/* * DMA coherent memory allocation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * Copyright (C) 2002 - 2005 Tensilica Inc. * Copyright (C) 2015 Cadence Design Systems Inc. * * Based on version for i386. * * Chris Zankel * Joe Taylor */ #include #include #include #include #include #include #include #include #include #include void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_BIDIRECTIONAL: __flush_invalidate_dcache_range((unsigned long)vaddr, size); break; case DMA_FROM_DEVICE: __invalidate_dcache_range((unsigned long)vaddr, size); break; case DMA_TO_DEVICE: __flush_dcache_range((unsigned long)vaddr, size); break; case DMA_NONE: BUG(); break; } } EXPORT_SYMBOL(dma_cache_sync); static void do_cache_op(dma_addr_t dma_handle, size_t size, void (*fn)(unsigned long, unsigned long)) { unsigned long off = dma_handle & (PAGE_SIZE - 1); unsigned long pfn = PFN_DOWN(dma_handle); struct page *page = pfn_to_page(pfn); if (!PageHighMem(page)) fn((unsigned long)bus_to_virt(dma_handle), size); else while (size > 0) { size_t sz = min_t(size_t, size, PAGE_SIZE - off); void *vaddr = kmap_atomic(page); fn((unsigned long)vaddr + off, sz); kunmap_atomic(vaddr); off = 0; ++page; size -= sz; } } static void xtensa_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_BIDIRECTIONAL: case DMA_FROM_DEVICE: do_cache_op(dma_handle, size, __invalidate_dcache_range); break; case DMA_NONE: BUG(); break; default: break; } } static void xtensa_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_BIDIRECTIONAL: case DMA_TO_DEVICE: if (XCHAL_DCACHE_IS_WRITEBACK) do_cache_op(dma_handle, size, __flush_dcache_range); break; case DMA_NONE: BUG(); break; default: break; } } static void xtensa_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { xtensa_sync_single_for_cpu(dev, sg_dma_address(s), sg_dma_len(s), dir); } } static void xtensa_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { xtensa_sync_single_for_device(dev, sg_dma_address(s), sg_dma_len(s), dir); } } /* * Note: We assume that the full memory space is always mapped to 'kseg' * Otherwise we have to use page attributes (not implemented). */ static void *xtensa_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t flag, unsigned long attrs) { unsigned long ret; unsigned long uncached = 0; unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct page *page = NULL; /* ignore region speicifiers */ flag &= ~(__GFP_DMA | __GFP_HIGHMEM); if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff)) flag |= GFP_DMA; if (gfpflags_allow_blocking(flag)) page = dma_alloc_from_contiguous(dev, count, get_order(size), flag); if (!page) page = alloc_pages(flag, get_order(size)); if (!page) return NULL; ret = (unsigned long)page_address(page); /* We currently don't support coherent memory outside KSEG */ BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR || ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1); uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR; *handle = virt_to_bus((void *)ret); __invalidate_dcache_range(ret, size); return (void *)uncached; } static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { unsigned long addr = (unsigned long)vaddr + XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR; struct page *page = virt_to_page(addr); unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; BUG_ON(addr < XCHAL_KSEG_CACHED_VADDR || addr > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1); if (!dma_release_from_contiguous(dev, page, count)) __free_pages(page, get_order(size)); } static dma_addr_t xtensa_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t dma_handle = page_to_phys(page) + offset; if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) xtensa_sync_single_for_device(dev, dma_handle, size, dir); return dma_handle; } static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) xtensa_sync_single_for_cpu(dev, dma_handle, size, dir); } static int xtensa_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset, s->length, dir, attrs); } return nents; } static void xtensa_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { xtensa_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); } } int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return 0; } struct dma_map_ops xtensa_dma_map_ops = { .alloc = xtensa_dma_alloc, .free = xtensa_dma_free, .map_page = xtensa_map_page, .unmap_page = xtensa_unmap_page, .map_sg = xtensa_map_sg, .unmap_sg = xtensa_unmap_sg, .sync_single_for_cpu = xtensa_sync_single_for_cpu, .sync_single_for_device = xtensa_sync_single_for_device, .sync_sg_for_cpu = xtensa_sync_sg_for_cpu, .sync_sg_for_device = xtensa_sync_sg_for_device, .mapping_error = xtensa_dma_mapping_error, }; EXPORT_SYMBOL(xtensa_dma_map_ops); #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) static int __init xtensa_dma_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); return 0; } fs_initcall(xtensa_dma_init);