// SPDX-License-Identifier: GPL-2.0 /* * Block multiqueue core code * * Copyright (C) 2013-2014 Jens Axboe * Copyright (C) 2013-2014 Christoph Hellwig */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "blk.h" #include "blk-mq.h" #include "blk-mq-debugfs.h" #include "blk-mq-tag.h" #include "blk-pm.h" #include "blk-stat.h" #include "blk-mq-sched.h" #include "blk-rq-qos.h" static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); static void blk_mq_poll_stats_start(struct request_queue *q); static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); static int blk_mq_poll_stats_bkt(const struct request *rq) { int ddir, sectors, bucket; ddir = rq_data_dir(rq); sectors = blk_rq_stats_sectors(rq); bucket = ddir + 2 * ilog2(sectors); if (bucket < 0) return -1; else if (bucket >= BLK_MQ_POLL_STATS_BKTS) return ddir + BLK_MQ_POLL_STATS_BKTS - 2; return bucket; } #define BLK_QC_T_SHIFT 16 #define BLK_QC_T_INTERNAL (1U << 31) static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, blk_qc_t qc) { return xa_load(&q->hctx_table, (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); } static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, blk_qc_t qc) { unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); if (qc & BLK_QC_T_INTERNAL) return blk_mq_tag_to_rq(hctx->sched_tags, tag); return blk_mq_tag_to_rq(hctx->tags, tag); } static inline blk_qc_t blk_rq_to_qc(struct request *rq) { return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | (rq->tag != -1 ? rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); } /* * Check if any of the ctx, dispatch list or elevator * have pending work in this hardware queue. */ static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) { return !list_empty_careful(&hctx->dispatch) || sbitmap_any_bit_set(&hctx->ctx_map) || blk_mq_sched_has_work(hctx); } /* * Mark this ctx as having pending work in this hardware queue */ static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx) { const int bit = ctx->index_hw[hctx->type]; if (!sbitmap_test_bit(&hctx->ctx_map, bit)) sbitmap_set_bit(&hctx->ctx_map, bit); } static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx) { const int bit = ctx->index_hw[hctx->type]; sbitmap_clear_bit(&hctx->ctx_map, bit); } struct mq_inflight { struct block_device *part; unsigned int inflight[2]; }; static bool blk_mq_check_inflight(struct request *rq, void *priv, bool reserved) { struct mq_inflight *mi = priv; if ((!mi->part->bd_partno || rq->part == mi->part) && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) mi->inflight[rq_data_dir(rq)]++; return true; } unsigned int blk_mq_in_flight(struct request_queue *q, struct block_device *part) { struct mq_inflight mi = { .part = part }; blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); return mi.inflight[0] + mi.inflight[1]; } void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, unsigned int inflight[2]) { struct mq_inflight mi = { .part = part }; blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); inflight[0] = mi.inflight[0]; inflight[1] = mi.inflight[1]; } void blk_freeze_queue_start(struct request_queue *q) { mutex_lock(&q->mq_freeze_lock); if (++q->mq_freeze_depth == 1) { percpu_ref_kill(&q->q_usage_counter); mutex_unlock(&q->mq_freeze_lock); if (queue_is_mq(q)) blk_mq_run_hw_queues(q, false); } else { mutex_unlock(&q->mq_freeze_lock); } } EXPORT_SYMBOL_GPL(blk_freeze_queue_start); void blk_mq_freeze_queue_wait(struct request_queue *q) { wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); } EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, unsigned long timeout) { return wait_event_timeout(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter), timeout); } EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); /* * Guarantee no request is in use, so we can change any data structure of * the queue afterward. */ void blk_freeze_queue(struct request_queue *q) { /* * In the !blk_mq case we are only calling this to kill the * q_usage_counter, otherwise this increases the freeze depth * and waits for it to return to zero. For this reason there is * no blk_unfreeze_queue(), and blk_freeze_queue() is not * exported to drivers as the only user for unfreeze is blk_mq. */ blk_freeze_queue_start(q); blk_mq_freeze_queue_wait(q); } void blk_mq_freeze_queue(struct request_queue *q) { /* * ...just an alias to keep freeze and unfreeze actions balanced * in the blk_mq_* namespace */ blk_freeze_queue(q); } EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) { mutex_lock(&q->mq_freeze_lock); if (force_atomic) q->q_usage_counter.data->force_atomic = true; q->mq_freeze_depth--; WARN_ON_ONCE(q->mq_freeze_depth < 0); if (!q->mq_freeze_depth) { percpu_ref_resurrect(&q->q_usage_counter); wake_up_all(&q->mq_freeze_wq); } mutex_unlock(&q->mq_freeze_lock); } void blk_mq_unfreeze_queue(struct request_queue *q) { __blk_mq_unfreeze_queue(q, false); } EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); /* * FIXME: replace the scsi_internal_device_*block_nowait() calls in the * mpt3sas driver such that this function can be removed. */ void blk_mq_quiesce_queue_nowait(struct request_queue *q) { unsigned long flags; spin_lock_irqsave(&q->queue_lock, flags); if (!q->quiesce_depth++) blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); spin_unlock_irqrestore(&q->queue_lock, flags); } EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); /** * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done * @q: request queue. * * Note: it is driver's responsibility for making sure that quiesce has * been started. */ void blk_mq_wait_quiesce_done(struct request_queue *q) { if (blk_queue_has_srcu(q)) synchronize_srcu(q->srcu); else synchronize_rcu(); } EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); /** * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished * @q: request queue. * * Note: this function does not prevent that the struct request end_io() * callback function is invoked. Once this function is returned, we make * sure no dispatch can happen until the queue is unquiesced via * blk_mq_unquiesce_queue(). */ void blk_mq_quiesce_queue(struct request_queue *q) { blk_mq_quiesce_queue_nowait(q); blk_mq_wait_quiesce_done(q); } EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); /* * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() * @q: request queue. * * This function recovers queue into the state before quiescing * which is done by blk_mq_quiesce_queue. */ void blk_mq_unquiesce_queue(struct request_queue *q) { unsigned long flags; bool run_queue = false; spin_lock_irqsave(&q->queue_lock, flags); if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { ; } else if (!--q->quiesce_depth) { blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); run_queue = true; } spin_unlock_irqrestore(&q->queue_lock, flags); /* dispatch requests which are inserted during quiescing */ if (run_queue) blk_mq_run_hw_queues(q, true); } EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); void blk_mq_wake_waiters(struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) if (blk_mq_hw_queue_mapped(hctx)) blk_mq_tag_wakeup_all(hctx->tags, true); } void blk_rq_init(struct request_queue *q, struct request *rq) { memset(rq, 0, sizeof(*rq)); INIT_LIST_HEAD(&rq->queuelist); rq->q = q; rq->__sector = (sector_t) -1; INIT_HLIST_NODE(&rq->hash); RB_CLEAR_NODE(&rq->rb_node); rq->tag = BLK_MQ_NO_TAG; rq->internal_tag = BLK_MQ_NO_TAG; rq->start_time_ns = ktime_get_ns(); rq->part = NULL; blk_crypto_rq_set_defaults(rq); } EXPORT_SYMBOL(blk_rq_init); static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) { struct blk_mq_ctx *ctx = data->ctx; struct blk_mq_hw_ctx *hctx = data->hctx; struct request_queue *q = data->q; struct request *rq = tags->static_rqs[tag]; rq->q = q; rq->mq_ctx = ctx; rq->mq_hctx = hctx; rq->cmd_flags = data->cmd_flags; if (data->flags & BLK_MQ_REQ_PM) data->rq_flags |= RQF_PM; if (blk_queue_io_stat(q)) data->rq_flags |= RQF_IO_STAT; rq->rq_flags = data->rq_flags; if (!(data->rq_flags & RQF_ELV)) { rq->tag = tag; rq->internal_tag = BLK_MQ_NO_TAG; } else { rq->tag = BLK_MQ_NO_TAG; rq->internal_tag = tag; } rq->timeout = 0; if (blk_mq_need_time_stamp(rq)) rq->start_time_ns = ktime_get_ns(); else rq->start_time_ns = 0; rq->part = NULL; #ifdef CONFIG_BLK_RQ_ALLOC_TIME rq->alloc_time_ns = alloc_time_ns; #endif rq->io_start_time_ns = 0; rq->stats_sectors = 0; rq->nr_phys_segments = 0; #if defined(CONFIG_BLK_DEV_INTEGRITY) rq->nr_integrity_segments = 0; #endif rq->end_io = NULL; rq->end_io_data = NULL; blk_crypto_rq_set_defaults(rq); INIT_LIST_HEAD(&rq->queuelist); /* tag was already set */ WRITE_ONCE(rq->deadline, 0); req_ref_set(rq, 1); if (rq->rq_flags & RQF_ELV) { struct elevator_queue *e = data->q->elevator; INIT_HLIST_NODE(&rq->hash); RB_CLEAR_NODE(&rq->rb_node); if (!op_is_flush(data->cmd_flags) && e->type->ops.prepare_request) { e->type->ops.prepare_request(rq); rq->rq_flags |= RQF_ELVPRIV; } } return rq; } static inline struct request * __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, u64 alloc_time_ns) { unsigned int tag, tag_offset; struct blk_mq_tags *tags; struct request *rq; unsigned long tag_mask; int i, nr = 0; tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); if (unlikely(!tag_mask)) return NULL; tags = blk_mq_tags_from_data(data); for (i = 0; tag_mask; i++) { if (!(tag_mask & (1UL << i))) continue; tag = tag_offset + i; prefetch(tags->static_rqs[tag]); tag_mask &= ~(1UL << i); rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); rq_list_add(data->cached_rq, rq); nr++; } /* caller already holds a reference, add for remainder */ percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); data->nr_tags -= nr; return rq_list_pop(data->cached_rq); } static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) { struct request_queue *q = data->q; u64 alloc_time_ns = 0; struct request *rq; unsigned int tag; /* alloc_time includes depth and tag waits */ if (blk_queue_rq_alloc_time(q)) alloc_time_ns = ktime_get_ns(); if (data->cmd_flags & REQ_NOWAIT) data->flags |= BLK_MQ_REQ_NOWAIT; if (q->elevator) { struct elevator_queue *e = q->elevator; data->rq_flags |= RQF_ELV; /* * Flush/passthrough requests are special and go directly to the * dispatch list. Don't include reserved tags in the * limiting, as it isn't useful. */ if (!op_is_flush(data->cmd_flags) && !blk_op_is_passthrough(data->cmd_flags) && e->type->ops.limit_depth && !(data->flags & BLK_MQ_REQ_RESERVED)) e->type->ops.limit_depth(data->cmd_flags, data); } retry: data->ctx = blk_mq_get_ctx(q); data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); if (!(data->rq_flags & RQF_ELV)) blk_mq_tag_busy(data->hctx); /* * Try batched alloc if we want more than 1 tag. */ if (data->nr_tags > 1) { rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); if (rq) return rq; data->nr_tags = 1; } /* * Waiting allocations only fail because of an inactive hctx. In that * case just retry the hctx assignment and tag allocation as CPU hotplug * should have migrated us to an online CPU by now. */ tag = blk_mq_get_tag(data); if (tag == BLK_MQ_NO_TAG) { if (data->flags & BLK_MQ_REQ_NOWAIT) return NULL; /* * Give up the CPU and sleep for a random short time to * ensure that thread using a realtime scheduling class * are migrated off the CPU, and thus off the hctx that * is going away. */ msleep(3); goto retry; } return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, alloc_time_ns); } struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags) { struct blk_mq_alloc_data data = { .q = q, .flags = flags, .cmd_flags = op, .nr_tags = 1, }; struct request *rq; int ret; ret = blk_queue_enter(q, flags); if (ret) return ERR_PTR(ret); rq = __blk_mq_alloc_requests(&data); if (!rq) goto out_queue_exit; rq->__data_len = 0; rq->__sector = (sector_t) -1; rq->bio = rq->biotail = NULL; return rq; out_queue_exit: blk_queue_exit(q); return ERR_PTR(-EWOULDBLOCK); } EXPORT_SYMBOL(blk_mq_alloc_request); struct request *blk_mq_alloc_request_hctx(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) { struct blk_mq_alloc_data data = { .q = q, .flags = flags, .cmd_flags = op, .nr_tags = 1, }; u64 alloc_time_ns = 0; unsigned int cpu; unsigned int tag; int ret; /* alloc_time includes depth and tag waits */ if (blk_queue_rq_alloc_time(q)) alloc_time_ns = ktime_get_ns(); /* * If the tag allocator sleeps we could get an allocation for a * different hardware context. No need to complicate the low level * allocator for this for the rare use case of a command tied to * a specific queue. */ if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) return ERR_PTR(-EINVAL); if (hctx_idx >= q->nr_hw_queues) return ERR_PTR(-EIO); ret = blk_queue_enter(q, flags); if (ret) return ERR_PTR(ret); /* * Check if the hardware context is actually mapped to anything. * If not tell the caller that it should skip this queue. */ ret = -EXDEV; data.hctx = xa_load(&q->hctx_table, hctx_idx); if (!blk_mq_hw_queue_mapped(data.hctx)) goto out_queue_exit; cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); data.ctx = __blk_mq_get_ctx(q, cpu); if (!q->elevator) blk_mq_tag_busy(data.hctx); else data.rq_flags |= RQF_ELV; ret = -EWOULDBLOCK; tag = blk_mq_get_tag(&data); if (tag == BLK_MQ_NO_TAG) goto out_queue_exit; return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, alloc_time_ns); out_queue_exit: blk_queue_exit(q); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); static void __blk_mq_free_request(struct request *rq) { struct request_queue *q = rq->q; struct blk_mq_ctx *ctx = rq->mq_ctx; struct blk_mq_hw_ctx *hctx = rq->mq_hctx; const int sched_tag = rq->internal_tag; blk_crypto_free_request(rq); blk_pm_mark_last_busy(rq); rq->mq_hctx = NULL; if (rq->tag != BLK_MQ_NO_TAG) blk_mq_put_tag(hctx->tags, ctx, rq->tag); if (sched_tag != BLK_MQ_NO_TAG) blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); blk_mq_sched_restart(hctx); blk_queue_exit(q); } void