/* * Copyright (C) 1995 Linus Torvalds * * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * * Memory region support * David Parsons <orc@pell.chi.il.us>, July-August 1999 * * Added E820 sanitization routine (removes overlapping memory regions); * Brian Moyle <bmoyle@mvista.com>, February 2001 * * Moved CPU detection code to cpu/${cpu}.c * Patrick Mochel <mochel@osdl.org>, March 2002 * * Provisions for empty E820 memory regions (reported by certain BIOSes). * Alex Achenbach <xela@slit.de>, December 2002. * */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/sched.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/screen_info.h> #include <linux/ioport.h> #include <linux/acpi.h> #include <linux/sfi.h> #include <linux/apm_bios.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/memblock.h> #include <linux/seq_file.h> #include <linux/console.h> #include <linux/root_dev.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/init.h> #include <linux/edd.h> #include <linux/iscsi_ibft.h> #include <linux/nodemask.h> #include <linux/kexec.h> #include <linux/dmi.h> #include <linux/pfn.h> #include <linux/pci.h> #include <asm/pci-direct.h> #include <linux/init_ohci1394_dma.h> #include <linux/kvm_para.h> #include <linux/dma-contiguous.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/user.h> #include <linux/delay.h> #include <linux/kallsyms.h> #include <linux/cpufreq.h> #include <linux/dma-mapping.h> #include <linux/ctype.h> #include <linux/uaccess.h> #include <linux/percpu.h> #include <linux/crash_dump.h> #include <linux/tboot.h> #include <linux/jiffies.h> #include <video/edid.h> #include <asm/mtrr.h> #include <asm/apic.h> #include <asm/realmode.h> #include <asm/e820.h> #include <asm/mpspec.h> #include <asm/setup.h> #include <asm/efi.h> #include <asm/timer.h> #include <asm/i8259.h> #include <asm/sections.h> #include <asm/dmi.h> #include <asm/io_apic.h> #include <asm/ist.h> #include <asm/setup_arch.h> #include <asm/bios_ebda.h> #include <asm/cacheflush.h> #include <asm/processor.h> #include <asm/bugs.h> #include <asm/vsyscall.h> #include <asm/cpu.h> #include <asm/desc.h> #include <asm/dma.h> #include <asm/iommu.h> #include <asm/gart.h> #include <asm/mmu_context.h> #include <asm/proto.h> #include <asm/paravirt.h> #include <asm/hypervisor.h> #include <asm/olpc_ofw.h> #include <asm/percpu.h> #include <asm/topology.h> #include <asm/apicdef.h> #include <asm/amd_nb.h> #ifdef CONFIG_X86_64 #include <asm/numa_64.h> #endif #include <asm/mce.h> #include <asm/alternative.h> #include <asm/prom.h> /* * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries. * The direct mapping extends to max_pfn_mapped, so that we can directly access * apertures, ACPI and other tables without having to play with fixmaps. */ unsigned long max_low_pfn_mapped; unsigned long max_pfn_mapped; #ifdef CONFIG_DMI RESERVE_BRK(dmi_alloc, 65536); #endif static __initdata unsigned long _brk_start = (unsigned long)__brk_base; unsigned long _brk_end = (unsigned long)__brk_base; #ifdef CONFIG_X86_64 int default_cpu_present_to_apicid(int mps_cpu) { return __default_cpu_present_to_apicid(mps_cpu); } int default_check_phys_apicid_present(int phys_apicid) { return __default_check_phys_apicid_present(phys_apicid); } #endif struct boot_params boot_params; /* * Machine setup.. */ static struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource bss_resource = { .name = "Kernel bss", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; #ifdef CONFIG_X86_32 /* cpu data as detected by the assembly code in head.S */ struct cpuinfo_x86 new_cpu_data __cpuinitdata = {0, 0, 0, 0, -1, 1, 0, 0, -1}; /* common cpu data for all cpus */ struct cpuinfo_x86 boot_cpu_data __read_mostly = {0, 0, 0, 0, -1, 1, 0, 0, -1}; EXPORT_SYMBOL(boot_cpu_data); unsigned int def_to_bigsmp; /* for MCA, but anyone else can use it if they want */ unsigned int machine_id; unsigned int machine_submodel_id; unsigned int BIOS_revision; struct apm_info apm_info; EXPORT_SYMBOL(apm_info); #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) struct ist_info ist_info; EXPORT_SYMBOL(ist_info); #else struct ist_info ist_info; #endif #else struct cpuinfo_x86 boot_cpu_data __read_mostly = { .x86_phys_bits = MAX_PHYSMEM_BITS, }; EXPORT_SYMBOL(boot_cpu_data); #endif #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) unsigned long mmu_cr4_features; #else unsigned long mmu_cr4_features = X86_CR4_PAE; #endif /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ int bootloader_type, bootloader_version; /* * Setup options */ struct screen_info screen_info; EXPORT_SYMBOL(screen_info); struct edid_info edid_info; EXPORT_SYMBOL_GPL(edid_info); extern int root_mountflags; unsigned long saved_video_mode; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char __initdata command_line[COMMAND_LINE_SIZE]; #ifdef CONFIG_CMDLINE_BOOL static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; #endif #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) struct edd edd; #ifdef CONFIG_EDD_MODULE EXPORT_SYMBOL(edd); #endif /** * copy_edd() - Copy the BIOS EDD information * from boot_params into a safe place. * */ static inline void __init copy_edd(void) { memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, sizeof(edd.mbr_signature)); memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; edd.edd_info_nr = boot_params.eddbuf_entries; } #else static inline void __init copy_edd(void) { } #endif void * __init extend_brk(size_t size, size_t align) { size_t mask = align - 1; void *ret; BUG_ON(_brk_start == 0); BUG_ON(align & mask); _brk_end = (_brk_end + mask) & ~mask; BUG_ON((char *)(_brk_end + size) > __brk_limit); ret = (void *)_brk_end; _brk_end += size; memset(ret, 0, size); return ret; } #ifdef CONFIG_X86_64 static void __init init_gbpages(void) { if (direct_gbpages && cpu_has_gbpages) printk(KERN_INFO "Using GB pages for direct mapping\n"); else direct_gbpages = 0; } #else static inline void init_gbpages(void) { } static void __init cleanup_highmap(void) { } #endif static void __init reserve_brk(void) { if (_brk_end > _brk_start) memblock_reserve(__pa(_brk_start), __pa(_brk_end) - __pa(_brk_start)); /* Mark brk area as locked down and no longer taking any new allocations */ _brk_start = 0; } #ifdef CONFIG_BLK_DEV_INITRD #define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT) static void __init relocate_initrd(void) { /* Assume only end is not page aligned */ u64 ramdisk_image = boot_params.hdr.ramdisk_image; u64 ramdisk_size = boot_params.hdr.ramdisk_size; u64 area_size = PAGE_ALIGN(ramdisk_size); u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT; u64 ramdisk_here; unsigned long slop, clen, mapaddr; char *p, *q; /* We need to move the initrd down into lowmem */ ramdisk_here = memblock_find_in_range(0, end_of_lowmem, area_size, PAGE_SIZE); if (!ramdisk_here) panic("Cannot find place for new RAMDISK of size %lld\n", ramdisk_size); /* Note: this includes all the lowmem currently occupied by the initrd, we rely on that fact to keep the data intact. */ memblock_reserve(ramdisk_here, area_size); initrd_start = ramdisk_here + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_here, ramdisk_here + ramdisk_size - 1); q = (char *)initrd_start; /* Copy any lowmem portion of the initrd */ if (ramdisk_image < end_of_lowmem) { clen = end_of_lowmem - ramdisk_image; p = (char *)__va(ramdisk_image); memcpy(q, p, clen); q += clen; ramdisk_image += clen; ramdisk_size -= clen; } /* Copy the highmem portion of the initrd */ while (ramdisk_size) { slop = ramdisk_image & ~PAGE_MASK; clen = ramdisk_size; if (clen > MAX_MAP_CHUNK-slop) clen = MAX_MAP_CHUNK-slop; mapaddr = ramdisk_image & PAGE_MASK; p = early_memremap(mapaddr, clen+slop); memcpy(q, p+slop, clen); early_iounmap(p, clen+slop); q += clen; ramdisk_image += clen; ramdisk_size -= clen; } /* high pages is not converted by early_res_to_bootmem */ ramdisk_image = boot_params.hdr.ramdisk_image; ramdisk_size = boot_params.hdr.ramdisk_size; printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" " [mem %#010llx-%#010llx]\n", ramdisk_image, ramdisk_image + ramdisk_size - 1, ramdisk_here, ramdisk_here + ramdisk_size - 1); } static void __init reserve_initrd(void) { /* Assume only end is not page aligned */ u64 ramdisk_image = boot_params.hdr.ramdisk_image; u64 ramdisk_size = boot_params.hdr.ramdisk_size; u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT; if (!boot_params.hdr.type_of_loader || !ramdisk_image || !ramdisk_size) return; /* No initrd provided by