/* * Kernel Probes (KProbes) * arch/x86_64/kernel/kprobes.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation ( includes contributions from * Rusty Russell). * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> adapted for x86_64 * 2005-Mar Roland McGrath <roland@redhat.com> * Fixed to handle %rip-relative addressing mode correctly. * 2005-May Rusty Lynch <rusty.lynch@intel.com> * Added function return probes functionality */ #include <linux/kprobes.h> #include <linux/ptrace.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/preempt.h> #include <linux/module.h> #include <asm/cacheflush.h> #include <asm/pgtable.h> #include <asm/kdebug.h> #include <asm/uaccess.h> void jprobe_return_end(void); static void __kprobes arch_copy_kprobe(struct kprobe *p); DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); /* * returns non-zero if opcode modifies the interrupt flag. */ static __always_inline int is_IF_modifier(kprobe_opcode_t *insn) { switch (*insn) { case 0xfa: /* cli */ case 0xfb: /* sti */ case 0xcf: /* iret/iretd */ case 0x9d: /* popf/popfd */ return 1; } if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf) return 1; return 0; } int __kprobes arch_prepare_kprobe(struct kprobe *p) { /* insn: must be on special executable page on x86_64. */ p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) { return -ENOMEM; } arch_copy_kprobe(p); return 0; } /* * Determine if the instruction uses the %rip-relative addressing mode. * If it does, return the address of the 32-bit displacement word. * If not, return null. */ static s32 __kprobes *is_riprel(u8 *insn) { #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \ (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ << (row % 64)) static const u64 onebyte_has_modrm[256 / 64] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ------------------------------- */ W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */ W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */ W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */ W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */ W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */ W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */ W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */ W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */ W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */ W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */ W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */ W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */ W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */ W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */ W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */ W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */ /* ------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; static const u64 twobyte_has_modrm[256 / 64] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ------------------------------- */ W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */ W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */ W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */ W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */ W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */ W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */ W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */ W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */ W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */ W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */ W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */ W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */ W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */ W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */ W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */ W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */ /* ------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #undef W int need_modrm; /* Skip legacy instruction prefixes. */ while (1) { switch (*insn) { case 0x66: case 0x67: case 0x2e: case 0x3e: case 0x26: case 0x64: case 0x65: case 0x36: case 0xf0: case 0xf3: case 0xf2: ++insn; continue; } break; } /* Skip REX instruction prefix. */ if ((*insn & 0xf0) == 0x40) ++insn; if (*insn == 0x0f) { /* Two-byte opcode. */ ++insn; need_modrm = test_bit(*insn, twobyte_has_modrm); } else { /* One-byte opcode. */ need_modrm = test_bit(*insn, onebyte_has_modrm); } if (need_modrm) { u8 modrm = *++insn; if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */ /* Displacement follows ModRM byte. */ return (s32 *) ++insn; } } /* No %rip-relative addressing mode here. */ return NULL; } static void __kprobes arch_copy_kprobe(struct kprobe *p) { s32 *ripdisp; memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); ripdisp = is_riprel(p->ainsn.insn); if (ripdisp) { /* * The copied instruction uses the %rip-relative * addressing mode. Adjust the displacement for the * difference between the original location of this * instruction and the location