blk_mq_free_request(struct request *rq) { struct request_queue *q = rq->q; struct blk_mq_hw_ctx *hctx = rq->mq_hctx; if ((rq->rq_flags & RQF_ELVPRIV) && q->elevator->type->ops.finish_request) q->elevator->type->ops.finish_request(rq); if (rq->rq_flags & RQF_MQ_INFLIGHT) __blk_mq_dec_active_requests(hctx); if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) laptop_io_completion(q->disk->bdi); rq_qos_done(q, rq); WRITE_ONCE(rq->state, MQ_RQ_IDLE); if (req_ref_put_and_test(rq)) __blk_mq_free_request(rq); } EXPORT_SYMBOL_GPL(blk_mq_free_request); void blk_mq_free_plug_rqs(struct blk_plug *plug) { struct request *rq; while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) blk_mq_free_request(rq); } void blk_dump_rq_flags(struct request *rq, char *msg) { printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, rq->q->disk ? rq->q->disk->disk_name : "?", (unsigned long long) rq->cmd_flags); printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", (unsigned long long)blk_rq_pos(rq), blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); printk(KERN_INFO " bio %p, biotail %p, len %u\n", rq->bio, rq->biotail, blk_rq_bytes(rq)); } EXPORT_SYMBOL(blk_dump_rq_flags); static void req_bio_endio(struct request *rq, struct bio *bio, unsigned int nbytes, blk_status_t error) { if (unlikely(error)) { bio->bi_status = error; } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { /* * Partial zone append completions cannot be supported as the * BIO fragments may end up not being written sequentially. */ if (bio->bi_iter.bi_size != nbytes) bio->bi_status = BLK_STS_IOERR; else bio->bi_iter.bi_sector = rq->__sector; } bio_advance(bio, nbytes); if (unlikely(rq->rq_flags & RQF_QUIET)) bio_set_flag(bio, BIO_QUIET); /* don't actually finish bio if it's part of flush sequence */ if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) bio_endio(bio); } static void blk_account_io_completion(struct request *req, unsigned int bytes) { if (req->part && blk_do_io_stat(req)) { const int sgrp = op_stat_group(req_op(req)); part_stat_lock(); part_stat_add(req->part, sectors[sgrp], bytes >> 9); part_stat_unlock(); } } static void blk_print_req_error(struct request *req, blk_status_t status) { printk_ratelimited(KERN_ERR "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " "phys_seg %u prio class %u\n", blk_status_to_str(status), req->q->disk ? req->q->disk->disk_name : "?", blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), req->cmd_flags & ~REQ_OP_MASK, req->nr_phys_segments, IOPRIO_PRIO_CLASS(req->ioprio)); } /* * Fully end IO on a request. Does not support partial completions, or * errors. */ static void blk_complete_request(struct request *req) { const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; int total_bytes = blk_rq_bytes(req); struct bio *bio = req->bio; trace_block_rq_complete(req, BLK_STS_OK, total_bytes); if (!bio) return; #ifdef CONFIG_BLK_DEV_INTEGRITY if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) req->q->integrity.profile->complete_fn(req, total_bytes); #endif blk_account_io_completion(req, total_bytes); do { struct bio *next = bio->bi_next; /* Completion has already been traced */ bio_clear_flag(bio, BIO_TRACE_COMPLETION); if (req_op(req) == REQ_OP_ZONE_APPEND) bio->bi_iter.bi_sector = req->__sector; if (!is_flush) bio_endio(bio); bio = next; } while (bio); /* * Reset counters so that the request stacking driver * can find how many bytes remain in the request * later. */ req->bio = NULL; req->__data_len = 0; } /** * blk_update_request - Complete multiple bytes without completing the request * @req: the request being processed * @error: block status code * @nr_bytes: number of bytes to complete for @req * * Description: * Ends I/O on a number of bytes attached to @req, but doesn't complete * the request structure even if @req doesn't have leftover. * If @req has leftover, sets it up for the next range of segments. * * Passing the result of blk_rq_bytes() as @nr_bytes guarantees * %false return from this function. * * Note: * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function * except in the consistency check at the end of this function. * * Return: * %false - this request doesn't have any more data * %true - this request has more data **/ bool blk_update_request(struct request *req, blk_status_t error, unsigned int nr_bytes) { int total_bytes; trace_block_rq_complete(req, error, nr_bytes); if (!req->bio) return false; #ifdef CONFIG_BLK_DEV_INTEGRITY if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && error == BLK_STS_OK) req->q->integrity.profile->complete_fn(req, nr_bytes); #endif if (unlikely(error && !blk_rq_is_passthrough(req) && !(req->rq_flags & RQF_QUIET)) && !test_bit(GD_DEAD, &req->q->disk->state)) { blk_print_req_error(req, error); trace_block_rq_error(req, error, nr_bytes); } blk_account_io_completion(req, nr_bytes); total_bytes = 0; while (req->bio) { struct bio *bio = req->bio; unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); if (bio_bytes == bio->bi_iter.bi_size) req->bio = bio->bi_next; /* Completion has already been traced */ bio_clear_flag(bio, BIO_TRACE_COMPLETION); req_bio_endio(req, bio, bio_bytes, error); total_bytes += bio_bytes; nr_bytes -= bio_bytes; if (!nr_bytes) break; } /* * completely done */ if (!req->bio) { /* * Reset counters so that the request stacking driver * can find how many bytes remain in the request * later. */ req->__data_len = 0; return false; } req->__data_len -= total_bytes; /* update sector only for requests with clear definition of sector */ if (!blk_rq_is_passthrough(req)) req->__sector += total_bytes >> 9; /* mixed attributes always follow the first bio */ if (req->rq_flags & RQF_MIXED_MERGE) { req->cmd_flags &= ~REQ_FAILFAST_MASK; req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; } if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { /* * If total number of sectors is less than the first segment * size, something has gone terribly wrong. */ if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { blk_dump_rq_flags(req, "request botched"); req->__data_len = blk_rq_cur_bytes(req); } /* recalculate the number of segments */ req->nr_phys_segments = blk_recalc_rq_segments(req); } return true; } EXPORT_SYMBOL_GPL(blk_update_request); static void __blk_account_io_done(struct request *req, u64 now) { const int sgrp = op_stat_group(req_op(req)); part_stat_lock(); update_io_ticks(req->part, jiffies, true); part_stat_inc(req->part, ios[sgrp]); part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); part_stat_unlock(); } static inline void blk_account_io_done(struct request *req, u64 now) { /* * Account IO completion. flush_rq isn't accounted as a * normal IO on queueing nor completion. Accounting the * containing request is enough. */ if (blk_do_io_stat(req) && req->part && !(req->rq_flags & RQF_FLUSH_SEQ)) __blk_account_io_done(req, now); } static void __blk_account_io_start(struct request *rq) { /* * All non-passthrough requests are created from a bio with one * exception: when a flush command that is part of a flush sequence * generated by the state machine in blk-flush.c is cloned onto the * lower device by dm-multipath we can get here without a bio. */ if (rq->bio) rq->part = rq->bio->bi_bdev; else rq->part = rq->q->disk->part0; part_stat_lock(); update_io_ticks(rq->part, jiffies, false); part_stat_unlock(); } static inline void blk_account_io_start(struct request *req) { if (blk_do_io_stat(req)) __blk_account_io_start(req); } static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) { if (rq->rq_flags & RQF_STATS) { blk_mq_poll_stats_start(rq->q); blk_stat_add(rq, now); } blk_mq_sched_completed_request(rq, now); blk_account_io_done(rq, now); } inline void __blk_mq_end_request(struct request *rq, blk_status_t error) { if (blk_mq_need_time_stamp(rq)) __blk_mq_end_request_acct(rq, ktime_get_ns()); if (rq->end_io) { rq_qos_done(rq->q, rq); rq->end_io(rq, error); } else { blk_mq_free_request(rq); } } EXPORT_SYMBOL(__blk_mq_end_request); void blk_mq_end_request(struct request *rq, blk_status_t error) { if (blk_update_request(rq, error, blk_rq_bytes(rq))) BUG(); __blk_mq_end_request(rq, error); } EXPORT_SYMBOL(blk_mq_end_request); #define TAG_COMP_BATCH 32 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, int *tag_array, int nr_tags) { struct request_queue *q = hctx->queue; /* * All requests should have been marked as RQF_MQ_INFLIGHT, so * update hctx->nr_active in batch */ if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) __blk_mq_sub_active_requests(hctx, nr_tags); blk_mq_put_tags(hctx->tags, tag_array, nr_tags); percpu_ref_put_many(&q->q_usage_counter, nr_tags); } void blk_mq_end_request_batch(struct io_comp_batch *iob) { int tags[TAG_COMP_BATCH], nr_tags = 0; struct blk_mq_hw_ctx *cur_hctx = NULL; struct request *rq; u64 now = 0; if (iob->need_ts) now = ktime_get_ns(); while ((rq = rq_list_pop(&iob->req_list)) != NULL) { prefetch(rq->bio); prefetch(rq->rq_next); blk_complete_request(rq); if (iob->need_ts) __blk_mq_end_request_acct(rq, now); rq_qos_done(rq->q, rq); WRITE_ONCE(rq->state, MQ_RQ_IDLE); if (!req_ref_put_and_test(rq)) continue; blk_crypto_free_request(rq); blk_pm_mark_last_busy(rq); if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { if (cur_hctx) blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); nr_tags = 0; cur_hctx = rq->mq_hctx; } tags[nr_tags++] = rq->tag; } if (nr_tags) blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); } EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); static void blk_complete_reqs(struct llist_head *list) { struct llist_node *entry = llist_reverse_order(llist_del_all(list)); struct request *rq, *next; llist_for_each_entry_safe(rq, next, entry, ipi_list) rq->q->mq_ops->complete(rq); } static __latent_entropy void blk_done_softirq(struct softirq_action *h) { blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); } static int blk_softirq_cpu_dead(unsigned int cpu) { blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); return 0; } static void __blk_mq_complete_request_remote(void *data) { __raise_softirq_irqoff(BLOCK_SOFTIRQ); } static inline bool blk_mq_complete_need_ipi(struct request *rq) { int cpu = raw_smp_processor_id(); if (!IS_ENABLED(CONFIG_SMP) || !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) return false; /* * With force threaded interrupts enabled, raising softirq from an SMP * function call will always result in waking the ksoftirqd thread. * This is probably worse than completing the request on a different * cache domain. */ if (force_irqthreads()) return false; /* same CPU or cache domain? Complete locally */ if (cpu == rq->mq_ctx->cpu || (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && cpus_share_cache(cpu, rq->mq_ctx->cpu))) return false; /* don't try to IPI to an offline CPU */ return cpu_online(rq->mq_ctx->cpu); } static void blk_mq_complete_send_ipi(struct request *rq) { struct llist_head *list; unsigned int cpu; cpu = rq->mq_ctx->cpu; list = &per_cpu(blk_cpu_done, cpu); if (llist_add(&rq->ipi_list, list)) { INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); smp_call_function_single_async(cpu, &rq->csd); } } static void blk_mq_raise_softirq(struct request *rq) { struct llist_head *list; preempt_disable(); list = this_cpu_ptr(&blk_cpu_done); if (llist_add(&rq->ipi_list, list)) raise_softirq(BLOCK_SOFTIRQ); preempt_enable(); } bool blk_mq_complete_request_remote(struct request *rq) { WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); /* * For a polled request, always complete locally, it's pointless * to redirect the completion. */ if (rq->cmd_flags & REQ_POLLED) return false; if (blk_mq_complete_need_ipi(rq)) { blk_mq_complete_send_ipi(rq); return true; } if (rq->q->nr_hw_queues == 1) { blk_mq_raise_softirq(rq); return true; } return false; } EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); /** * blk_mq_complete_request - end I/O on a request * @rq: the request being processed * * Description: * Complete a request by scheduling the ->complete_rq operation. **/ void blk_mq_complete_request(struct request *rq) { if (!blk_mq_complete_request_remote(rq)) rq->q->mq_ops->complete(rq); } EXPORT_SYMBOL(blk_mq_complete_request); /** * blk_mq_start_request - Start processing a request * @rq: Pointer to request to be started * * Function used by device drivers to notify the block layer that a request * is going to be processed now, so blk layer can do proper initializations * such as starting the timeout timer. */ void blk_mq_start_request(struct request *rq) { struct request_queue *q = rq->q; trace_block_rq_issue(rq); if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { u64 start_time; #ifdef CONFIG_BLK_CGROUP if (rq->bio) start_time = bio_issue_time(&rq->bio->bi_issue); else #endif start_time = ktime_get_ns(); rq->io_start_time_ns = start_time; rq->stats_sectors = blk_rq_sectors(rq); rq->rq_flags |= RQF_STATS; rq_qos_issue(q, rq); } WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); blk_add_timer(rq); WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); #ifdef CONFIG_BLK_DEV_INTEGRITY if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) q->integrity.profile->prepare_fn(rq); #endif if (rq->bio && rq->bio->bi_opf & REQ_POLLED) WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); } EXPORT_SYMBOL(blk_mq_start_request); /** * blk_end_sync_rq - executes a completion event on a request * @rq: request to complete * @error: end I/O status of the request */ static void blk_end_sync_rq(struct request *rq, blk_status_t error) { struct completion *waiting = rq->end_io_data; rq->end_io_data = (void *)(uintptr_t)error; /* * complete last, if this is a stack request the process (and thus * the rq pointer) could be invalid right after this complete() */ complete(waiting); } /** * blk_execute_rq_nowait - insert a request to I/O scheduler for execution * @rq: request to insert * @at_head: insert request at head or tail of