bootloader */ initrd_start = 0; if (ramdisk_size >= (end_of_lowmem>>1)) { panic("initrd too large to handle, " "disabling initrd (%lld needed, %lld available)\n", ramdisk_size, end_of_lowmem>>1); } printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, ramdisk_end - 1); if (ramdisk_end <= end_of_lowmem) { /* All in lowmem, easy case */ /* * don't need to reserve again, already reserved early * in i386_start_kernel */ initrd_start = ramdisk_image + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; return; } relocate_initrd(); memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); } #else static void __init reserve_initrd(void) { } #endif /* CONFIG_BLK_DEV_INITRD */ static void __init parse_setup_data(void) { struct setup_data *data; u64 pa_data; if (boot_params.hdr.version < 0x0209) return; pa_data = boot_params.hdr.setup_data; while (pa_data) { u32 data_len, map_len; map_len = max(PAGE_SIZE - (pa_data & ~PAGE_MASK), (u64)sizeof(struct setup_data)); data = early_memremap(pa_data, map_len); data_len = data->len + sizeof(struct setup_data); if (data_len > map_len) { early_iounmap(data, map_len); data = early_memremap(pa_data, data_len); map_len = data_len; } switch (data->type) { case SETUP_E820_EXT: parse_e820_ext(data); break; case SETUP_DTB: add_dtb(pa_data); break; default: break; } pa_data = data->next; early_iounmap(data, map_len); } } static void __init e820_reserve_setup_data(void) { struct setup_data *data; u64 pa_data; int found = 0; if (boot_params.hdr.version < 0x0209) return; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = early_memremap(pa_data, sizeof(*data)); e820_update_range(pa_data, sizeof(*data)+data->len, E820_RAM, E820_RESERVED_KERN); found = 1; pa_data = data->next; early_iounmap(data, sizeof(*data)); } if (!found) return; sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); memcpy(&e820_saved, &e820, sizeof(struct e820map)); printk(KERN_INFO "extended physical RAM map:\n"); e820_print_map("reserve setup_data"); } static void __init memblock_x86_reserve_range_setup_data(void) { struct setup_data *data; u64 pa_data; if (boot_params.hdr.version < 0x0209) return; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = early_memremap(pa_data, sizeof(*data)); memblock_reserve(pa_data, sizeof(*data) + data->len); pa_data = data->next; early_iounmap(data, sizeof(*data)); } } /* * --------- Crashkernel reservation ------------------------------ */ #ifdef CONFIG_KEXEC /* * Keep the crash kernel below this limit. On 32 bits earlier kernels * would limit the kernel to the low 512 MiB due to mapping restrictions. * On 64 bits, kexec-tools currently limits us to 896 MiB; increase this * limit once kexec-tools are fixed. */ #ifdef CONFIG_X86_32 # define CRASH_KERNEL_ADDR_MAX (512 << 20) #else # define CRASH_KERNEL_ADDR_MAX (896 << 20) #endif static void __init reserve_crashkernel(void) { unsigned long long total_mem; unsigned long long crash_size, crash_base; int ret; total_mem = memblock_phys_mem_size(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret != 0 || crash_size <= 0) return; /* 0 means: find the address automatically */ if (crash_base <= 0) { const unsigned long long alignment = 16<<20; /* 16M */ /* * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX */ crash_base = memblock_find_in_range(alignment, CRASH_KERNEL_ADDR_MAX, crash_size, alignment); if (!crash_base) { pr_info("crashkernel reservation failed - No suitable area found.\n"); return; } } else { unsigned long long start; start = memblock_find_in_range(crash_base, crash_base + crash_size, crash_size, 1<<20); if (start != crash_base) { pr_info("crashkernel reservation failed - memory is in use.