// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1995 Linus Torvalds * * This file contains the setup_arch() code, which handles the architecture-dependent * parts of early kernel initialization. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * max_low_pfn_mapped: highest directly mapped pfn < 4 GB * max_pfn_mapped: highest directly mapped pfn > 4 GB * * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are * represented by pfn_mapped[]. */ unsigned long max_low_pfn_mapped; unsigned long max_pfn_mapped; #ifdef CONFIG_DMI RESERVE_BRK(dmi_alloc, 65536); #endif /* * Range of the BSS area. The size of the BSS area is determined * at link time, with RESERVE_BRK() facility reserving additional * chunks. */ unsigned long _brk_start = (unsigned long)__brk_base; unsigned long _brk_end = (unsigned long)__brk_base; struct boot_params boot_params; /* * These are the four main kernel memory regions, we put them into * the resource tree so that kdump tools and other debugging tools * recover it: */ static struct resource rodata_resource = { .name = "Kernel rodata", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; static struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; static struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; static struct resource bss_resource = { .name = "Kernel bss", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; #ifdef CONFIG_X86_32 /* CPU data as detected by the assembly code in head_32.S */ struct cpuinfo_x86 new_cpu_data; /* Common CPU data for all CPUs */ struct cpuinfo_x86 boot_cpu_data __read_mostly; EXPORT_SYMBOL(boot_cpu_data); unsigned int def_to_bigsmp; struct apm_info apm_info; EXPORT_SYMBOL(apm_info); #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) struct ist_info ist_info; EXPORT_SYMBOL(ist_info); #else struct ist_info ist_info; #endif #else struct cpuinfo_x86 boot_cpu_data __read_mostly; EXPORT_SYMBOL(boot_cpu_data); #endif #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) __visible unsigned long mmu_cr4_features __ro_after_init; #else __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; #endif /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ int bootloader_type, bootloader_version; /* * Setup options */ struct screen_info screen_info; EXPORT_SYMBOL(screen_info); struct edid_info edid_info; EXPORT_SYMBOL_GPL(edid_info); extern int root_mountflags; unsigned long saved_video_mode; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char __initdata command_line[COMMAND_LINE_SIZE]; #ifdef CONFIG_CMDLINE_BOOL static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; #endif #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) struct edd edd; #ifdef CONFIG_EDD_MODULE EXPORT_SYMBOL(edd); #endif /** * copy_edd() - Copy the BIOS EDD information * from boot_params into a safe place. * */ static inline void __init copy_edd(void) { memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, sizeof(edd.mbr_signature)); memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; edd.edd_info_nr = boot_params.eddbuf_entries; } #else static inline void __init copy_edd(void) { } #endif void * __init extend_brk(size_t size, size_t align) { size_t mask = align - 1; void *ret; BUG_ON(_brk_start == 0); BUG_ON(align & mask); _brk_end = (_brk_end + mask) & ~mask; BUG_ON((char *)(_brk_end + size) > __brk_limit); ret = (void *)_brk_end; _brk_end += size; memset(ret, 0, size); return ret; } #ifdef CONFIG_X86_32 static void __init cleanup_highmap(void) { } #endif static void __init reserve_brk(void) { if (_brk_end > _brk_start) memblock_reserve(__pa_symbol(_brk_start), _brk_end - _brk_start); /* Mark brk area as locked down and no longer taking any new allocations */ _brk_start = 0; } u64 relocated_ramdisk; #ifdef CONFIG_BLK_DEV_INITRD static u64 __init get_ramdisk_image(void) { u64 ramdisk_image = boot_params.hdr.ramdisk_image; ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; if (ramdisk_image == 0) ramdisk_image = phys_initrd_start; return ramdisk_image; } static u64 __init get_ramdisk_size(void) { u64 ramdisk_size = boot_params.hdr.ramdisk_size; ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; if (ramdisk_size == 0) ramdisk_size = phys_initrd_size; return