of the copy that will * actually be run. The tricky bit here is making sure * that the sign extension happens correctly in this * calculation, since we need a signed 32-bit result to * be sign-extended to 64 bits when it's added to the * %rip value and yield the same 64-bit result that the * sign-extension of the original signed 32-bit * displacement would have given. */ s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn; BUG_ON((s64) (s32) disp != disp); /* Sanity check. */ *ripdisp = disp; } p->opcode = *p->addr; } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = BREAKPOINT_INSTRUCTION; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_remove_kprobe(struct kprobe *p) { mutex_lock(&kprobe_mutex); free_insn_slot(p->ainsn.insn); mutex_unlock(&kprobe_mutex); } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags; kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags; kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags; } static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __get_cpu_var(current_kprobe) = p; kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags = (regs->eflags & (TF_MASK | IF_MASK)); if (is_IF_modifier(p->ainsn.insn)) kcb->kprobe_saved_rflags &= ~IF_MASK; } static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { regs->eflags |= TF_MASK; regs->eflags &= ~IF_MASK; /*single step inline if the instruction is an int3*/ if (p->opcode == BREAKPOINT_INSTRUCTION) regs->rip = (unsigned long)p->addr; else regs->rip = (unsigned long)p->ainsn.insn; } /* Called with kretprobe_lock held */ void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) { unsigned long *sara = (unsigned long *)regs->rsp; struct kretprobe_instance *ri; if ((ri = get_free_rp_inst(rp)) != NULL) { ri->rp = rp; ri->task = current; ri->ret_addr = (kprobe_opcode_t *) *sara; /* Replace the return addr with trampoline addr */ *sara = (unsigned long) &kretprobe_trampoline; add_rp_inst(ri); } else { rp->nmissed++; } } int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t)); struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); /* Check we're not actually recursing */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS && *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { regs->eflags &= ~TF_MASK; regs->eflags |= kcb->kprobe_saved_rflags; goto no_kprobe; } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) { /* TODO: Provide re-entrancy from * post_kprobes_handler() and avoid exception * stack corruption while single-stepping on * the instruction of the new probe. */ arch_disarm_kprobe(p); regs->rip = (unsigned long)p->addr; reset_current_kprobe(); ret = 1; } else { /* We have reentered the kprobe_handler(), since * another probe was hit while within the * handler. We here save the original kprobe * variables and just single step on instruction * of the new probe without calling any user * handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } } else { if (*addr != BREAKPOINT_INSTRUCTION) { /* The breakpoint instruction was removed by * another cpu right after we hit, no further * handling of this interrupt is appropriate */ regs->rip = (unsigned long)addr; ret = 1; goto no_kprobe; } p = __get_cpu_var(current_kprobe); if (p->break_handler && p->break_handler(p, regs)) { goto ss_probe; } } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (*addr != BREAKPOINT_INSTRUCTION) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Back up over the (now missing) int3 and run * the original instruction. */ regs->rip = (unsigned long)addr; ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) /* handler has already set things up, so skip ss setup */ return 1; ss_probe: prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } /* * For function-return probes, init_kprobes() establishes a probepoint * here. When a retprobed function returns, this probe is hit and * trampoline_probe_handler() runs, calling the kretprobe's handler. */ void kretprobe_trampoline_holder(void) { asm volatile ( ".global kretprobe_trampoline\n" "kretprobe_trampoline: \n" "nop\n"); } /* * Called when we hit the probe point at kretprobe_trampoline */ int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head; struct hlist_node *node, *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; spin_lock_irqsave(&kretprobe_lock, flags); head = kretprobe_inst_table_head(current); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more then one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); regs->rip = orig_ret_address; reset_current_kprobe(); spin_unlock_irqrestore(&kretprobe_lock, flags); preempt_enable_no_resched(); /* * By returning a non-zero value, we are telling * kprobe_handler() that we don't want the post_handler * to run (and have re-enabled preemption) */ return 1; } /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "int 3" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. * * This function prepares to return from the post-single-step * interrupt. We have to fix up the stack as follows: * * 0) Except in the case of