queue * @done: I/O completion handler * * Description: * Insert a fully prepared request at the back of the I/O scheduler queue * for execution. Don't wait for completion. * * Note: * This function will invoke @done directly if the queue is dead. */ void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done) { WARN_ON(irqs_disabled()); WARN_ON(!blk_rq_is_passthrough(rq)); rq->end_io = done; blk_account_io_start(rq); /* * don't check dying flag for MQ because the request won't * be reused after dying flag is set */ blk_mq_sched_insert_request(rq, at_head, true, false); } EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); static bool blk_rq_is_poll(struct request *rq) { if (!rq->mq_hctx) return false; if (rq->mq_hctx->type != HCTX_TYPE_POLL) return false; if (WARN_ON_ONCE(!rq->bio)) return false; return true; } static void blk_rq_poll_completion(struct request *rq, struct completion *wait) { do { bio_poll(rq->bio, NULL, 0); cond_resched(); } while (!completion_done(wait)); } /** * blk_execute_rq - insert a request into queue for execution * @rq: request to insert * @at_head: insert request at head or tail of queue * * Description: * Insert a fully prepared request at the back of the I/O scheduler queue * for execution and wait for completion. * Return: The blk_status_t result provided to blk_mq_end_request(). */ blk_status_t blk_execute_rq(struct request *rq, bool at_head) { DECLARE_COMPLETION_ONSTACK(wait); unsigned long hang_check; rq->end_io_data = &wait; blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq); /* Prevent hang_check timer from firing at us during very long I/O */ hang_check = sysctl_hung_task_timeout_secs; if (blk_rq_is_poll(rq)) blk_rq_poll_completion(rq, &wait); else if (hang_check) while (!wait_for_completion_io_timeout(&wait, hang_check * (HZ/2))) ; else wait_for_completion_io(&wait); return (blk_status_t)(uintptr_t)rq->end_io_data; } EXPORT_SYMBOL(blk_execute_rq); static void __blk_mq_requeue_request(struct request *rq) { struct request_queue *q = rq->q; blk_mq_put_driver_tag(rq); trace_block_rq_requeue(rq); rq_qos_requeue(q, rq); if (blk_mq_request_started(rq)) { WRITE_ONCE(rq->state, MQ_RQ_IDLE); rq->rq_flags &= ~RQF_TIMED_OUT; } } void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) { __blk_mq_requeue_request(rq); /* this request will be re-inserted to io scheduler queue */ blk_mq_sched_requeue_request(rq); blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); } EXPORT_SYMBOL(blk_mq_requeue_request); static void blk_mq_requeue_work(struct work_struct *work) { struct request_queue *q = container_of(work, struct request_queue, requeue_work.work); LIST_HEAD(rq_list); struct request *rq, *next; spin_lock_irq(&q->requeue_lock); list_splice_init(&q->requeue_list, &rq_list); spin_unlock_irq(&q->requeue_lock); list_for_each_entry_safe(rq, next, &rq_list, queuelist) { if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) continue; rq->rq_flags &= ~RQF_SOFTBARRIER; list_del_init(&rq->queuelist); /* * If RQF_DONTPREP, rq has contained some driver specific * data, so insert it to hctx dispatch list to avoid any * merge. */ if (rq->rq_flags & RQF_DONTPREP) blk_mq_request_bypass_insert(rq, false, false); else blk_mq_sched_insert_request(rq, true, false, false); } while (!list_empty(&rq_list)) { rq = list_entry(rq_list.next, struct request, queuelist); list_del_init(&rq->queuelist); blk_mq_sched_insert_request(rq, false, false, false); } blk_mq_run_hw_queues(q, false); } void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, bool kick_requeue_list) { struct request_queue *q = rq->q; unsigned long flags; /* * We abuse this flag that is otherwise used by the I/O scheduler to * request head insertion from the workqueue. */ BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); spin_lock_irqsave(&q->requeue_lock, flags); if (at_head) { rq->rq_flags |= RQF_SOFTBARRIER; list_add(&rq->queuelist, &q->requeue_list); } else { list_add_tail(&rq->queuelist, &q->requeue_list); } spin_unlock_irqrestore(&q->requeue_lock, flags); if (kick_requeue_list) blk_mq_kick_requeue_list(q); } void blk_mq_kick_requeue_list(struct request_queue *q) { kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); } EXPORT_SYMBOL(blk_mq_kick_requeue_list); void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs) { kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, msecs_to_jiffies(msecs)); } EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); static bool blk_mq_rq_inflight(struct request *rq, void *priv, bool reserved) { /* * If we find a request that isn't idle we know the queue is busy * as it's checked in the iter. * Return false to stop the iteration. */ if (blk_mq_request_started(rq)) { bool *busy = priv; *busy = true; return false; } return true; } bool blk_mq_queue_inflight(struct request_queue *q) { bool busy = false; blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); return busy; } EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); static void blk_mq_rq_timed_out(struct request *req, bool reserved) { req->rq_flags |= RQF_TIMED_OUT; if (req->q->mq_ops->timeout) { enum blk_eh_timer_return ret; ret = req->q->mq_ops->timeout(req, reserved); if (ret == BLK_EH_DONE) return; WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); } blk_add_timer(req); } static bool blk_mq_req_expired(struct request *rq, unsigned long *next) { unsigned long deadline; if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) return false; if (rq->rq_flags & RQF_TIMED_OUT) return false; deadline = READ_ONCE(rq->deadline); if (time_after_eq(jiffies, deadline)) return true; if (*next == 0) *next = deadline; else if (time_after(*next, deadline)) *next = deadline; return false; } void blk_mq_put_rq_ref(struct request *rq) { if (is_flush_rq(rq)) rq->end_io(rq, 0); else if (req_ref_put_and_test(rq)) __blk_mq_free_request(rq); } static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved) { unsigned long *next = priv; /* * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot * be reallocated underneath the timeout handler's processing, then * the expire check is reliable. If the request is not expired, then * it was completed and reallocated as a new request after returning * from blk_mq_check_expired(). */ if (blk_mq_req_expired(rq, next)) blk_mq_rq_timed_out(rq, reserved); return true; } static void blk_mq_timeout_work(struct work_struct *work) { struct request_queue *q = container_of(work, struct request_queue, timeout_work); unsigned long next = 0; struct blk_mq_hw_ctx *hctx; unsigned long i; /* A deadlock might occur if a request is stuck requiring a * timeout at the same time a queue freeze is waiting * completion, since the timeout code would not be able to * acquire the queue reference here. * * That's why we don't use blk_queue_enter here; instead, we use * percpu_ref_tryget directly, because we need to be able to * obtain a reference even in the short window between the queue * starting to freeze, by dropping the first reference in * blk_freeze_queue_start, and the moment the last request is * consumed, marked by the instant q_usage_counter reaches * zero. */ if (!percpu_ref_tryget(&q->q_usage_counter)) return; blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); if (next != 0) { mod_timer(&q->timeout, next); } else { /* * Request timeouts are handled as a forward rolling timer. If * we end up here it means that no requests are pending and * also that no request has been pending for a while. Mark * each hctx as idle. */ queue_for_each_hw_ctx(q, hctx, i) { /* the hctx may be unmapped, so check it here */ if (blk_mq_hw_queue_mapped(hctx)) blk_mq_tag_idle(hctx); } } blk_queue_exit(q); } struct flush_busy_ctx_data { struct blk_mq_hw_ctx *hctx; struct list_head *list; }; static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) { struct flush_busy_ctx_data *flush_data = data; struct blk_mq_hw_ctx *hctx = flush_data->hctx; struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; enum hctx_type type = hctx->type; spin_lock(&ctx->lock); list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); sbitmap_clear_bit(sb, bitnr); spin_unlock(&ctx->lock); return true; } /* * Process software queues that have been marked busy, splicing them * to the for-dispatch */ void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) { struct flush_busy_ctx_data data = { .hctx = hctx, .list = list, }; sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); } EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); struct dispatch_rq_data { struct blk_mq_hw_ctx *hctx; struct request *rq; }; static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) { struct dispatch_rq_data *dispatch_data = data; struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; enum hctx_type type = hctx->type; spin_lock(&ctx->lock); if (!list_empty(&ctx->rq_lists[type])) { dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); list_del_init(&dispatch_data->rq->queuelist); if (list_empty(&ctx->rq_lists[type])) sbitmap_clear_bit(sb, bitnr); } spin_unlock(&ctx->lock); return !dispatch_data->rq; } struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *start) { unsigned off = start ? start->index_hw[hctx->type] : 0; struct dispatch_rq_data data = { .hctx = hctx, .rq = NULL, }; __sbitmap_for_each_set(&hctx->ctx_map, off, dispatch_rq_from_ctx, &data); return data.rq; } static bool __blk_mq_alloc_driver_tag(struct request *rq) { struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; int tag; blk_mq_tag_busy(rq->mq_hctx); if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { bt = &rq->mq_hctx->tags->breserved_tags; tag_offset = 0; } else { if (!hctx_may_queue(rq->mq_hctx, bt)) return false; } tag = __sbitmap_queue_get(bt); if (tag == BLK_MQ_NO_TAG) return false; rq->tag = tag + tag_offset; return true; } bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) { if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) return false; if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && !(rq->rq_flags & RQF_MQ_INFLIGHT)) { rq->rq_flags |= RQF_MQ_INFLIGHT; __blk_mq_inc_active_requests(hctx); } hctx->tags->rqs[rq->tag] = rq; return true; } static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags, void *key) { struct blk_mq_hw_ctx *hctx; hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); spin_lock(&hctx->dispatch_wait_lock); if (!list_empty(&wait->entry)) { struct sbitmap_queue *sbq; list_del_init(&wait->entry); sbq = &hctx->tags->bitmap_tags; atomic_dec(&sbq->ws_active); } spin_unlock(&hctx->dispatch_wait_lock); blk_mq_run_hw_queue(hctx, true); return 1; } /* * Mark us waiting for a tag. For shared tags, this involves hooking us into * the tag wakeups. For non-shared tags, we can simply mark us needing a * restart. For both cases, take care to check the condition again after * marking us as waiting. */ static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, struct request *rq) { struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; struct wait_queue_head *wq; wait_queue_entry_t *wait; bool ret; if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { blk_mq_sched_mark_restart_hctx(hctx); /* * It's possible that a tag was freed in the window between the * allocation failure and adding the hardware queue to the wait * queue. * * Don't clear RESTART here, someone else could have set it. * At most this will cost an extra queue run. */ return blk_mq_get_driver_tag(rq); } wait = &hctx->dispatch_wait; if (!list_empty_careful(&wait->entry)) return false; wq = &bt_wait_ptr(sbq, hctx)->wait; spin_lock_irq(&wq->lock); spin_lock(&hctx->dispatch_wait_lock); if (!list_empty(&wait->entry)) { spin_unlock(&hctx->dispatch_wait_lock); spin_unlock_irq(&wq->lock); return false; } atomic_inc(&sbq->ws_active); wait->flags &= ~WQ_FLAG_EXCLUSIVE; __add_wait_queue(wq, wait); /* * It's possible that a tag was freed in the window between the * allocation failure and adding the hardware queue to the wait * queue. */ ret = blk_mq_get_driver_tag(rq); if (!ret) { spin_unlock(&hctx->dispatch_wait_lock); spin_unlock_irq(&wq->lock); return false; } /* * We got a tag, remove ourselves from the wait queue to ensure * someone else gets the wakeup. */ list_del_init(&wait->entry); atomic_dec(&sbq->ws_active); spin_unlock(&hctx->dispatch_wait_lock); spin_unlock_irq(&wq->lock); return true; } #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 /* * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): * - EWMA is one simple way to compute running average value * - weight(7/8 and 1/8) is applied so that it can decrease exponentially * - take 4 as factor for avoiding to get too small(0) result, and this * factor doesn't matter because EWMA decreases exponentially */ static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) { unsigned int ewma; ewma = hctx->dispatch_busy; if (!ewma && !busy) return; ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; if (busy) ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; hctx->dispatch_busy = ewma; } #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ static void blk_mq_handle_dev_resource(struct request *rq, struct list_head *list) { struct request *next = list_first_entry_or_null(list, struct request, queuelist); /* * If an I/O scheduler has been configured and we got a driver tag for * the next request already, free it. */ if (next) blk_mq_put_driver_tag(next); list_add(&rq->queuelist, list); __blk_mq_requeue_request(rq); } static void blk_mq_handle_zone_resource(struct request *rq, struct list_head *zone_list) { /* * If we end up here it is because we cannot dispatch a request to a * specific zone due to LLD level zone-write locking or other zone * related resource not being available. In this case, set the request * aside in zone_list for retrying it later. */ list_add(&rq->queuelist, zone_list); __blk_mq_requeue_request(rq); } enum prep_dispatch { PREP_DISPATCH_OK, PREP_DISPATCH_NO_TAG, PREP_DISPATCH_NO_BUDGET, }; static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, bool