\n"); return; } } memblock_reserve(crash_base, crash_size); printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(total_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; insert_resource(&iomem_resource, &crashk_res); } #else static void __init reserve_crashkernel(void) { } #endif static struct resource standard_io_resources[] = { { .name = "dma1", .start = 0x00, .end = 0x1f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic1", .start = 0x20, .end = 0x21, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer0", .start = 0x40, .end = 0x43, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer1", .start = 0x50, .end = 0x53, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x60, .end = 0x60, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x64, .end = 0x64, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma page reg", .start = 0x80, .end = 0x8f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic2", .start = 0xa0, .end = 0xa1, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma2", .start = 0xc0, .end = 0xdf, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "fpu", .start = 0xf0, .end = 0xff, .flags = IORESOURCE_BUSY | IORESOURCE_IO } }; void __init reserve_standard_io_resources(void) { int i; /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) request_resource(&ioport_resource, &standard_io_resources[i]); } static __init void reserve_ibft_region(void) { unsigned long addr, size = 0; addr = find_ibft_region(&size); if (size) memblock_reserve(addr, size); } static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; static bool __init snb_gfx_workaround_needed(void) { #ifdef CONFIG_PCI int i; u16 vendor, devid; static const __initconst u16 snb_ids[] = { 0x0102, 0x0112, 0x0122, 0x0106, 0x0116, 0x0126, 0x010a, }; /* Assume no if something weird is going on with PCI */ if (!early_pci_allowed()) return false; vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); if (vendor != 0x8086) return false; devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); for (i = 0; i < ARRAY_SIZE(snb_ids); i++) if (devid == snb_ids[i]) return true; #endif return false; } /* * Sandy Bridge graphics has trouble with certain ranges, exclude * them from allocation. */ static void __init trim_snb_memory(void) { static const __initconst unsigned long bad_pages[] = { 0x20050000, 0x20110000, 0x20130000, 0x20138000, 0x40004000, }; int i; if (!snb_gfx_workaround_needed()) return; printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); /* * Reserve all memory below the 1 MB mark that has not * already been reserved. */ memblock_reserve(0, 1<<20); for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { if (memblock_reserve(bad_pages[i], PAGE_SIZE)) printk(KERN_WARNING "failed to reserve 0x%08lx\n", bad_pages[i]); } } /* * Here we put platform-specific memory range workarounds, i.e. * memory known to be corrupt or otherwise in need to be reserved on * specific platforms. * * If this gets used more widely it could use a real dispatch mechanism. */ static void __init trim_platform_memory_ranges(void) { trim_snb_memory(); } static void __init trim_bios_range(void) { /* * A special case is the first 4Kb of memory; * This is a BIOS owned area, not kernel ram, but generally * not listed as such in the E820 table. * * This typically reserves additional memory (64KiB by default) * since some BIOSes are known to corrupt low memory. See the * Kconfig help text for X86_RESERVE_LOW. */ e820_update_range(0, ALIGN(reserve_low, PAGE_SIZE), E820_RAM, E820_RESERVED); /* * special case: Some BIOSen report the PC BIOS * area (640->1Mb) as ram even though it is not. * take them out. */ e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); } static int __init parse_reservelow(char *p) { unsigned long long size; if (!p) return -EINVAL; size = memparse(p, &p); if (size < 4096) size = 4096; if (size > 640*1024) size = 640*1024; reserve_low = size; return 0; } early_param("reservelow", parse_reservelow); /* * Determine if we were loaded by an EFI loader. If so, then we have also been * passed the efi memmap, systab, etc., so we should use these data structures * for initialization. Note, the efi init code path is determined by the * global efi_enabled. This allows the same kernel image to be used on existing * systems (with a traditional BIOS) as well as on EFI systems. */ /* * setup_arch - architecture-specific boot-time initializations * * Note: On x86_64, fixmaps are ready for use even before this is called. */ void __init setup_arch(char **cmdline_p) { #ifdef CONFIG_X86_32 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); visws_early_detect(); /* * copy kernel address range established so far and switch * to the proper swapper page table */ clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, initial_page_table + KERNEL_PGD_BOUNDARY, KERNEL_PGD_PTRS); load_cr3(swapper_pg_dir); __flush_tlb_all(); #else printk(KERN_INFO "Command line: %s\n", boot_command_line); #endif /* * If we have OLPC OFW, we might end up relocating the fixmap due to * reserve_top(), so do this before touching the ioremap area. */ olpc_ofw_detect(); early_trap_init(); early_cpu_init(); early_ioremap_init(); setup_olpc_ofw_pgd(); ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); screen_info = boot_params.screen_info; edid_info = boot_params.edid_info; #ifdef CONFIG_X86_32 apm_info.bios = boot_params.apm_bios_info; ist_info = boot_params.ist_info; if (boot_params.sys_desc_table.length != 0) { machine_id = boot_params.sys_desc_table.table[0]; machine_submodel_id = boot_params.sys_desc_table.table[1]; BIOS_revision = boot_params.sys_desc_table.table[2]; } #endif saved_video_mode = boot_params.hdr.vid_mode; bootloader_type = boot_params.hdr.type_of_loader; if ((bootloader_type >> 4) == 0xe) { bootloader_type &= 0xf; bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; } bootloader_version = bootloader_type & 0xf; bootloader_version |= boot_params.hdr.ext_loader_ver << 4; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); #endif #ifdef CONFIG_EFI if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, "EL32", 4)) { set_bit(EFI_BOOT, &x86_efi_facility); } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, "EL64", 4)) { set_bit(EFI_BOOT, &x86_efi_facility); set_bit(EFI_64BIT, &x86_efi_facility); } if (efi_enabled(EFI_BOOT)) efi_memblock_x86_reserve_range(); #endif x86_init.oem.arch_setup(); iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; setup_memory_map(); parse_setup_data(); /* update the e820_saved too */ e820_reserve_setup_data(); copy_edd(); if (!boot_params.hdr.root_flags) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = _brk_end; code_resource.start = virt_to_phys(_text); code_resource.end = virt_to_phys(_etext)-1; data_resource.start = virt_to_phys(_etext); data_resource.end = virt_to_phys(_edata)-1; bss_resource.start = virt_to_phys(&__bss_start); bss_resource.end = virt_to_phys(&__bss_stop)-1; #ifdef CONFIG_CMDLINE_BOOL #ifdef CONFIG_CMDLINE_OVERRIDE strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); #else if (builtin_cmdline[0]) { /* append boot loader cmdline to builtin */ strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); } #endif #endif strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; /* * x86_configure_nx() is called before parse_early_param() to detect * whether hardware doesn't support NX (so that the early EHCI debug * console setup can safely call set_fixmap()). It may then be called * again from within noexec_setup() during parsing early parameters * to honor the respective command line option. */ x86_configure_nx(); parse_early_param(); x86_report_nx(); /* after early param, so could get panic from serial */ memblock_x86_reserve_range_setup_data(); if (acpi_mps_check()) { #ifdef CONFIG_X86_LOCAL_APIC disable_apic = 1; #endif setup_clear_cpu_cap(X86_FEATURE_APIC); } #ifdef CONFIG_PCI if (pci_early_dump_regs) early_dump_pci_devices(); #endif finish_e820_parsing(); if (efi_enabled(EFI_BOOT)) efi_init(); dmi_scan_machine(); /* * VMware detection requires dmi to be available, so this * needs to be done after dmi_scan_machine, for the BP. */ init_hypervisor_platform(); x86_init.resources.probe_roms(); /* after parse_early_param, so could debug it */ insert_resource(&iomem_resource, &code_resource); insert_resource(&iomem_resource, &data_resource); insert_resource(&iomem_resource, &bss_resource); trim_bios_range(); #ifdef CONFIG_X86_32 if (ppro_with_ram_bug()) { e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM, E820_RESERVED); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); printk(KERN_INFO "fixed physical RAM map:\n"); e820_print_map("bad_ppro"); } #else early_gart_iommu_check(); #endif /* * partially used pages are not usable - thus * we are rounding upwards: */ max_pfn = e820_end_of_ram_pfn(); /* update e820 for memory not covered by WB MTRRs */ mtrr_bp_init(); if (mtrr_trim_uncached_memory(max_pfn)) max_pfn = e820_end_of_ram_pfn(); #ifdef CONFIG_X86_32 /* max_low_pfn get updated here */ find_low_pfn_range(); #else num_physpages = max_pfn; check_x2apic(); /* How