdown(regs); } #endif #if defined(CONFIG_X86_32) || !defined(CONFIG_SMP) bool __kvm_vcpu_is_preempted(long cpu); __visible bool __kvm_vcpu_is_preempted(long cpu) { struct kvm_steal_time *src = &per_cpu(steal_time, cpu); return !!(src->preempted & KVM_VCPU_PREEMPTED); } PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); #else #include extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); /* * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and * restoring to/from the stack. */ #define PV_VCPU_PREEMPTED_ASM \ "movq __per_cpu_offset(,%rdi,8), %rax\n\t" \ "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax)\n\t" \ "setne %al\n\t" DEFINE_ASM_FUNC(__raw_callee_save___kvm_vcpu_is_preempted, PV_VCPU_PREEMPTED_ASM, .text); #endif static void __init kvm_guest_init(void) { int i; paravirt_ops_setup(); register_reboot_notifier(&kvm_pv_reboot_nb); for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) raw_spin_lock_init(&async_pf_sleepers[i].lock); if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { has_steal_clock = 1; static_call_update(pv_steal_clock, kvm_steal_clock); pv_ops.lock.vcpu_is_preempted = PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); } if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) apic_update_callback(eoi, kvm_guest_apic_eoi_write); if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { static_branch_enable(&kvm_async_pf_enabled); sysvec_install(HYPERVISOR_CALLBACK_VECTOR, sysvec_kvm_asyncpf_interrupt); } #ifdef CONFIG_SMP if (pv_tlb_flush_supported()) { pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi; pv_ops.mmu.tlb_remove_table = tlb_remove_table; pr_info("KVM setup pv remote TLB flush\n"); } smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; if (pv_sched_yield_supported()) { smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi; pr_info("setup PV sched yield\n"); } if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", kvm_cpu_online, kvm_cpu_down_prepare) < 0) pr_err("failed to install cpu hotplug callbacks\n"); #else sev_map_percpu_data(); kvm_guest_cpu_init(); #endif #ifdef CONFIG_CRASH_DUMP machine_ops.crash_shutdown = kvm_crash_shutdown; #endif register_syscore_ops(&kvm_syscore_ops); /* * Hard lockup detection is enabled by default. Disable it, as guests * can get false positives too easily, for example if the host is * overcommitted. */ hardlockup_detector_disable(); } static noinline uint32_t __kvm_cpuid_base(void) { if (boot_cpu_data.cpuid_level < 0) return 0; /* So we don't blow up on old processors */ if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) return hypervisor_cpuid_base(KVM_SIGNATURE, 0); return 0; } static inline uint32_t kvm_cpuid_base(void) { static int kvm_cpuid_base = -1; if (kvm_cpuid_base == -1) kvm_cpuid_base = __kvm_cpuid_base(); return kvm_cpuid_base; } bool kvm_para_available(void) { return kvm_cpuid_base() != 0; } EXPORT_SYMBOL_GPL(kvm_para_available); unsigned int kvm_arch_para_features(void) { return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); } unsigned int kvm_arch_para_hints(void) { return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); } EXPORT_SYMBOL_GPL(kvm_arch_para_hints); static uint32_t __init kvm_detect(void) { return kvm_cpuid_base(); } static void __init kvm_apic_init(void) { #ifdef CONFIG_SMP if (pv_ipi_supported()) kvm_setup_pv_ipi(); #endif } static bool __init kvm_msi_ext_dest_id(void) { return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID); } static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc) { kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages, KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K); } static void __init kvm_init_platform(void) { if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) && kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) { unsigned long nr_pages; int i; pv_ops.mmu.notify_page_enc_status_changed = kvm_sev_hc_page_enc_status; /* * Reset the host's shared pages list related to kernel * specific page encryption status settings before we load a * new kernel by kexec. Reset the page encryption status * during early boot instead of just before kexec to avoid SMP * races during kvm_pv_guest_cpu_reboot(). * NOTE: We cannot reset the complete shared pages list * here as we need to retain the UEFI/OVMF firmware * specific settings. */ for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; if (entry->type != E820_TYPE_RAM) continue; nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE); kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr, nr_pages, KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K); } /* * Ensure