need_budget) { struct blk_mq_hw_ctx *hctx = rq->mq_hctx; int budget_token = -1; if (need_budget) { budget_token = blk_mq_get_dispatch_budget(rq->q); if (budget_token < 0) { blk_mq_put_driver_tag(rq); return PREP_DISPATCH_NO_BUDGET; } blk_mq_set_rq_budget_token(rq, budget_token); } if (!blk_mq_get_driver_tag(rq)) { /* * The initial allocation attempt failed, so we need to * rerun the hardware queue when a tag is freed. The * waitqueue takes care of that. If the queue is run * before we add this entry back on the dispatch list, * we'll re-run it below. */ if (!blk_mq_mark_tag_wait(hctx, rq)) { /* * All budgets not got from this function will be put * together during handling partial dispatch */ if (need_budget) blk_mq_put_dispatch_budget(rq->q, budget_token); return PREP_DISPATCH_NO_TAG; } } return PREP_DISPATCH_OK; } /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ static void blk_mq_release_budgets(struct request_queue *q, struct list_head *list) { struct request *rq; list_for_each_entry(rq, list, queuelist) { int budget_token = blk_mq_get_rq_budget_token(rq); if (budget_token >= 0) blk_mq_put_dispatch_budget(q, budget_token); } } /* * Returns true if we did some work AND can potentially do more. */ bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, unsigned int nr_budgets) { enum prep_dispatch prep; struct request_queue *q = hctx->queue; struct request *rq, *nxt; int errors, queued; blk_status_t ret = BLK_STS_OK; LIST_HEAD(zone_list); bool needs_resource = false; if (list_empty(list)) return false; /* * Now process all the entries, sending them to the driver. */ errors = queued = 0; do { struct blk_mq_queue_data bd; rq = list_first_entry(list, struct request, queuelist); WARN_ON_ONCE(hctx != rq->mq_hctx); prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); if (prep != PREP_DISPATCH_OK) break; list_del_init(&rq->queuelist); bd.rq = rq; /* * Flag last if we have no more requests, or if we have more * but can't assign a driver tag to it. */ if (list_empty(list)) bd.last = true; else { nxt = list_first_entry(list, struct request, queuelist); bd.last = !blk_mq_get_driver_tag(nxt); } /* * once the request is queued to lld, no need to cover the * budget any more */ if (nr_budgets) nr_budgets--; ret = q->mq_ops->queue_rq(hctx, &bd); switch (ret) { case BLK_STS_OK: queued++; break; case BLK_STS_RESOURCE: needs_resource = true; fallthrough; case BLK_STS_DEV_RESOURCE: blk_mq_handle_dev_resource(rq, list); goto out; case BLK_STS_ZONE_RESOURCE: /* * Move the request to zone_list and keep going through * the dispatch list to find more requests the drive can * accept. */ blk_mq_handle_zone_resource(rq, &zone_list); needs_resource = true; break; default: errors++; blk_mq_end_request(rq, ret); } } while (!list_empty(list)); out: if (!list_empty(&zone_list)) list_splice_tail_init(&zone_list, list); /* If we didn't flush the entire list, we could have told the driver * there was more coming, but that turned out to be a lie. */ if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) q->mq_ops->commit_rqs(hctx); /* * Any items that need requeuing? Stuff them into hctx->dispatch, * that is where we will continue on next queue run. */ if (!list_empty(list)) { bool needs_restart; /* For non-shared tags, the RESTART check will suffice */ bool no_tag = prep == PREP_DISPATCH_NO_TAG && (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); if (nr_budgets) blk_mq_release_budgets(q, list); spin_lock(&hctx->lock); list_splice_tail_init(list, &hctx->dispatch); spin_unlock(&hctx->lock); /* * Order adding requests to hctx->dispatch and checking * SCHED_RESTART flag. The pair of this smp_mb() is the one * in blk_mq_sched_restart(). Avoid restart code path to * miss the new added requests to hctx->dispatch, meantime * SCHED_RESTART is observed here. */ smp_mb(); /* * If SCHED_RESTART was set by the caller of this function and * it is no longer set that means that it was cleared by another * thread and hence that a queue rerun is needed. * * If 'no_tag' is set, that means that we failed getting * a driver tag with an I/O scheduler attached. If our dispatch * waitqueue is no longer active, ensure that we run the queue * AFTER adding our entries back to the list. * * If no I/O scheduler has been configured it is possible that * the hardware queue got stopped and restarted before requests * were pushed back onto the dispatch list. Rerun the queue to * avoid starvation. Notes: * - blk_mq_run_hw_queue() checks whether or not a queue has * been stopped before rerunning a queue. * - Some but not all block drivers stop a queue before * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq * and dm-rq. * * If driver returns BLK_STS_RESOURCE and SCHED_RESTART * bit is set, run queue after a delay to avoid IO stalls * that could otherwise occur if the queue is idle. We'll do * similar if we couldn't get budget or couldn't lock a zone * and SCHED_RESTART is set. */ needs_restart = blk_mq_sched_needs_restart(hctx); if (prep == PREP_DISPATCH_NO_BUDGET) needs_resource = true; if (!needs_restart || (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) blk_mq_run_hw_queue(hctx, true); else if (needs_restart && needs_resource) blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); blk_mq_update_dispatch_busy(hctx, true); return false; } else blk_mq_update_dispatch_busy(hctx, false); return (queued + errors) != 0; } /** * __blk_mq_run_hw_queue - Run a hardware queue. * @hctx: Pointer to the hardware queue to run. * * Send pending requests to the hardware. */ static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) { /* * We can't run the queue inline with ints disabled. Ensure that * we catch bad users of this early. */ WARN_ON_ONCE(in_interrupt()); blk_mq_run_dispatch_ops(hctx->queue, blk_mq_sched_dispatch_requests(hctx)); } static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) { int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); if (cpu >= nr_cpu_ids) cpu = cpumask_first(hctx->cpumask); return cpu; } /* * It'd be great if the workqueue API had a way to pass * in a mask and had some smarts for more clever placement. * For now we just round-robin here, switching for every * BLK_MQ_CPU_WORK_BATCH queued items. */ static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) { bool tried = false; int next_cpu = hctx->next_cpu; if (hctx->queue->nr_hw_queues == 1) return WORK_CPU_UNBOUND; if (--hctx->next_cpu_batch <= 0) { select_cpu: next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, cpu_online_mask); if (next_cpu >= nr_cpu_ids) next_cpu = blk_mq_first_mapped_cpu(hctx); hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; } /* * Do unbound schedule if we can't find a online CPU for this hctx, * and it should only happen in the path of handling CPU DEAD. */ if (!cpu_online(next_cpu)) { if (!tried) { tried = true; goto select_cpu; } /* * Make sure to re-select CPU next time once after CPUs * in hctx->cpumask become online again. */ hctx->next_cpu = next_cpu; hctx->next_cpu_batch = 1; return WORK_CPU_UNBOUND; } hctx->next_cpu = next_cpu; return next_cpu; } /** * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. * @hctx: Pointer to the hardware queue to run. * @async: If we want to run the queue asynchronously. * @msecs: Milliseconds of delay to wait before running the queue. * * If !@async, try to run the queue now. Else, run the queue asynchronously and * with a delay of @msecs. */ static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, unsigned long msecs) { if (unlikely(blk_mq_hctx_stopped(hctx))) return; if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { int cpu = get_cpu(); if (cpumask_test_cpu(cpu, hctx->cpumask)) { __blk_mq_run_hw_queue(hctx); put_cpu(); return; } put_cpu(); } kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, msecs_to_jiffies(msecs)); } /** * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. * @hctx: Pointer to the hardware queue to run. * @msecs: Milliseconds of delay to wait before running the queue. * * Run a hardware queue asynchronously with a delay of @msecs. */ void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) { __blk_mq_delay_run_hw_queue(hctx, true, msecs); } EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); /** * blk_mq_run_hw_queue - Start to run a hardware queue. * @hctx: Pointer to the hardware queue to run. * @async: If we want to run the queue asynchronously. * * Check if the request queue is not in a quiesced state and if there are * pending requests to be sent. If this is true, run the queue to send requests * to hardware. */ void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) { bool need_run; /* * When queue is quiesced, we may be switching io scheduler, or * updating nr_hw_queues, or other things, and we can't run queue * any more, even __blk_mq_hctx_has_pending() can't be called safely. * * And queue will be rerun in blk_mq_unquiesce_queue() if it is * quiesced. */ __blk_mq_run_dispatch_ops(hctx->queue, false, need_run = !blk_queue_quiesced(hctx->queue) && blk_mq_hctx_has_pending(hctx)); if (need_run) __blk_mq_delay_run_hw_queue(hctx, async, 0); } EXPORT_SYMBOL(blk_mq_run_hw_queue); /* * Is the request queue handled by an IO scheduler that does not respect * hardware queues when dispatching? */ static bool blk_mq_has_sqsched(struct request_queue *q) { struct elevator_queue *e = q->elevator; if (e && e->type->ops.dispatch_request && !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) return true; return false; } /* * Return prefered queue to dispatch from (if any) for non-mq aware IO * scheduler. */ static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) { struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); /* * If the IO scheduler does not respect hardware queues when * dispatching, we just don't bother with multiple HW queues and * dispatch from hctx for the current CPU since running multiple queues * just causes lock contention inside the scheduler and pointless cache * bouncing. */ struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx); if (!blk_mq_hctx_stopped(hctx)) return hctx; return NULL; } /** * blk_mq_run_hw_queues - Run all hardware queues in a request queue. * @q: Pointer to the request queue to run. * @async: If we want to run the queue asynchronously. */ void blk_mq_run_hw_queues(struct request_queue *q, bool async) { struct blk_mq_hw_ctx *hctx, *sq_hctx; unsigned long i; sq_hctx = NULL; if (blk_mq_has_sqsched(q)) sq_hctx = blk_mq_get_sq_hctx(q); queue_for_each_hw_ctx(q, hctx, i) { if (blk_mq_hctx_stopped(hctx)) continue; /* * Dispatch from this hctx either if there's no hctx preferred * by IO scheduler or if it has requests that bypass the * scheduler. */ if (!sq_hctx || sq_hctx == hctx || !list_empty_careful(&hctx->dispatch)) blk_mq_run_hw_queue(hctx, async); } } EXPORT_SYMBOL(blk_mq_run_hw_queues); /** * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. * @q: Pointer to the request queue to run. * @msecs: Milliseconds of delay to wait before running the queues. */ void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) { struct blk_mq_hw_ctx *hctx, *sq_hctx; unsigned long i; sq_hctx = NULL; if (blk_mq_has_sqsched(q)) sq_hctx = blk_mq_get_sq_hctx(q); queue_for_each_hw_ctx(q, hctx, i) { if (blk_mq_hctx_stopped(hctx)) continue; /* * If there is already a run_work pending, leave the * pending delay untouched. Otherwise, a hctx can stall * if another hctx is re-delaying the other's work * before the work executes. */ if (delayed_work_pending(&hctx->run_work)) continue; /* * Dispatch from this hctx either if there's no hctx preferred * by IO scheduler or if it has requests that bypass the * scheduler. */ if (!sq_hctx || sq_hctx == hctx || !list_empty_careful(&hctx->dispatch)) blk_mq_delay_run_hw_queue(hctx, msecs); } } EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); /** * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped * @q: request queue. * * The caller is responsible for serializing this function against * blk_mq_{start,stop}_hw_queue(). */ bool blk_mq_queue_stopped(struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) if (blk_mq_hctx_stopped(hctx)) return true; return false; } EXPORT_SYMBOL(blk_mq_queue_stopped); /* * This function is often used for pausing .queue_rq() by driver when * there isn't enough resource or some conditions aren't satisfied, and * BLK_STS_RESOURCE is usually returned. * * We do not guarantee that dispatch can be drained or blocked * after blk_mq_stop_hw_queue() returns. Please use * blk_mq_quiesce_queue() for that requirement. */ void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) { cancel_delayed_work(&hctx->run_work); set_bit(BLK_MQ_S_STOPPED, &hctx->state); } EXPORT_SYMBOL(blk_mq_stop_hw_queue); /* * This function is often used for pausing .queue_rq() by driver when * there isn't enough resource or some conditions aren't satisfied, and * BLK_STS_RESOURCE is usually returned. * * We do not guarantee that dispatch can be drained or blocked * after blk_mq_stop_hw_queues() returns. Please use * blk_mq_quiesce_queue() for that requirement. */ void blk_mq_stop_hw_queues(struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) blk_mq_stop_hw_queue(hctx); } EXPORT_SYMBOL(blk_mq_stop_hw_queues); void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) { clear_bit(BLK_MQ_S_STOPPED, &hctx->state); blk_mq_run_hw_queue(hctx, false); } EXPORT_SYMBOL(blk_mq_start_hw_queue); void blk_mq_start_hw_queues(struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) blk_mq_start_hw_queue(hctx); } EXPORT_SYMBOL(blk_mq_start_hw_queues); void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) { if (!blk_mq_hctx_stopped(hctx)) return; clear_bit(BLK_MQ_S_STOPPED, &hctx->state); blk_mq_run_hw_queue(hctx, async); } EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) blk_mq_start_stopped_hw_queue(hctx, async); } EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); static