absolute or indirect jump or call instructions, * the new rip is relative to the copied instruction. We need to make * it relative to the original instruction. * * 1) If the single-stepped instruction was pushfl, then the TF and IF * flags are set in the just-pushed eflags, and may need to be cleared. * * 2) If the single-stepped instruction was a call, the return address * that is atop the stack is the address following the copied instruction. * We need to make it the address following the original instruction. */ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { unsigned long *tos = (unsigned long *)regs->rsp; unsigned long next_rip = 0; unsigned long copy_rip = (unsigned long)p->ainsn.insn; unsigned long orig_rip = (unsigned long)p->addr; kprobe_opcode_t *insn = p->ainsn.insn; /*skip the REX prefix*/ if (*insn >= 0x40 && *insn <= 0x4f) insn++; switch (*insn) { case 0x9c: /* pushfl */ *tos &= ~(TF_MASK | IF_MASK); *tos |= kcb->kprobe_old_rflags; break; case 0xc3: /* ret/lret */ case 0xcb: case 0xc2: case 0xca: regs->eflags &= ~TF_MASK; /* rip is already adjusted, no more changes required*/ return; case 0xe8: /* call relative - Fix return addr */ *tos = orig_rip + (*tos - copy_rip); break; case 0xff: if ((insn[1] & 0x30) == 0x10) { /* call absolute, indirect */ /* Fix return addr; rip is correct. */ next_rip = regs->rip; *tos = orig_rip + (*tos - copy_rip); } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */ ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */ /* rip is correct. */ next_rip = regs->rip; } break; case 0xea: /* jmp absolute -- rip is correct */ next_rip = regs->rip; break; default: break; } regs->eflags &= ~TF_MASK; if (next_rip) { regs->rip = next_rip; } else { regs->rip = orig_rip + (regs->rip - copy_rip); } } int __kprobes post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs, kcb); regs->eflags |= kcb->kprobe_saved_rflags; /* Restore the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, eflags * will have TF set, in which case, continue the remaining processing * of do_debug, as if this is not a probe hit. */ if (regs->eflags & TF_MASK) return 0; return 1; } int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); const struct exception_table_entry *fixup; switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the rip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->rip = (unsigned long)cur->addr; regs->eflags |= kcb->kprobe_old_rflags; if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accouting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ fixup = search_exception_tables(regs->rip); if (fixup) { regs->rip = fixup->fixup; return 1; } /* * fixup() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } /* * Wrapper routine for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; if (args->regs && user_mode(args->regs)) return ret; switch (val) { case DIE_INT3: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_DEBUG: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_GPF: case DIE_PAGE_FAULT: /* kprobe_running() needs smp_processor_id() */ preempt_disable(); if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) ret = NOTIFY_STOP; preempt_enable(); break; default: break; } return ret; } int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); unsigned long addr; struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); kcb->jprobe_saved_regs = *regs; kcb->jprobe_saved_rsp = (long *) regs->rsp; addr = (unsigned long)(kcb->jprobe_saved_rsp); /* * As Linus pointed out, gcc assumes that the callee * owns the argument space and could overwrite it, e.g. * tailcall optimization. So, to be absolutely safe * we also save and restore enough stack bytes to cover * the argument area. */ memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); regs->eflags &= ~IF_MASK; regs->rip = (unsigned long)(jp->entry); return 1; } void __kprobes jprobe_return(void) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); asm volatile (" xchg %%rbx,%%rsp \n" " int3 \n" " .globl jprobe_return_end \n" " jprobe_return_end: \n" " nop \n"::"b" (kcb->jprobe_saved_rsp):"memory"); } int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); u8 *addr = (u8 *) (regs->rip - 1); unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp); struct jprobe *jp = container_of(p, struct jprobe, kp); if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { if ((long *)regs->rsp != kcb->jprobe_saved_rsp) { struct pt_regs *saved_regs = container_of(kcb->jprobe_saved_rsp, struct pt_regs, rsp); printk("current rsp %p does not match saved rsp %p\n", (long *)regs->rsp, kcb->jprobe_saved_rsp); printk("Saved registers for jprobe %p\n", jp); show_registers(saved_regs); printk("Current registers\n"); show_registers(regs); BUG(); } *regs = kcb->jprobe_saved_regs; memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, MIN_STACK_SIZE(stack_addr)); preempt_enable_no_resched(); return 1; } return 0; } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *) &kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline_p); }