that _bss_decrypted section is marked as decrypted in the * shared pages list. */ early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted, __end_bss_decrypted - __start_bss_decrypted, 0); /* * If not booted using EFI, enable Live migration support. */ if (!efi_enabled(EFI_BOOT)) wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY); } kvmclock_init(); x86_platform.apic_post_init = kvm_apic_init; /* Set WB as the default cache mode for SEV-SNP and TDX */ mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK); } #if defined(CONFIG_AMD_MEM_ENCRYPT) static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs) { /* RAX and CPL are already in the GHCB */ ghcb_set_rbx(ghcb, regs->bx); ghcb_set_rcx(ghcb, regs->cx); ghcb_set_rdx(ghcb, regs->dx); ghcb_set_rsi(ghcb, regs->si); } static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs) { /* No checking of the return state needed */ return true; } #endif const __initconst struct hypervisor_x86 x86_hyper_kvm = { .name = "KVM", .detect = kvm_detect, .type = X86_HYPER_KVM, .init.guest_late_init = kvm_guest_init, .init.x2apic_available = kvm_para_available, .init.msi_ext_dest_id = kvm_msi_ext_dest_id, .init.init_platform = kvm_init_platform, #if defined(CONFIG_AMD_MEM_ENCRYPT) .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare, .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish, #endif }; static __init int activate_jump_labels(void) { if (has_steal_clock) { static_key_slow_inc(¶virt_steal_enabled); if (steal_acc) static_key_slow_inc(¶virt_steal_rq_enabled); } return 0; } arch_initcall(activate_jump_labels); #ifdef CONFIG_PARAVIRT_SPINLOCKS /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ static void kvm_kick_cpu(int cpu) { unsigned long flags = 0; u32 apicid; apicid = per_cpu(x86_cpu_to_apicid, cpu); kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); } #include static void kvm_wait(u8 *ptr, u8 val) { if (in_nmi()) return; /* * halt until it's our turn and kicked. Note that we do safe halt * for irq enabled case to avoid hang when lock info is overwritten * in irq spinlock slowpath and no spurious interrupt occur to save us. */ if (irqs_disabled()) { if (READ_ONCE(*ptr) == val) halt(); } else { local_irq_disable(); /* safe_halt() will enable IRQ */ if (READ_ONCE(*ptr) == val) safe_halt(); else local_irq_enable(); } } /* * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. */ void __init kvm_spinlock_init(void) { /* * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is * preferred over native qspinlock when vCPU is preempted. */ if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) { pr_info("PV spinlocks disabled, no host support\n"); return; } /* * Disable PV spinlocks and use native qspinlock when dedicated pCPUs * are available. */ if (kvm_para_has_hint(KVM_HINTS_REALTIME)) { pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n"); goto out; } if (num_possible_cpus() == 1) { pr_info("PV spinlocks disabled, single CPU\n"); goto out; } if (nopvspin) { pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n"); goto out; } pr_info("PV spinlocks enabled\n"); __pv_init_lock_hash(); pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; pv_ops.lock.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock); pv_ops.lock.wait = kvm_wait; pv_ops.lock.kick = kvm_kick_cpu; /* * When PV spinlock is enabled which is preferred over * virt_spin_lock(), virt_spin_lock_key's value is meaningless. * Just disable it anyway. */ out: static_branch_disable(&virt_spin_lock_key); } #endif /* CONFIG_PARAVIRT_SPINLOCKS */ #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL static void kvm_disable_host_haltpoll(void *i) { wrmsrl(MSR_KVM_POLL_CONTROL, 0); } static void kvm_enable_host_haltpoll(void *i) { wrmsrl(MSR_KVM_POLL_CONTROL, 1); } void arch_haltpoll_enable(unsigned int cpu) { if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) { pr_err_once("host does not support poll control\n"); pr_err_once("host upgrade recommended\n"); return; } /* Enable guest halt poll disables host halt poll */ smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1); } EXPORT_SYMBOL_GPL(arch_haltpoll_enable); void arch_haltpoll_disable(unsigned int cpu) { if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) return; /* Disable guest halt poll enables host halt poll */ smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1); } EXPORT_SYMBOL_GPL(arch_haltpoll_disable); #endif