void blk_mq_run_work_fn(struct work_struct *work) { struct blk_mq_hw_ctx *hctx; hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); /* * If we are stopped, don't run the queue. */ if (blk_mq_hctx_stopped(hctx)) return; __blk_mq_run_hw_queue(hctx); } static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, struct request *rq, bool at_head) { struct blk_mq_ctx *ctx = rq->mq_ctx; enum hctx_type type = hctx->type; lockdep_assert_held(&ctx->lock); trace_block_rq_insert(rq); if (at_head) list_add(&rq->queuelist, &ctx->rq_lists[type]); else list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); } void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, bool at_head) { struct blk_mq_ctx *ctx = rq->mq_ctx; lockdep_assert_held(&ctx->lock); __blk_mq_insert_req_list(hctx, rq, at_head); blk_mq_hctx_mark_pending(hctx, ctx); } /** * blk_mq_request_bypass_insert - Insert a request at dispatch list. * @rq: Pointer to request to be inserted. * @at_head: true if the request should be inserted at the head of the list. * @run_queue: If we should run the hardware queue after inserting the request. * * Should only be used carefully, when the caller knows we want to * bypass a potential IO scheduler on the target device. */ void blk_mq_request_bypass_insert(struct request *rq, bool at_head, bool run_queue) { struct blk_mq_hw_ctx *hctx = rq->mq_hctx; spin_lock(&hctx->lock); if (at_head) list_add(&rq->queuelist, &hctx->dispatch); else list_add_tail(&rq->queuelist, &hctx->dispatch); spin_unlock(&hctx->lock); if (run_queue) blk_mq_run_hw_queue(hctx, false); } void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, struct list_head *list) { struct request *rq; enum hctx_type type = hctx->type; /* * preemption doesn't flush plug list, so it's possible ctx->cpu is * offline now */ list_for_each_entry(rq, list, queuelist) { BUG_ON(rq->mq_ctx != ctx); trace_block_rq_insert(rq); } spin_lock(&ctx->lock); list_splice_tail_init(list, &ctx->rq_lists[type]); blk_mq_hctx_mark_pending(hctx, ctx); spin_unlock(&ctx->lock); } static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, bool from_schedule) { if (hctx->queue->mq_ops->commit_rqs) { trace_block_unplug(hctx->queue, *queued, !from_schedule); hctx->queue->mq_ops->commit_rqs(hctx); } *queued = 0; } static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, unsigned int nr_segs) { int err; if (bio->bi_opf & REQ_RAHEAD) rq->cmd_flags |= REQ_FAILFAST_MASK; rq->__sector = bio->bi_iter.bi_sector; blk_rq_bio_prep(rq, bio, nr_segs); /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); WARN_ON_ONCE(err); blk_account_io_start(rq); } static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, struct request *rq, bool last) { struct request_queue *q = rq->q; struct blk_mq_queue_data bd = { .rq = rq, .last = last, }; blk_status_t ret; /* * For OK queue, we are done. For error, caller may kill it. * Any other error (busy), just add it to our list as we * previously would have done. */ ret = q->mq_ops->queue_rq(hctx, &bd); switch (ret) { case BLK_STS_OK: blk_mq_update_dispatch_busy(hctx, false); break; case BLK_STS_RESOURCE: case BLK_STS_DEV_RESOURCE: blk_mq_update_dispatch_busy(hctx, true); __blk_mq_requeue_request(rq); break; default: blk_mq_update_dispatch_busy(hctx, false); break; } return ret; } static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, struct request *rq, bool bypass_insert, bool last) { struct request_queue *q = rq->q; bool run_queue = true; int budget_token; /* * RCU or SRCU read lock is needed before checking quiesced flag. * * When queue is stopped or quiesced, ignore 'bypass_insert' from * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, * and avoid driver to try to dispatch again. */ if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { run_queue = false; bypass_insert = false; goto insert; } if ((rq->rq_flags & RQF_ELV) && !bypass_insert) goto insert; budget_token = blk_mq_get_dispatch_budget(q); if (budget_token < 0) goto insert; blk_mq_set_rq_budget_token(rq, budget_token); if (!blk_mq_get_driver_tag(rq)) { blk_mq_put_dispatch_budget(q, budget_token); goto insert; } return __blk_mq_issue_directly(hctx, rq, last); insert: if (bypass_insert) return BLK_STS_RESOURCE; blk_mq_sched_insert_request(rq, false, run_queue, false); return BLK_STS_OK; } /** * blk_mq_try_issue_directly - Try to send a request directly to device driver. * @hctx: Pointer of the associated hardware queue. * @rq: Pointer to request to be sent. * * If the device has enough resources to accept a new request now, send the * request directly to device driver. Else, insert at hctx->dispatch queue, so * we can try send it another time in the future. Requests inserted at this * queue have higher priority. */ static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, struct request *rq) { blk_status_t ret = __blk_mq_try_issue_directly(hctx, rq, false, true); if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) blk_mq_request_bypass_insert(rq, false, true); else if (ret != BLK_STS_OK) blk_mq_end_request(rq, ret); } static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) { return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); } static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) { struct blk_mq_hw_ctx *hctx = NULL; struct request *rq; int queued = 0; int errors = 0; while ((rq = rq_list_pop(&plug->mq_list))) { bool last = rq_list_empty(plug->mq_list); blk_status_t ret; if (hctx != rq->mq_hctx) { if (hctx) blk_mq_commit_rqs(hctx, &queued, from_schedule); hctx = rq->mq_hctx; } ret = blk_mq_request_issue_directly(rq, last); switch (ret) { case BLK_STS_OK: queued++; break; case BLK_STS_RESOURCE: case BLK_STS_DEV_RESOURCE: blk_mq_request_bypass_insert(rq, false, last); blk_mq_commit_rqs(hctx, &queued, from_schedule); return; default: blk_mq_end_request(rq, ret); errors++; break; } } /* * If we didn't flush the entire list, we could have told the driver * there was more coming, but that turned out to be a lie. */ if (errors) blk_mq_commit_rqs(hctx, &queued, from_schedule); } static void __blk_mq_flush_plug_list(struct request_queue *q, struct blk_plug *plug) { if (blk_queue_quiesced(q)) return; q->mq_ops->queue_rqs(&plug->mq_list); } static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) { struct blk_mq_hw_ctx *this_hctx = NULL; struct blk_mq_ctx *this_ctx = NULL; struct request *requeue_list = NULL; unsigned int depth = 0; LIST_HEAD(list); do { struct request *rq = rq_list_pop(&plug->mq_list); if (!this_hctx) { this_hctx = rq->mq_hctx; this_ctx = rq->mq_ctx; } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { rq_list_add(&requeue_list, rq); continue; } list_add_tail(&rq->queuelist, &list); depth++; } while (!rq_list_empty(plug->mq_list)); plug->mq_list = requeue_list; trace_block_unplug(this_hctx->queue, depth, !from_sched); blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); } void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) { struct request *rq; if (rq_list_empty(plug->mq_list)) return; plug->rq_count = 0; if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { struct request_queue *q; rq = rq_list_peek(&plug->mq_list); q = rq->q; /* * Peek first request and see if we have a ->queue_rqs() hook. * If we do, we can dispatch the whole plug list in one go. We * already know at this point that all requests belong to the * same queue, caller must ensure that's the case. * * Since we pass off the full list to the driver at this point, * we do not increment the active request count for the queue. * Bypass shared tags for now because of that. */ if (q->mq_ops->queue_rqs && !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { blk_mq_run_dispatch_ops(q, __blk_mq_flush_plug_list(q, plug)); if (rq_list_empty(plug->mq_list)) return; } blk_mq_run_dispatch_ops(q, blk_mq_plug_issue_direct(plug, false)); if (rq_list_empty(plug->mq_list)) return; } do { blk_mq_dispatch_plug_list(plug, from_schedule); } while (!rq_list_empty(plug->mq_list)); } void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, struct list_head *list) { int queued = 0; int errors = 0; while (!list_empty(list)) { blk_status_t ret; struct request *rq = list_first_entry(list, struct request, queuelist); list_del_init(&rq->queuelist); ret = blk_mq_request_issue_directly(rq, list_empty(list)); if (ret != BLK_STS_OK) { if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { blk_mq_request_bypass_insert(rq, false, list_empty(list)); break; } blk_mq_end_request(rq, ret); errors++; } else queued++; } /* * If we didn't flush the entire list, we could have told * the driver there was more coming, but that turned out to * be a lie. */ if ((!list_empty(list) || errors) && hctx->queue->mq_ops->commit_rqs && queued) hctx->queue->mq_ops->commit_rqs(hctx); } /* * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple * queues. This is important for md arrays to benefit from merging * requests. */ static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) { if (plug->multiple_queues) return BLK_MAX_REQUEST_COUNT * 2; return BLK_MAX_REQUEST_COUNT; } static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) { struct request *last = rq_list_peek(&plug->mq_list); if (!plug->rq_count) { trace_block_plug(rq->q); } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || (!blk_queue_nomerges(rq->q) && blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { blk_mq_flush_plug_list(plug, false); trace_block_plug(rq->q); } if (!plug->multiple_queues && last && last->q != rq->q) plug->multiple_queues = true; if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) plug->has_elevator = true; rq->rq_next = NULL; rq_list_add(&plug->mq_list, rq); plug->rq_count++; } static bool blk_mq_attempt_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { if (blk_attempt_plug_merge(q, bio, nr_segs)) return true; if (blk_mq_sched_bio_merge(q, bio, nr_segs)) return true; } return false; } static struct request *blk_mq_get_new_requests(struct request_queue *q, struct blk_plug *plug, struct bio *bio, unsigned int nsegs) { struct blk_mq_alloc_data data = { .q = q, .nr_tags = 1, .cmd_flags = bio->bi_opf, }; struct request *rq; if (unlikely(bio_queue_enter(bio))) return NULL; if (blk_mq_attempt_bio_merge(q, bio, nsegs)) goto queue_exit; rq_qos_throttle(q, bio); if (plug) { data.nr_tags = plug->nr_ios; plug->nr_ios = 1; data.cached_rq = &plug->cached_rq; } rq = __blk_mq_alloc_requests(&data); if (rq) return rq; rq_qos_cleanup(q, bio); if (bio->bi_opf & REQ_NOWAIT) bio_wouldblock_error(bio); queue_exit: blk_queue_exit(q); return NULL; } static inline struct request *blk_mq_get_cached_request(struct request_queue *q, struct blk_plug *plug, struct bio **bio, unsigned int nsegs) { struct request *rq; if (!plug) return NULL; rq = rq_list_peek(&plug->cached_rq); if (!rq || rq->q != q) return NULL; if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { *bio = NULL; return NULL; } rq_qos_throttle(q, *bio); if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) return NULL; if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) return NULL; rq->cmd_flags = (*bio)->bi_opf; plug->cached_rq = rq_list_next(rq); INIT_LIST_HEAD(&rq->queuelist); return rq; } /** * blk_mq_submit_bio - Create and send a request to block device. * @bio: Bio pointer. * * Builds up a request structure from @q and @bio and send to the device. The * request may not be queued directly to hardware if: * * This request can be merged with another one * * We want to place request at plug queue for possible future merging * * There is an IO scheduler active at this queue * * It will not queue the request if there is an error with the bio, or at the * request creation. */ void blk_mq_submit_bio(struct bio *bio) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); struct blk_plug *plug = blk_mq_plug(q, bio); const int is_sync = op_is_sync(bio->bi_opf); struct request *rq; unsigned int nr_segs = 1; blk_status_t ret; blk_queue_bounce(q, &bio); if (blk_may_split(q, bio)) __blk_queue_split(q, &bio, &nr_segs); if (!bio_integrity_prep(bio)) return; rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); if (!rq) { if (!bio) return; rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); if (unlikely(!rq)) return; } trace_block_getrq(bio); rq_qos_track(q, rq, bio); blk_mq_bio_to_request(rq, bio, nr_segs); ret = blk_crypto_init_request(rq); if (ret != BLK_STS_OK) { bio->bi_status = ret; bio_endio(bio); blk_mq_free_request(rq); return; } if (op_is_flush(bio->bi_opf)) { blk_insert_flush(rq); return; } if (plug) blk_add_rq_to_plug(plug, rq); else if ((rq->rq_flags & RQF_ELV) || (rq->mq_hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) blk_mq_sched_insert_request(rq, false, true, true); else blk_mq_run_dispatch_ops(rq->q, blk_mq_try_issue_directly(rq->mq_hctx, rq)); } #ifdef CONFIG_BLK_MQ_STACKING /** * blk_insert_cloned_request - Helper for stacking drivers to submit a request * @rq: the request being queued */ blk_status_t blk_insert_cloned_request(struct request *rq) { struct request_queue *q = rq->q; unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); blk_status_t ret; if (blk_rq_sectors(rq) > max_sectors) { /* * SCSI device does not have a good way to return if * Write Same/Zero is actually supported. If a device rejects * a non-read/write command (discard, write same,etc.) the * low-level device driver will set the relevant queue limit to * 0 to prevent blk-lib from issuing more of the offending * operations. Commands queued prior to the queue limit being * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O * errors being propagated to upper layers. */ if (max_sectors == 0) return BLK_STS_NOTSUPP; printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", __func__, blk_rq_sectors(rq), max_sectors); return BLK_STS_IOERR; } /* * The queue settings related to segment counting may differ from the * original queue. */ rq->nr_phys_segments = blk_recalc_rq_segments(rq); if (rq->nr_phys_segments > queue_max_segments(q)) { printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", __func__, rq->nr_phys_segments, queue_max_segments(q)); return BLK_STS_IOERR; } if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) return BLK_STS_IOERR; if (blk_crypto_insert_cloned_request(rq)) return BLK_STS_IOERR; blk_account_io_start(rq); /* * Since we have a scheduler attached on the top device, * bypass a potential scheduler on the bottom device for * insert. */ blk_mq_run_dispatch_ops(q, ret = blk_mq_request_issue_directly(rq, true)); if (ret) blk_account_io_done(rq, ktime_get_ns()); return ret; } EXPORT_SYMBOL_GPL(blk_insert_cloned_request); /** * blk_rq_unprep_clone - Helper function to free all bios in a cloned request * @rq: the clone request to be cleaned up * * Description: * Free all bios in @rq for a cloned request. */ void blk_rq_unprep_clone(struct request *rq) { struct bio *bio; while ((bio = rq->bio) != NULL) { rq->bio = bio->bi_next; bio_put(bio); } } EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); /** * blk_rq_prep_clone - Helper function to setup clone request * @rq: the request to be setup * @rq_src: original request to be cloned * @bs: bio_set that bios for clone are allocated from * @gfp_mask: memory allocation mask for bio * @bio_ctr: setup function to be called for each clone bio. * Returns %0 for success, non %0 for failure. * @data: private data to be passed to @bio_ctr * * Description: * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. * Also, pages which the original bios are pointing to are not copied * and the cloned bios just point same pages. * So cloned bios must be completed before original bios, which means * the caller must complete @rq before @rq_src. */ int blk_rq_prep_clone(struct request *rq, struct request *rq_src, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio *, void *), void *data) { struct bio *bio, *bio_src; if (!bs) bs = &fs_bio_set; __rq_for_each_bio(bio_src, rq_src) { bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, bs); if (!bio) goto free_and_out; if (bio_ctr && bio_ctr(bio, bio_src, data)) goto free_and_out; if (rq->bio) { rq->biotail->bi_next = bio; rq->biotail = bio; } else { rq->bio = rq->biotail = bio; } bio = NULL; } /* Copy attributes of the original request to the clone request. */ rq->__sector = blk_rq_pos(rq_src); rq->__data_len = blk_rq_bytes(rq_src); if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { rq->rq_flags |= RQF_SPECIAL_PAYLOAD; rq->special_vec = rq_src->special_vec; } rq->nr_phys_segments = rq_src->nr_phys_segments; rq->ioprio = rq_src->ioprio; if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) goto free_and_out; return 0; free_and_out: if (bio) bio_put(bio); blk_rq_unprep_clone(rq); return -ENOMEM; } EXPORT_SYMBOL_GPL(blk_rq_prep_clone); #endif /* CONFIG_BLK_MQ_STACKING */ /* * Steal bios from a request and add them to a bio list. * The request must not have been partially completed before. */ void blk_steal_bios(struct bio_list *list, struct request *rq) { if (rq->bio) { if (list->tail) list->tail->bi_next = rq->bio; else list->head = rq->bio; list->tail = rq->biotail; rq->bio = NULL; rq->biotail = NULL; } rq->__data_len = 0; } EXPORT_SYMBOL_GPL(blk_steal_bios); static size_t order_to_size(unsigned int order) { return (size_t)PAGE_SIZE << order; } /* called before freeing request pool in @tags */ static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, struct blk_mq_tags *tags) { struct page *page; unsigned long flags; /* There is no need to clear a driver tags own mapping */ if (drv_tags == tags) return; list_for_each_entry(page, &tags->page_list, lru) { unsigned long start = (unsigned long)page_address(page); unsigned long end = start + order_to_size(page->private); int i; for (i = 0; i < drv_tags->nr_tags; i++) { struct request *rq = drv_tags->rqs[i]; unsigned long rq_addr = (unsigned long)rq; if (rq_addr >= start && rq_addr < end) { WARN_ON_ONCE(req_ref_read(rq) != 0); cmpxchg(&drv_tags->rqs[i], rq, NULL); } } } /* * Wait until all pending iteration is done. * * Request reference is cleared and it is guaranteed to be observed * after the ->lock is released. */ spin_lock_irqsave(&drv_tags->lock, flags); spin_unlock_irqrestore(&drv_tags->lock, flags); } void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx) { struct blk_mq_tags *drv_tags; struct page *page; if (list_empty(&tags->page_list)) return; if (blk_mq_is_shared_tags(set->flags)) drv_tags = set->shared_tags; else drv_tags = set->tags[hctx_idx]; if (tags->static_rqs && set->ops->exit_request) { int i; for (i = 0; i < tags->nr_tags; i++) { struct request *rq = tags->static_rqs[i]; if (!rq) continue; set->ops->exit_request(set, rq, hctx_idx); tags->static_rqs[i] = NULL; } } blk_mq_clear_rq_mapping(drv_tags, tags); while (!list_empty(&tags->page_list)) { page = list_first_entry(&tags->page_list, struct page, lru); list_del_init(&page->lru); /* * Remove kmemleak object previously allocated in * blk_mq_alloc_rqs(). */ kmemleak_free(page_address(page)); __free_pages(page, page->private); } } void blk_mq_free_rq_map(struct blk_mq_tags *tags) { kfree(tags->rqs); tags->rqs = NULL; kfree(tags->static_rqs); tags->static_rqs = NULL; blk_mq_free_tags(tags); } static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, unsigned int hctx_idx) { int i; for (i = 0; i < set->nr_maps; i++) { unsigned int start = set->map[i].queue_offset; unsigned int end = start + set->map[i].nr_queues; if (hctx_idx >= start && hctx_idx < end) break; } if (i >= set->nr_maps) i = HCTX_TYPE_DEFAULT; return i; } static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, unsigned int hctx_idx) { enum hctx_type type = hctx_idx_to_type(set, hctx_idx); return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); } static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, unsigned int hctx_idx, unsigned int nr_tags, unsigned int reserved_tags) { int node = blk_mq_get_hctx_node(set, hctx_idx); struct blk_mq_tags *tags; if (node == NUMA_NO_NODE) node = set->numa_node; tags = blk_mq_init_tags(nr_tags, reserved_tags, node, BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); if (!tags) return NULL; tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); if (!tags->rqs) { blk_mq_free_tags(tags); return NULL; } tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); if (!tags->static_rqs) { kfree(tags->rqs); blk_mq_free_tags(tags); return NULL; } return tags; } static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, int node) { int ret; if (set->ops->init_request) { ret = set->ops->init_request(set, rq, hctx_idx, node); if (ret) return ret; } WRITE_ONCE(rq->state, MQ_RQ_IDLE); return 0; } static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx, unsigned int depth) { unsigned int i, j, entries_per_page, max_order = 4; int node = blk_mq_get_hctx_node(set, hctx_idx); size_t rq_size, left; if (node == NUMA_NO_NODE) node = set->numa_node; INIT_LIST_HEAD(&tags->page_list); /* * rq_size is the size of the request plus driver payload, rounded * to the cacheline size */ rq_size = round_up(sizeof(struct request) + set->cmd_size, cache_line_size()); left = rq_size * depth; for (i = 0; i < depth; ) { int this_order = max_order; struct page *page; int to_do; void *p; while (this_order && left < order_to_size(this_order - 1)) this_order--; do { page = alloc_pages_node(node, GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, this_order); if (page) break; if (!this_order--) break; if (order_to_size(this_order) < rq_size) break; } while (1); if (!page) goto fail; page->private = this_order; list_add_tail(&page->lru, &tags->page_list); p = page_address(page); /* * Allow kmemleak to scan these pages as they contain pointers * to additional allocations like via ops->init_request(). */ kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); entries_per_page = order_to_size(this_order) / rq_size; to_do = min(entries_per_page, depth - i); left -= to_do * rq_size; for (j = 0; j < to_do; j++) { struct request *rq = p; tags->static_rqs[i] = rq; if (blk_mq_init_request(set, rq, hctx_idx, node)) { tags->static_rqs[i] = NULL; goto fail; } p += rq_size; i++; } } return 0; fail: blk_mq_free_rqs(set, tags, hctx_idx); return -ENOMEM; } struct rq_iter_data { struct blk_mq_hw_ctx *hctx; bool has_rq; }; static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) { struct rq_iter_data *iter_data = data; if (rq->mq_hctx != iter_data->hctx) return true; iter_data->has_rq = true; return false; } static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) { struct blk_mq_tags *tags = hctx->sched_tags ? hctx->sched_tags : hctx->tags; struct rq_iter_data data = { .hctx = hctx, }; blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); return data.has_rq; } static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, struct blk_mq_hw_ctx *hctx) { if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) return false; if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) return false; return true; } static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) { struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_online); if (!cpumask_test_cpu(cpu, hctx->cpumask) || !blk_mq_last_cpu_in_hctx(cpu, hctx)) return 0; /* * Prevent new request from being allocated on the current hctx. * * The smp_mb__after_atomic() Pairs with the implied barrier in * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is * seen once we return from the tag allocator. */ set_bit(BLK_MQ_S_INACTIVE, &hctx->state); smp_mb__after_atomic(); /* * Try to grab a reference to the queue and wait for any outstanding * requests. If we could not grab a reference the queue has been * frozen and there are no requests. */ if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { while (blk_mq_hctx_has_requests(hctx)) msleep(5); percpu_ref_put(&hctx->queue->q_usage_counter); } return 0; } static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) { struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_online); if (cpumask_test_cpu(cpu, hctx->cpumask)) clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); return 0; } /* * 'cpu' is going away. splice any existing rq_list entries from this * software queue to the hw queue dispatch list, and ensure that it * gets run. */ static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) { struct blk_mq_hw_ctx *hctx; struct blk_mq_ctx *ctx; LIST_HEAD(tmp); enum hctx_type type; hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); if (!cpumask_test_cpu(cpu, hctx->cpumask)) return 0; ctx = __blk_mq_get_ctx(hctx->queue, cpu); type = hctx->type; spin_lock(&ctx->lock); if (!list_empty(&ctx->rq_lists[type])) { list_splice_init(&ctx->rq_lists[type], &tmp); blk_mq_hctx_clear_pending(hctx, ctx); } spin_unlock(&ctx->lock); if (list_empty(&tmp)) return 0; spin_lock(&hctx->lock); list_splice_tail_init(&tmp, &hctx->dispatch); spin_unlock(&hctx->lock); blk_mq_run_hw_queue(hctx, true); return 0; } static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_STACKING)) cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, &hctx->cpuhp_online); cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); } /* * Before freeing hw queue, clearing the flush request reference in * tags->rqs[] for avoiding potential UAF. */ static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, unsigned int queue_depth, struct request *flush_rq) { int i; unsigned long flags; /* The hw queue may not be mapped yet */ if (!tags) return; WARN_ON_ONCE(req_ref_read(flush_rq) != 0); for (i = 0; i < queue_depth; i++) cmpxchg(&tags->rqs[i], flush_rq, NULL); /* * Wait until all pending iteration is done. * * Request reference is cleared and it is guaranteed to be observed * after the ->lock is released. */ spin_lock_irqsave(&tags->lock, flags); spin_unlock_irqrestore(&tags->lock, flags); } /* hctx->ctxs will be freed in queue's release handler */ static void blk_mq_exit_hctx(struct request_queue *q, struct blk_mq_tag_set *set, struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct request *flush_rq = hctx->fq->flush_rq; if (blk_mq_hw_queue_mapped(hctx)) blk_mq_tag_idle(hctx); blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], set->queue_depth, flush_rq); if (set->ops->exit_request) set->ops->exit_request(set, flush_rq, hctx_idx); if (set->ops->exit_hctx) set->ops->exit_hctx(hctx, hctx_idx); blk_mq_remove_cpuhp(hctx); xa_erase(&q->hctx_table, hctx_idx); spin_lock(&q->unused_hctx_lock); list_add(&hctx->hctx_list, &q->unused_hctx_list); spin_unlock(&q->unused_hctx_lock); } static void blk_mq_exit_hw_queues(struct request_queue *q, struct blk_mq_tag_set *set, int nr_queue) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) { if (i == nr_queue) break; blk_mq_exit_hctx(q, set, hctx, i); } } static int blk_mq_init_hctx(struct request_queue *q, struct blk_mq_tag_set *set, struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) { hctx->queue_num = hctx_idx; if (!