many end-of-memory variables you have, grandma! */ /* need this before calling reserve_initrd */ if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) max_low_pfn = e820_end_of_low_ram_pfn(); else max_low_pfn = max_pfn; high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; #endif /* * Find and reserve possible boot-time SMP configuration: */ find_smp_config(); reserve_ibft_region(); /* * Need to conclude brk, before memblock_x86_fill() * it could use memblock_find_in_range, could overlap with * brk area. */ reserve_brk(); cleanup_highmap(); memblock.current_limit = get_max_mapped(); memblock_x86_fill(); /* * The EFI specification says that boot service code won't be called * after ExitBootServices(). This is, in fact, a lie. */ if (efi_enabled(EFI_MEMMAP)) efi_reserve_boot_services(); /* preallocate 4k for mptable mpc */ early_reserve_e820_mpc_new(); #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION setup_bios_corruption_check(); #endif printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", (max_pfn_mapped<<PAGE_SHIFT) - 1); setup_real_mode(); trim_platform_memory_ranges(); init_gbpages(); /* max_pfn_mapped is updated here */ max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT); max_pfn_mapped = max_low_pfn_mapped; #ifdef CONFIG_X86_64 if (max_pfn > max_low_pfn) { int i; unsigned long start, end; unsigned long start_pfn, end_pfn; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { end = PFN_PHYS(end_pfn); if (end <= (1UL<<32)) continue; start = PFN_PHYS(start_pfn); max_pfn_mapped = init_memory_mapping( max((1UL<<32), start), end); } /* can we preseve max_low_pfn ?*/ max_low_pfn = max_pfn; } #endif memblock.current_limit = get_max_mapped(); dma_contiguous_reserve(0); /* * NOTE: On x86-32, only from this point on, fixmaps are ready for use. */ #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT if (init_ohci1394_dma_early) init_ohci1394_dma_on_all_controllers(); #endif /* Allocate bigger log buffer */ setup_log_buf(1); reserve_initrd(); #if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD) acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start); #endif reserve_crashkernel(); vsmp_init(); io_delay_init(); /* * Parse the ACPI tables for possible boot-time SMP configuration. */ acpi_boot_table_init(); early_acpi_boot_init(); initmem_init(); memblock_find_dma_reserve(); #ifdef CONFIG_KVM_GUEST kvmclock_init(); #endif x86_init.paging.pagetable_init(); if (boot_cpu_data.cpuid_level >= 0) { /* A CPU has %cr4 if and only if it has CPUID */ mmu_cr4_features = read_cr4(); if (trampoline_cr4_features) *trampoline_cr4_features = mmu_cr4_features; } #ifdef CONFIG_X86_32 /* sync back kernel address range */ clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY, swapper_pg_dir + KERNEL_PGD_BOUNDARY, KERNEL_PGD_PTRS); #endif tboot_probe(); #ifdef CONFIG_X86_64 map_vsyscall(); #endif generic_apic_probe(); early_quirks(); /* * Read APIC and some other early information from ACPI tables. */ acpi_boot_init(); sfi_init(); x86_dtb_init(); /* * get boot-time SMP configuration: */ if (smp_found_config) get_smp_config(); prefill_possible_map(); init_cpu_to_node(); init_apic_mappings(); if (x86_io_apic_ops.init) x86_io_apic_ops.init(); kvm_guest_init(); e820_reserve_resources(); e820_mark_nosave_regions(max_low_pfn); x86_init.resources.reserve_resources(); e820_setup_gap(); #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif x86_init.oem.banner(); x86_init.timers.wallclock_init(); mcheck_init(); arch_init_ideal_nops(); register_refined_jiffies(CLOCK_TICK_RATE); #ifdef CONFIG_EFI /* Once setup is done above, unmap the EFI memory map on * mismatched firmware/kernel archtectures since there is no * support for runtime services. */ if (efi_enabled(EFI_BOOT) && IS_ENABLED(CONFIG_X86_64) != efi_enabled(EFI_64BIT)) { pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n"); efi_unmap_memmap(); } #endif } #ifdef CONFIG_X86_32 static struct resource video_ram_resource = { .name = "Video RAM area", .start = 0xa0000, .end = 0xbffff, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; void __init i386_reserve_resources(void) { request_resource(&iomem_resource, &video_ram_resource); reserve_standard_io_resources(); } #endif /* CONFIG_X86_32 */