ramdisk_size; } static void __init relocate_initrd(void) { /* Assume only end is not page aligned */ u64 ramdisk_image = get_ramdisk_image(); u64 ramdisk_size = get_ramdisk_size(); u64 area_size = PAGE_ALIGN(ramdisk_size); /* We need to move the initrd down into directly mapped mem */ relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, PFN_PHYS(max_pfn_mapped)); if (!relocated_ramdisk) panic("Cannot find place for new RAMDISK of size %lld\n", ramdisk_size); initrd_start = relocated_ramdisk + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" " [mem %#010llx-%#010llx]\n", ramdisk_image, ramdisk_image + ramdisk_size - 1, relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); } static void __init early_reserve_initrd(void) { /* Assume only end is not page aligned */ u64 ramdisk_image = get_ramdisk_image(); u64 ramdisk_size = get_ramdisk_size(); u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); if (!boot_params.hdr.type_of_loader || !ramdisk_image || !ramdisk_size) return; /* No initrd provided by bootloader */ memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); } static void __init reserve_initrd(void) { /* Assume only end is not page aligned */ u64 ramdisk_image = get_ramdisk_image(); u64 ramdisk_size = get_ramdisk_size(); u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); if (!boot_params.hdr.type_of_loader || !ramdisk_image || !ramdisk_size) return; /* No initrd provided by bootloader */ initrd_start = 0; printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, ramdisk_end - 1); if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), PFN_DOWN(ramdisk_end))) { /* All are mapped, easy case */ initrd_start = ramdisk_image + PAGE_OFFSET; initrd_end = initrd_start + ramdisk_size; return; } relocate_initrd(); memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); } #else static void __init early_reserve_initrd(void) { } static void __init reserve_initrd(void) { } #endif /* CONFIG_BLK_DEV_INITRD */ static void __init parse_setup_data(void) { struct setup_data *data; u64 pa_data, pa_next; pa_data = boot_params.hdr.setup_data; while (pa_data) { u32 data_len, data_type; data = early_memremap(pa_data, sizeof(*data)); data_len = data->len + sizeof(struct setup_data); data_type = data->type; pa_next = data->next; early_memunmap(data, sizeof(*data)); switch (data_type) { case SETUP_E820_EXT: e820__memory_setup_extended(pa_data, data_len); break; case SETUP_DTB: add_dtb(pa_data); break; case SETUP_EFI: parse_efi_setup(pa_data, data_len); break; default: break; } pa_data = pa_next; } } static void __init memblock_x86_reserve_range_setup_data(void) { struct setup_data *data; u64 pa_data; pa_data = boot_params.hdr.setup_data; while (pa_data) { data = early_memremap(pa_data, sizeof(*data)); memblock_reserve(pa_data, sizeof(*data) + data->len); if (data->type == SETUP_INDIRECT && ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) memblock_reserve(((struct setup_indirect *)data->data)->addr, ((struct setup_indirect *)data->data)->len); pa_data = data->next; early_memunmap(data, sizeof(*data)); } } /* * --------- Crashkernel reservation ------------------------------ */ #ifdef CONFIG_KEXEC_CORE /* 16M alignment for crash kernel regions */ #define CRASH_ALIGN SZ_16M /* * Keep the crash kernel below this limit. * * Earlier 32-bits kernels would limit the kernel to the low 512 MB range * due to mapping restrictions. * * 64-bit kdump kernels need to be restricted to be under 64 TB, which is * the upper limit of system RAM in 4-level paging mode. Since the kdump * jump could be from 5-level paging to 4-level paging, the jump will fail if * the kernel is put above 64 TB, and during the 1st kernel bootup there's * no good way to detect the paging mode of the target kernel which will be * loaded for dumping. */ #ifdef CONFIG_X86_32 # define CRASH_ADDR_LOW_MAX SZ_512M # define CRASH_ADDR_HIGH_MAX SZ_512M #else # define CRASH_ADDR_LOW_MAX SZ_4G # define CRASH_ADDR_HIGH_MAX SZ_64T #endif static int __init reserve_crashkernel_low(void) { #ifdef CONFIG_X86_64 unsigned long long base, low_base = 0, low_size = 0; unsigned long low_mem_limit; int ret; low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); /* crashkernel=Y,low */ ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); if (ret) { /* * two parts from kernel/dma/swiotlb.c: * -swiotlb size: user-specified with swiotlb= or default. * * -swiotlb overflow buffer: now hardcoded to 32k. We round it * to 8M for other buffers that may need to stay low too. Also * make sure we allocate enough extra low memory so that we * don't run out of DMA buffers for 32-bit devices. */ low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); } else { /* passed with crashkernel=0,low ? */ if (!low_size) return 0; } low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); if (!low_base) { pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", (unsigned long)(low_size >> 20)); return -ENOMEM; } pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", (unsigned long)(low_size >> 20), (unsigned long)(low_base >> 20), (unsigned long)(low_mem_limit >> 20)); crashk_low_res.start = low_base; crashk_low_res.end = low_base + low_size - 1; insert_resource(&iomem_resource, &crashk_low_res); #endif return 0; } static void __init reserve_crashkernel(void) { unsigned long long crash_size, crash_base, total_mem; bool high = false; int ret; total_mem = memblock_phys_mem_size(); /* crashkernel=XM */ ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret != 0 || crash_size <= 0) { /* crashkernel=X,high */ ret = parse_crashkernel_high(boot_command_line, total_mem, &crash_size, &crash_base); if (ret != 0 || crash_size <= 0) return; high = true; } if (xen_pv_domain()) { pr_info("Ignoring crashkernel for a Xen PV domain\n"); return; } /* 0 means: find the address automatically */ if (!crash_base) { /* * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, * crashkernel=x,high reserves memory over 4G, also allocates * 256M extra low memory for DMA buffers and swiotlb. * But the extra memory is not required for all machines. * So try low memory first and fall back to high memory * unless "crashkernel=size[KMG],high" is specified. */ if (!high) crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_LOW_MAX); if (!crash_base) crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_HIGH_MAX); if (!crash_base) { pr_info("crashkernel reservation failed - No suitable area found.\n"); return; } } else { unsigned long long start; start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, crash_base + crash_size); if (start != crash_base) { pr_info("crashkernel reservation failed - memory is in use.\n"); return; } } if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { memblock_free(crash_base, crash_size); return; } pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(total_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; insert_resource(&iomem_resource, &crashk_res); } #else static void __init reserve_crashkernel(void) { } #endif static struct resource standard_io_resources[] = { { .name = "dma1", .start = 0x00, .end = 0x1f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic1", .start = 0x20, .end = 0x21, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer0", .start = 0x40, .end = 0x43, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer1", .start = 0x50, .end = 0x53, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x60, .end = 0x60, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x64, .end = 0x64, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma page reg", .start = 0x80, .end = 0x8f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic2", .start = 0xa0, .end = 0xa1, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma2", .start = 0xc0, .end = 0xdf, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "fpu", .start = 0xf0, .end = 0xff, .flags = IORESOURCE_BUSY | IORESOURCE_IO } }; void __init reserve_standard_io_resources(void) { int i; /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) request_resource(&ioport_resource, &standard_io_resources[i]); } static __init void reserve_ibft_region(void) { unsigned long addr, size = 0; addr = find_ibft_region(&size); if (size) memblock_reserve(addr, size); } static bool __init snb_gfx_workaround_needed(void) { #ifdef CONFIG_PCI int i; u16 vendor, devid; static const __initconst u16 snb_ids[] = { 0x0102, 