(hctx->flags & BLK_MQ_F_STACKING)) cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, &hctx->cpuhp_online); cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); hctx->tags = set->tags[hctx_idx]; if (set->ops->init_hctx && set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) goto unregister_cpu_notifier; if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, hctx->numa_node)) goto exit_hctx; if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) goto exit_flush_rq; return 0; exit_flush_rq: if (set->ops->exit_request) set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); exit_hctx: if (set->ops->exit_hctx) set->ops->exit_hctx(hctx, hctx_idx); unregister_cpu_notifier: blk_mq_remove_cpuhp(hctx); return -1; } static struct blk_mq_hw_ctx * blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, int node) { struct blk_mq_hw_ctx *hctx; gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); if (!hctx) goto fail_alloc_hctx; if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) goto free_hctx; atomic_set(&hctx->nr_active, 0); if (node == NUMA_NO_NODE) node = set->numa_node; hctx->numa_node = node; INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); spin_lock_init(&hctx->lock); INIT_LIST_HEAD(&hctx->dispatch); hctx->queue = q; hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; INIT_LIST_HEAD(&hctx->hctx_list); /* * Allocate space for all possible cpus to avoid allocation at * runtime */ hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), gfp, node); if (!hctx->ctxs) goto free_cpumask; if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), gfp, node, false, false)) goto free_ctxs; hctx->nr_ctx = 0; spin_lock_init(&hctx->dispatch_wait_lock); init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); INIT_LIST_HEAD(&hctx->dispatch_wait.entry); hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); if (!hctx->fq) goto free_bitmap; blk_mq_hctx_kobj_init(hctx); return hctx; free_bitmap: sbitmap_free(&hctx->ctx_map); free_ctxs: kfree(hctx->ctxs); free_cpumask: free_cpumask_var(hctx->cpumask); free_hctx: kfree(hctx); fail_alloc_hctx: return NULL; } static void blk_mq_init_cpu_queues(struct request_queue *q, unsigned int nr_hw_queues) { struct blk_mq_tag_set *set = q->tag_set; unsigned int i, j; for_each_possible_cpu(i) { struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); struct blk_mq_hw_ctx *hctx; int k; __ctx->cpu = i; spin_lock_init(&__ctx->lock); for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) INIT_LIST_HEAD(&__ctx->rq_lists[k]); __ctx->queue = q; /* * Set local node, IFF we have more than one hw queue. If * not, we remain on the home node of the device */ for (j = 0; j < set->nr_maps; j++) { hctx = blk_mq_map_queue_type(q, j, i); if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) hctx->numa_node = cpu_to_node(i); } } } struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, unsigned int hctx_idx, unsigned int depth) { struct blk_mq_tags *tags; int ret; tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); if (!tags) return NULL; ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); if (ret) { blk_mq_free_rq_map(tags); return NULL; } return tags; } static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, int hctx_idx) { if (blk_mq_is_shared_tags(set->flags)) { set->tags[hctx_idx] = set->shared_tags; return true; } set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, set->queue_depth); return set->tags[hctx_idx]; } void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx) { if (tags) { blk_mq_free_rqs(set, tags, hctx_idx); blk_mq_free_rq_map(tags); } } static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, unsigned int hctx_idx) { if (!blk_mq_is_shared_tags(set->flags)) blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); set->tags[hctx_idx] = NULL; } static void blk_mq_map_swqueue(struct request_queue *q) { unsigned int j, hctx_idx; unsigned long i; struct blk_mq_hw_ctx *hctx; struct blk_mq_ctx *ctx; struct blk_mq_tag_set *set = q->tag_set; queue_for_each_hw_ctx(q, hctx, i) { cpumask_clear(hctx->cpumask); hctx->nr_ctx = 0; hctx->dispatch_from = NULL; } /* * Map software to hardware queues. * * If the cpu isn't present, the cpu is mapped to first hctx. */ for_each_possible_cpu(i) { ctx = per_cpu_ptr(q->queue_ctx, i); for (j = 0; j < set->nr_maps; j++) { if (!set->map[j].nr_queues) { ctx->hctxs[j] = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, i); continue; } hctx_idx = set->map[j].mq_map[i]; /* unmapped hw queue can be remapped after CPU topo changed */ if (!set->tags[hctx_idx] && !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { /* * If tags initialization fail for some hctx, * that hctx won't be brought online. In this * case, remap the current ctx to hctx[0] which * is guaranteed to always have tags allocated */ set->map[j].mq_map[i] = 0; } hctx = blk_mq_map_queue_type(q, j, i); ctx->hctxs[j] = hctx; /* * If the CPU is already set in the mask, then we've * mapped this one already. This can happen if * devices share queues across queue maps. */ if (cpumask_test_cpu(i, hctx->cpumask)) continue; cpumask_set_cpu(i, hctx->cpumask); hctx->type = j; ctx->index_hw[hctx->type] = hctx->nr_ctx; hctx->ctxs[hctx->nr_ctx++] = ctx; /* * If the nr_ctx type overflows, we have exceeded the * amount of sw queues we can support. */ BUG_ON(!hctx->nr_ctx); } for (; j < HCTX_MAX_TYPES; j++) ctx->hctxs[j] = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, i); } queue_for_each_hw_ctx(q, hctx, i) { /* * If no software queues are mapped to this hardware queue, * disable it and free the request entries. */ if (!hctx->nr_ctx) { /* Never unmap queue 0. We need it as a * fallback in case of a new remap fails * allocation */ if (i) __blk_mq_free_map_and_rqs(set, i); hctx->tags = NULL; continue; } hctx->tags = set->tags[i]; WARN_ON(!hctx->tags); /* * Set the map size to the number of mapped software queues. * This is more accurate and more efficient than looping * over all possibly mapped software queues. */ sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); /* * Initialize batch roundrobin counts */ hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; } } /* * Caller needs to ensure that we're either frozen/quiesced, or that * the queue isn't live yet. */ static void queue_set_hctx_shared(struct request_queue *q, bool shared) { struct blk_mq_hw_ctx *hctx; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) { if (shared) { hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; } else { blk_mq_tag_idle(hctx); hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; } } } static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, bool shared) { struct request_queue *q; lockdep_assert_held(&set->tag_list_lock); list_for_each_entry(q, &set->tag_list, tag_set_list) { blk_mq_freeze_queue(q); queue_set_hctx_shared(q, shared); blk_mq_unfreeze_queue(q); } } static void blk_mq_del_queue_tag_set(struct request_queue *q) { struct blk_mq_tag_set *set = q->tag_set; mutex_lock(&set->tag_list_lock); list_del(&q->tag_set_list); if (list_is_singular(&set->tag_list)) { /* just transitioned to unshared */ set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; /* update existing queue */ blk_mq_update_tag_set_shared(set, false); } mutex_unlock(&set->tag_list_lock); INIT_LIST_HEAD(&q->tag_set_list); } static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, struct request_queue *q) { mutex_lock(&set->tag_list_lock); /* * Check to see if we're transitioning to shared (from 1 to 2 queues). */ if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; /* update existing queue */ blk_mq_update_tag_set_shared(set, true); } if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) queue_set_hctx_shared(q, true); list_add_tail(&q->tag_set_list, &set->tag_list); mutex_unlock(&set->tag_list_lock); } /* All allocations will be freed in release handler of q->mq_kobj */ static int blk_mq_alloc_ctxs(struct request_queue *q) { struct blk_mq_ctxs *ctxs; int cpu; ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); if (!ctxs) return -ENOMEM; ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); if (!ctxs->queue_ctx) goto fail; for_each_possible_cpu(cpu) { struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); ctx->ctxs = ctxs; } q->mq_kobj = &ctxs->kobj; q->queue_ctx = ctxs->queue_ctx; return 0; fail: kfree(ctxs); return -ENOMEM; } /* * It is the actual release handler for mq, but we do it from * request queue's release handler for avoiding use-after-free * and headache because q->mq_kobj shouldn't have been introduced, * but we can't group ctx/kctx kobj without it. */ void blk_mq_release(struct request_queue *q) { struct blk_mq_hw_ctx *hctx, *next; unsigned long i; queue_for_each_hw_ctx(q, hctx, i) WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); /* all hctx are in .unused_hctx_list now */ list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { list_del_init(&hctx->hctx_list); kobject_put(&hctx->kobj); } xa_destroy(&q->hctx_table); /* * release .mq_kobj and sw queue's kobject now because * both share lifetime with request queue. */ blk_mq_sysfs_deinit(q); } static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, void *queuedata) { struct request_queue *q; int ret; q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); if (!q) return ERR_PTR(-ENOMEM); q->queuedata = queuedata; ret = blk_mq_init_allocated_queue(set, q); if (ret) { blk_cleanup_queue(q); return ERR_PTR(ret); } return q; } struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) { return blk_mq_init_queue_data(set, NULL); } EXPORT_SYMBOL(blk_mq_init_queue); struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, struct lock_class_key *lkclass) { struct request_queue *q; struct gendisk *disk; q = blk_mq_init_queue_data(set, queuedata); if (IS_ERR(q)) return ERR_CAST(q); disk = __alloc_disk_node(q, set->numa_node, lkclass); if (!disk) { blk_cleanup_queue(q); return ERR_PTR(-ENOMEM); } return disk; } EXPORT_SYMBOL(__blk_mq_alloc_disk); static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( struct blk_mq_tag_set *set, struct request_queue *q, int hctx_idx, int node) { struct blk_mq_hw_ctx *hctx = NULL, *tmp; /* reuse dead hctx first */ spin_lock(&q->unused_hctx_lock); list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { if (tmp->numa_node == node) { hctx = tmp; break; } } if (hctx) list_del_init(&hctx->hctx_list); spin_unlock(&q->unused_hctx_lock); if (!hctx) hctx = blk_mq_alloc_hctx(q, set, node); if (!hctx) goto fail; if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) goto free_hctx; return hctx; free_hctx: kobject_put(&hctx->kobj); fail: return NULL; } static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, struct request_queue *q) { struct blk_mq_hw_ctx *hctx; unsigned long i, j; /* protect against switching io scheduler */ mutex_lock(&q->sysfs_lock); for (i = 0; i < set->nr_hw_queues; i++) { int old_node; int node = blk_mq_get_hctx_node(set, i); struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); if (old_hctx) { old_node = old_hctx->numa_node; blk_mq_exit_hctx(q, set, old_hctx, i); } if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { if (!old_hctx) break; pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", node, old_node); hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); WARN_ON_ONCE(!hctx); } } /* * Increasing nr_hw_queues fails. Free the newly allocated * hctxs and keep the previous q->nr_hw_queues. */ if (i != set->nr_hw_queues) { j = q->nr_hw_queues; } else { j = i; q->nr_hw_queues = set->nr_hw_queues; } xa_for_each_start(&q->hctx_table, j, hctx, j) blk_mq_exit_hctx(q, set, hctx, j); mutex_unlock(&q->sysfs_lock); } static void blk_mq_update_poll_flag(struct request_queue *q) { struct blk_mq_tag_set *set = q->tag_set; if (set->nr_maps > HCTX_TYPE_POLL && set->map[HCTX_TYPE_POLL].nr_queues) blk_queue_flag_set(QUEUE_FLAG_POLL, q); else blk_queue_flag_clear(QUEUE_FLAG_POLL, q); } int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, struct request_queue *q) { WARN_ON_ONCE(blk_queue_has_srcu(q) != !!(set->flags & BLK_MQ_F_BLOCKING)); /* mark the queue as mq asap */ q->mq_ops = set->ops; q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, blk_mq_poll_stats_bkt, BLK_MQ_POLL_STATS_BKTS, q); if (!q->poll_cb) goto err_exit; if (blk_mq_alloc_ctxs(q)) goto err_poll; /* init q->mq_kobj and sw queues' kobjects */ blk_mq_sysfs_init(q); INIT_LIST_HEAD(&q->unused_hctx_list); spin_lock_init(&q->unused_hctx_lock); xa_init(&q->hctx_table); blk_mq_realloc_hw_ctxs(set, q); if (!q->nr_hw_queues) goto err_hctxs; INIT_WORK(&q->timeout_work, blk_mq_timeout_work); blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); q->tag_set = set; q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; blk_mq_update_poll_flag(q); INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); INIT_LIST_HEAD(&q->requeue_list); spin_lock_init(&q->requeue_lock); q->nr_requests = set->queue_depth; /* * Default to classic polling */ q->poll_nsec = BLK_MQ_POLL_CLASSIC; blk_mq_init_cpu_queues(q, set->nr_hw_queues); blk_mq_add_queue_tag_set(set, q); blk_mq_map_swqueue(q); return 0; err_hctxs: xa_destroy(&q->hctx_table); q->nr_hw_queues = 0; blk_mq_sysfs_deinit(q); err_poll: blk_stat_free_callback(q->poll_cb); q->poll_cb = NULL; err_exit: q->mq_ops = NULL; return -ENOMEM; } EXPORT_SYMBOL(blk_mq_init_allocated_queue); /* tags can _not_ be used after returning from blk_mq_exit_queue */ void blk_mq_exit_queue(struct request_queue *q) { struct blk_mq_tag_set *set = q->tag_set; /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ blk_mq_del_queue_tag_set(q); } static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) { int i; if (blk_mq_is_shared_tags(set->flags)) { set->shared_tags = blk_mq_alloc_map_and_rqs(set, BLK_MQ_NO_HCTX_IDX, set->queue_depth); if (!set->shared_tags) return -ENOMEM; } for (i = 0; i < set->nr_hw_queues; i++) { if (!