0x0112, 0x0122, 0x0106, 0x0116, 0x0126, 0x010a, }; /* Assume no if something weird is going on with PCI */ if (!early_pci_allowed()) return false; vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); if (vendor != 0x8086) return false; devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); for (i = 0; i < ARRAY_SIZE(snb_ids); i++) if (devid == snb_ids[i]) return true; #endif return false; } /* * Sandy Bridge graphics has trouble with certain ranges, exclude * them from allocation. */ static void __init trim_snb_memory(void) { static const __initconst unsigned long bad_pages[] = { 0x20050000, 0x20110000, 0x20130000, 0x20138000, 0x40004000, }; int i; if (!snb_gfx_workaround_needed()) return; printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); /* * SandyBridge integrated graphics devices have a bug that prevents * them from accessing certain memory ranges, namely anything below * 1M and in the pages listed in bad_pages[] above. * * To avoid these pages being ever accessed by SNB gfx devices reserve * bad_pages that have not already been reserved at boot time. * All memory below the 1 MB mark is anyway reserved later during * setup_arch(), so there is no need to reserve it here. */ for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { if (memblock_reserve(bad_pages[i], PAGE_SIZE)) printk(KERN_WARNING "failed to reserve 0x%08lx\n", bad_pages[i]); } } static void __init trim_bios_range(void) { /* * A special case is the first 4Kb of memory; * This is a BIOS owned area, not kernel ram, but generally * not listed as such in the E820 table. * * This typically reserves additional memory (64KiB by default) * since some BIOSes are known to corrupt low memory. See the * Kconfig help text for X86_RESERVE_LOW. */ e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); /* * special case: Some BIOSes report the PC BIOS * area (640Kb -> 1Mb) as RAM even though it is not. * take them out. */ e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); e820__update_table(e820_table); } /* called before trim_bios_range() to spare extra sanitize */ static void __init e820_add_kernel_range(void) { u64 start = __pa_symbol(_text); u64 size = __pa_symbol(_end) - start; /* * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and * attempt to fix it by adding the range. We may have a confused BIOS, * or the user may have used memmap=exactmap or memmap=xxM$yyM to * exclude kernel range. If we really are running on top non-RAM, * we will crash later anyways. */ if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) return; pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); e820__range_remove(start, size, E820_TYPE_RAM, 0); e820__range_add(start, size, E820_TYPE_RAM); } static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; static int __init parse_reservelow(char *p) { unsigned long long size; if (!p) return -EINVAL; size = memparse(p, &p); if (size < 4096) size = 4096; if (size > 640*1024) size = 640*1024; reserve_low = size; return 0; } early_param("reservelow", parse_reservelow); static void __init early_reserve_memory(void) { /* * Reserve the memory occupied by the kernel between _text and * __end_of_kernel_reserve symbols. Any kernel sections after the * __end_of_kernel_reserve symbol must be explicitly reserved with a * separate memblock_reserve() or they will be discarded. */ memblock_reserve(__pa_symbol(_text), (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); /* * The first 4Kb of memory is a BIOS owned area, but generally it is * not listed as such in the E820 table. * * Reserve the first 64K of memory since some BIOSes are known to * corrupt low memory. After the real mode trampoline is allocated the * rest of the memory below 640k is reserved. * * In addition, make sure page 0 is always reserved because on * systems with L1TF its contents can be leaked to user processes. */ memblock_reserve(0, SZ_64K); early_reserve_initrd(); if (efi_enabled(EFI_BOOT)) efi_memblock_x86_reserve_range(); memblock_x86_reserve_range_setup_data(); reserve_ibft_region(); reserve_bios_regions(); trim_snb_memory(); } /* * Dump out kernel offset information on panic. */ static int dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) { if (kaslr_enabled()) { pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", kaslr_offset(), __START_KERNEL, __START_KERNEL_map, MODULES_VADDR-1); } else { pr_emerg("Kernel Offset: disabled\n"); } return 0; } /* * Determine if we were loaded by an EFI loader. If so, then we have also been * passed the efi memmap, systab, etc., so we should use these data structures * for initialization. Note, the efi init code path is determined by the * global efi_enabled. This allows the same kernel image to be used on existing * systems (with a traditional BIOS) as well as on EFI systems. */ /* * setup_arch - architecture-specific boot-time initializations * * Note: On x86_64, fixmaps are ready for use even before this is called. */ void __init setup_arch(char **cmdline_p) { #ifdef CONFIG_X86_32 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); /* * copy kernel address range established so far and switch * to the proper swapper page table */ clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, initial_page_table + KERNEL_PGD_BOUNDARY, KERNEL_PGD_PTRS); load_cr3(swapper_pg_dir); /* * Note: Quark X1000 CPUs advertise PGE incorrectly and require * a cr3 based tlb flush, so the following __flush_tlb_all() * will not flush anything because the CPU quirk which clears * X86_FEATURE_PGE has not been invoked yet. Though due to the * load_cr3() above the TLB has been flushed already. The * quirk is invoked before subsequent calls to __flush_tlb_all() * so proper operation is guaranteed. */ __flush_tlb_all(); #else printk(KERN_INFO "Command line: %s\n", boot_command_line); boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; #endif /* * If we have OLPC OFW, we might end up relocating the fixmap due to * reserve_top(), so do this before touching the ioremap area. */ olpc_ofw_detect(); idt_setup_early_traps(); early_cpu_init(); jump_label_init(); static_call_init(); early_ioremap_init(); setup_olpc_ofw_pgd(); ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); screen_info = boot_params.screen_info; edid_info = boot_params.edid_info; #ifdef CONFIG_X86_32 apm_info.bios = boot_params.apm_bios_info; ist_info = boot_params.ist_info; #endif saved_video_mode = boot_params.hdr.vid_mode; bootloader_type = boot_params.hdr.type_of_loader; if ((bootloader_type >> 4) == 0xe) { bootloader_type &= 0xf; bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; } bootloader_version = bootloader_type & 0xf; bootloader_version |= boot_params.hdr.ext_loader_ver << 4; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; #endif #ifdef CONFIG_EFI if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, EFI32_LOADER_SIGNATURE, 4)) { set_bit(EFI_BOOT, &efi.flags); } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, EFI64_LOADER_SIGNATURE, 4)) { set_bit(EFI_BOOT, &efi.flags); set_bit(EFI_64BIT, &efi.flags); } #endif x86_init.oem.arch_setup(); iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; e820__memory_setup(); parse_setup_data(); copy_edd(); if (!boot_params.hdr.root_flags) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = _brk_end; code_resource.start = __pa_symbol(_text); code_resource.end = __pa_symbol(_etext)-1; rodata_resource.start = __pa_symbol(__start_rodata); rodata_resource.end = __pa_symbol(__end_rodata)-1; data_resource.start = __pa_symbol(_sdata); data_resource.end = __pa_symbol(_edata)-1; bss_resource.start = __pa_symbol(__bss_start); bss_resource.end = __pa_symbol(__bss_stop)-1; #ifdef CONFIG_CMDLINE_BOOL #ifdef CONFIG_CMDLINE_OVERRIDE strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); #else if (builtin_cmdline[0]) { /* append boot loader cmdline to builtin */ strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); } #endif #endif strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; /* * x86_configure_nx() is called before parse_early_param() to detect * whether hardware doesn't support NX (so that the early EHCI debug * console setup can safely call set_fixmap()). It may then be called * again from within noexec_setup() during parsing early parameters * to honor the respective command line option. */ x86_configure_nx(); parse_early_param(); /* * Do some memory reservations *before* memory