__blk_mq_alloc_map_and_rqs(set, i)) goto out_unwind; cond_resched(); } return 0; out_unwind: while (--i >= 0) __blk_mq_free_map_and_rqs(set, i); if (blk_mq_is_shared_tags(set->flags)) { blk_mq_free_map_and_rqs(set, set->shared_tags, BLK_MQ_NO_HCTX_IDX); } return -ENOMEM; } /* * Allocate the request maps associated with this tag_set. Note that this * may reduce the depth asked for, if memory is tight. set->queue_depth * will be updated to reflect the allocated depth. */ static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) { unsigned int depth; int err; depth = set->queue_depth; do { err = __blk_mq_alloc_rq_maps(set); if (!err) break; set->queue_depth >>= 1; if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { err = -ENOMEM; break; } } while (set->queue_depth); if (!set->queue_depth || err) { pr_err("blk-mq: failed to allocate request map\n"); return -ENOMEM; } if (depth != set->queue_depth) pr_info("blk-mq: reduced tag depth (%u -> %u)\n", depth, set->queue_depth); return 0; } static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) { /* * blk_mq_map_queues() and multiple .map_queues() implementations * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the * number of hardware queues. */ if (set->nr_maps == 1) set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; if (set->ops->map_queues && !is_kdump_kernel()) { int i; /* * transport .map_queues is usually done in the following * way: * * for (queue = 0; queue < set->nr_hw_queues; queue++) { * mask = get_cpu_mask(queue) * for_each_cpu(cpu, mask) * set->map[x].mq_map[cpu] = queue; * } * * When we need to remap, the table has to be cleared for * killing stale mapping since one CPU may not be mapped * to any hw queue. */ for (i = 0; i < set->nr_maps; i++) blk_mq_clear_mq_map(&set->map[i]); return set->ops->map_queues(set); } else { BUG_ON(set->nr_maps > 1); return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); } } static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, int cur_nr_hw_queues, int new_nr_hw_queues) { struct blk_mq_tags **new_tags; if (cur_nr_hw_queues >= new_nr_hw_queues) return 0; new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), GFP_KERNEL, set->numa_node); if (!new_tags) return -ENOMEM; if (set->tags) memcpy(new_tags, set->tags, cur_nr_hw_queues * sizeof(*set->tags)); kfree(set->tags); set->tags = new_tags; set->nr_hw_queues = new_nr_hw_queues; return 0; } static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, int new_nr_hw_queues) { return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); } /* * Alloc a tag set to be associated with one or more request queues. * May fail with EINVAL for various error conditions. May adjust the * requested depth down, if it's too large. In that case, the set * value will be stored in set->queue_depth. */ int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) { int i, ret; BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); if (!set->nr_hw_queues) return -EINVAL; if (!set->queue_depth) return -EINVAL; if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) return -EINVAL; if (!set->ops->queue_rq) return -EINVAL; if (!set->ops->get_budget ^ !set->ops->put_budget) return -EINVAL; if (set->queue_depth > BLK_MQ_MAX_DEPTH) { pr_info("blk-mq: reduced tag depth to %u\n", BLK_MQ_MAX_DEPTH); set->queue_depth = BLK_MQ_MAX_DEPTH; } if (!set->nr_maps) set->nr_maps = 1; else if (set->nr_maps > HCTX_MAX_TYPES) return -EINVAL; /* * If a crashdump is active, then we are potentially in a very * memory constrained environment. Limit us to 1 queue and * 64 tags to prevent using too much memory. */ if (is_kdump_kernel()) { set->nr_hw_queues = 1; set->nr_maps = 1; set->queue_depth = min(64U, set->queue_depth); } /* * There is no use for more h/w queues than cpus if we just have * a single map */ if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) set->nr_hw_queues = nr_cpu_ids; if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) return -ENOMEM; ret = -ENOMEM; for (i = 0; i < set->nr_maps; i++) { set->map[i].mq_map = kcalloc_node(nr_cpu_ids, sizeof(set->map[i].mq_map[0]), GFP_KERNEL, set->numa_node); if (!set->map[i].mq_map) goto out_free_mq_map; set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; } ret = blk_mq_update_queue_map(set); if (ret) goto out_free_mq_map; ret = blk_mq_alloc_set_map_and_rqs(set); if (ret) goto out_free_mq_map; mutex_init(&set->tag_list_lock); INIT_LIST_HEAD(&set->tag_list); return 0; out_free_mq_map: for (i = 0; i < set->nr_maps; i++) { kfree(set->map[i].mq_map); set->map[i].mq_map = NULL; } kfree(set->tags); set->tags = NULL; return ret; } EXPORT_SYMBOL(blk_mq_alloc_tag_set); /* allocate and initialize a tagset for a simple single-queue device */ int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int queue_depth, unsigned int set_flags) { memset(set, 0, sizeof(*set)); set->ops = ops; set->nr_hw_queues = 1; set->nr_maps = 1; set->queue_depth = queue_depth; set->numa_node = NUMA_NO_NODE; set->flags = set_flags; return blk_mq_alloc_tag_set(set); } EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); void blk_mq_free_tag_set(struct blk_mq_tag_set *set) { int i, j; for (i = 0; i < set->nr_hw_queues; i++) __blk_mq_free_map_and_rqs(set, i); if (blk_mq_is_shared_tags(set->flags)) { blk_mq_free_map_and_rqs(set, set->shared_tags, BLK_MQ_NO_HCTX_IDX); } for (j = 0; j < set->nr_maps; j++) { kfree(set->map[j].mq_map); set->map[j].mq_map = NULL; } kfree(set->tags); set->tags = NULL; } EXPORT_SYMBOL(blk_mq_free_tag_set); int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) { struct blk_mq_tag_set *set = q->tag_set; struct blk_mq_hw_ctx *hctx; int ret; unsigned long i; if (!set) return -EINVAL; if (q->nr_requests == nr) return 0; blk_mq_freeze_queue(q); blk_mq_quiesce_queue(q); ret = 0; queue_for_each_hw_ctx(q, hctx, i) { if (!hctx->tags) continue; /* * If we're using an MQ scheduler, just update the scheduler * queue depth. This is similar to what the old code would do. */ if (hctx->sched_tags) { ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, nr, true); } else { ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, false); } if (ret) break; if (q->elevator && q->elevator->type->ops.depth_updated) q->elevator->type->ops.depth_updated(hctx); } if (!ret) { q->nr_requests = nr; if (blk_mq_is_shared_tags(set->flags)) { if (q->elevator) blk_mq_tag_update_sched_shared_tags(q); else blk_mq_tag_resize_shared_tags(set, nr); } } blk_mq_unquiesce_queue(q); blk_mq_unfreeze_queue(q); return ret; } /* * request_queue and elevator_type pair. * It is just used by __blk_mq_update_nr_hw_queues to cache * the elevator_type associated with a request_queue. */ struct blk_mq_qe_pair { struct list_head node; struct request_queue *q; struct elevator_type *type; }; /* * Cache the elevator_type in qe pair list and switch the * io scheduler to 'none' */ static bool blk_mq_elv_switch_none(struct list_head *head, struct request_queue *q) { struct blk_mq_qe_pair *qe; if (!q->elevator) return true; qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); if (!qe) return false; INIT_LIST_HEAD(&qe->node); qe->q = q; qe->type = q->elevator->type; list_add(&qe->node, head); mutex_lock(&q->sysfs_lock); /* * After elevator_switch_mq, the previous elevator_queue will be * released by elevator_release. The reference of the io scheduler * module get by elevator_get will also be put. So we need to get * a reference of the io scheduler module here to prevent it to be * removed. */ __module_get(qe->type->elevator_owner); elevator_switch_mq(q, NULL); mutex_unlock(&q->sysfs_lock); return true; } static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, struct request_queue *q) { struct blk_mq_qe_pair *qe; list_for_each_entry(qe, head, node) if (qe->q == q) return qe; return NULL; } static void blk_mq_elv_switch_back(struct list_head *head, struct request_queue *q) { struct blk_mq_qe_pair *qe; struct elevator_type *t; qe = blk_lookup_qe_pair(head, q); if (!qe) return; t = qe->type; list_del(&qe->node); kfree(qe); mutex_lock(&q->sysfs_lock); elevator_switch_mq(q, t); mutex_unlock(&q->sysfs_lock); } static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) { struct request_queue *q; LIST_HEAD(head); int prev_nr_hw_queues; lockdep_assert_held(&set->tag_list_lock); if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) nr_hw_queues = nr_cpu_ids; if (nr_hw_queues < 1) return; if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) return; list_for_each_entry(q, &set->tag_list, tag_set_list) blk_mq_freeze_queue(q); /* * Switch IO scheduler to 'none', cleaning up the data associated * with the previous scheduler. We will switch back once we are done * updating the new sw to hw queue mappings. */ list_for_each_entry(q, &set->tag_list, tag_set_list) if (!blk_mq_elv_switch_none(&head, q)) goto switch_back; list_for_each_entry(q, &set->tag_list, tag_set_list) { blk_mq_debugfs_unregister_hctxs(q); blk_mq_sysfs_unregister(q); } prev_nr_hw_queues = set->nr_hw_queues; if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 0) goto reregister; set->nr_hw_queues = nr_hw_queues; fallback: blk_mq_update_queue_map(set); list_for_each_entry(q, &set->tag_list, tag_set_list) { blk_mq_realloc_hw_ctxs(set, q); blk_mq_update_poll_flag(q); if (q->nr_hw_queues != set->nr_hw_queues) { int i = prev_nr_hw_queues; pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", nr_hw_queues, prev_nr_hw_queues); for (; i < set->nr_hw_queues; i++) __blk_mq_free_map_and_rqs(set, i); set->nr_hw_queues = prev_nr_hw_queues; blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); goto fallback; } blk_mq_map_swqueue(q); } reregister: list_for_each_entry(q, &set->tag_list, tag_set_list) { blk_mq_sysfs_register(q); blk_mq_debugfs_register_hctxs(q); } switch_back: list_for_each_entry(q, &set->tag_list, tag_set_list) blk_mq_elv_switch_back(&head, q); list_for_each_entry(q, &set->tag_list, tag_set_list) blk_mq_unfreeze_queue(q); } void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) { mutex_lock(&set->tag_list_lock); __blk_mq_update_nr_hw_queues(set, nr_hw_queues); mutex_unlock(&set->tag_list_lock); } EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); /* Enable polling stats and return whether they were already enabled. */ static bool blk_poll_stats_enable(struct request_queue *q) { if (q->poll_stat) return true; return blk_stats_alloc_enable(q); } static void blk_mq_poll_stats_start(struct request_queue *q) { /* * We don't arm the callback if polling stats are not enabled or the * callback is already active. */ if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) return; blk_stat_activate_msecs(q->poll_cb, 100); } static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) { struct request_queue *q = cb->data; int bucket; for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { if (cb->stat[bucket].nr_samples) q->poll_stat[bucket] = cb->stat[bucket]; } } static unsigned long blk_mq_poll_nsecs(struct request_queue *q, struct request *rq) { unsigned long ret = 0; int bucket; /* * If stats collection isn't on, don't sleep but turn it on for * future users */ if (!blk_poll_stats_enable(q)) return 0; /* * As an optimistic guess, use half of the mean service time * for this type of request. We can (and should) make this smarter. * For instance, if the completion latencies are tight, we can * get closer than just half the mean. This is especially * important on devices where the completion latencies are longer * than ~10 usec. We do use the stats for the relevant IO size * if available which does lead to better estimates. */ bucket = blk_mq_poll_stats_bkt(rq); if (bucket < 0) return ret; if (q->poll_stat[bucket].nr_samples) ret = (q->poll_stat[bucket].mean + 1) / 2; return ret; } static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) { struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); struct request *rq = blk_qc_to_rq(hctx, qc); struct hrtimer_sleeper hs; enum hrtimer_mode mode; unsigned int nsecs; ktime_t kt; /* * If a request has completed on queue that uses an I/O scheduler, we * won't get back a request from blk_qc_to_rq. */ if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) return false; /* * If we get here, hybrid polling is enabled. Hence poll_nsec can be: * * 0: use half of prev avg * >0: use this specific value */ if (q->poll_nsec > 0) nsecs = q->poll_nsec; else nsecs = blk_mq_poll_nsecs(q, rq); if (!nsecs) return false; rq->rq_flags |= RQF_MQ_POLL_SLEPT; /* * This will be replaced with the stats tracking code, using * 'avg_completion_time / 2' as the pre-sleep target. */ kt = nsecs; mode = HRTIMER_MODE_REL; hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); hrtimer_set_expires(&hs.timer, kt); do { if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) break; set_current_state(TASK_UNINTERRUPTIBLE); hrtimer_sleeper_start_expires(&hs, mode); if (hs.task) io_schedule(); hrtimer_cancel(&hs.timer); mode = HRTIMER_MODE_ABS; } while (hs.task && !signal_pending(current)); __set_current_state(TASK_RUNNING); destroy_hrtimer_on_stack(&hs.timer); /* * If we sleep, have the caller restart the poll loop to reset the * state. Like for the other success return cases, the caller is * responsible for checking if the IO completed. If the IO isn't * complete, we'll get called again and will go straight to the busy * poll loop. */ return true; } static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, unsigned int flags) { struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); long state = get_current_state(); int ret; do { ret = q->mq_ops->poll(hctx, iob); if (ret > 0) { __set_current_state(TASK_RUNNING); return ret; } if (signal_pending_state(state, current)) __set_current_state(TASK_RUNNING); if (task_is_running(current)) return 1; if (ret < 0 || (flags & BLK_POLL_ONESHOT)) break; cpu_relax(); } while (!need_resched()); __set_current_state(TASK_RUNNING); return 0; } int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, unsigned int flags) { if (!(flags & BLK_POLL_NOSLEEP) && q->poll_nsec != BLK_MQ_POLL_CLASSIC) { if (blk_mq_poll_hybrid(q, cookie)) return 1; } return blk_mq_poll_classic(q, cookie, iob, flags); } unsigned int blk_mq_rq_cpu(struct request *rq) { return rq->mq_ctx->cpu; } EXPORT_SYMBOL(blk_mq_rq_cpu); void blk_mq_cancel_work_sync(struct request_queue *q) { if (queue_is_mq(q)) { struct blk_mq_hw_ctx *hctx; unsigned long i; cancel_delayed_work_sync(&q->requeue_work); queue_for_each_hw_ctx(q, hctx, i) cancel_delayed_work_sync(&hctx->run_work); } } static int __init blk_mq_init(void) { int i; for_each_possible_cpu(i) init_llist_head(&per_cpu(blk_cpu_done, i)); open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, "block/softirq:dead", NULL, blk_softirq_cpu_dead); cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, blk_mq_hctx_notify_dead); cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", blk_mq_hctx_notify_online, blk_mq_hctx_notify_offline); return 0; } subsys_initcall(blk_mq_init);