is added to * memblock, so memblock allocations won't overwrite it. * Do it after early param, so we could get (unlikely) panic from * serial. * * After this point everything still needed from the boot loader or * firmware or kernel text should be early reserved or marked not * RAM in e820. All other memory is free game. */ early_reserve_memory(); #ifdef CONFIG_MEMORY_HOTPLUG /* * Memory used by the kernel cannot be hot-removed because Linux * cannot migrate the kernel pages. When memory hotplug is * enabled, we should prevent memblock from allocating memory * for the kernel. * * ACPI SRAT records all hotpluggable memory ranges. But before * SRAT is parsed, we don't know about it. * * The kernel image is loaded into memory at very early time. We * cannot prevent this anyway. So on NUMA system, we set any * node the kernel resides in as un-hotpluggable. * * Since on modern servers, one node could have double-digit * gigabytes memory, we can assume the memory around the kernel * image is also un-hotpluggable. So before SRAT is parsed, just * allocate memory near the kernel image to try the best to keep * the kernel away from hotpluggable memory. */ if (movable_node_is_enabled()) memblock_set_bottom_up(true); #endif x86_report_nx(); if (acpi_mps_check()) { #ifdef CONFIG_X86_LOCAL_APIC disable_apic = 1; #endif setup_clear_cpu_cap(X86_FEATURE_APIC); } e820__reserve_setup_data(); e820__finish_early_params(); if (efi_enabled(EFI_BOOT)) efi_init(); dmi_setup(); /* * VMware detection requires dmi to be available, so this * needs to be done after dmi_setup(), for the boot CPU. */ init_hypervisor_platform(); tsc_early_init(); x86_init.resources.probe_roms(); /* after parse_early_param, so could debug it */ insert_resource(&iomem_resource, &code_resource); insert_resource(&iomem_resource, &rodata_resource); insert_resource(&iomem_resource, &data_resource); insert_resource(&iomem_resource, &bss_resource); e820_add_kernel_range(); trim_bios_range(); #ifdef CONFIG_X86_32 if (ppro_with_ram_bug()) { e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, E820_TYPE_RESERVED); e820__update_table(e820_table); printk(KERN_INFO "fixed physical RAM map:\n"); e820__print_table("bad_ppro"); } #else early_gart_iommu_check(); #endif /* * partially used pages are not usable - thus * we are rounding upwards: */ max_pfn = e820__end_of_ram_pfn(); /* update e820 for memory not covered by WB MTRRs */ mtrr_bp_init(); if (mtrr_trim_uncached_memory(max_pfn)) max_pfn = e820__end_of_ram_pfn(); max_possible_pfn = max_pfn; /* * This call is required when the CPU does not support PAT. If * mtrr_bp_init() invoked it already via pat_init() the call has no * effect. */ init_cache_modes(); /* * Define random base addresses for memory sections after max_pfn is * defined and before each memory section base is used. */ kernel_randomize_memory(); #ifdef CONFIG_X86_32 /* max_low_pfn get updated here */ find_low_pfn_range(); #else check_x2apic(); /* How many end-of-memory variables you have, grandma! */ /* need this before calling reserve_initrd */ if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) max_low_pfn = e820__end_of_low_ram_pfn(); else max_low_pfn = max_pfn; high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; #endif /* * Find and reserve possible boot-time SMP configuration: */ find_smp_config(); early_alloc_pgt_buf(); /* * Need to conclude brk, before e820__memblock_setup() * it could use memblock_find_in_range, could overlap with * brk area. */ reserve_brk(); cleanup_highmap(); memblock_set_current_limit(ISA_END_ADDRESS); e820__memblock_setup(); /* * Needs to run after memblock setup because it needs the physical * memory size. */ sev_setup_arch(); efi_fake_memmap(); efi_find_mirror(); efi_esrt_init(); efi_mokvar_table_init(); /* * The EFI specification says that boot service code won't be * called after ExitBootServices(). This is, in fact, a lie. */ efi_reserve_boot_services(); /* preallocate 4k for mptable mpc */ e820__memblock_alloc_reserved_mpc_new(); #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION setup_bios_corruption_check(); #endif #ifdef CONFIG_X86_32 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", (max_pfn_mapped<