// SPDX-License-Identifier: GPL-2.0 /* * Functions related to sysfs handling */ #include #include #include #include #include #include #include #include #include #include "blk.h" #include "blk-mq.h" #include "blk-mq-debugfs.h" #include "blk-mq-sched.h" #include "blk-wbt.h" #include "blk-cgroup.h" #include "blk-throttle.h" struct queue_sysfs_entry { struct attribute attr; ssize_t (*show)(struct request_queue *, char *); ssize_t (*store)(struct request_queue *, const char *, size_t); }; static ssize_t queue_var_show(unsigned long var, char *page) { return sprintf(page, "%lu\n", var); } static ssize_t queue_var_store(unsigned long *var, const char *page, size_t count) { int err; unsigned long v; err = kstrtoul(page, 10, &v); if (err || v > UINT_MAX) return -EINVAL; *var = v; return count; } static ssize_t queue_var_store64(s64 *var, const char *page) { int err; s64 v; err = kstrtos64(page, 10, &v); if (err < 0) return err; *var = v; return 0; } static ssize_t queue_requests_show(struct request_queue *q, char *page) { return queue_var_show(q->nr_requests, page); } static ssize_t queue_requests_store(struct request_queue *q, const char *page, size_t count) { unsigned long nr; int ret, err; if (!queue_is_mq(q)) return -EINVAL; ret = queue_var_store(&nr, page, count); if (ret < 0) return ret; if (nr < BLKDEV_MIN_RQ) nr = BLKDEV_MIN_RQ; err = blk_mq_update_nr_requests(q, nr); if (err) return err; return ret; } static ssize_t queue_ra_show(struct request_queue *q, char *page) { unsigned long ra_kb; if (!q->disk) return -EINVAL; ra_kb = q->disk->bdi->ra_pages << (PAGE_SHIFT - 10); return queue_var_show(ra_kb, page); } static ssize_t queue_ra_store(struct request_queue *q, const char *page, size_t count) { unsigned long ra_kb; ssize_t ret; if (!q->disk) return -EINVAL; ret = queue_var_store(&ra_kb, page, count); if (ret < 0) return ret; q->disk->bdi->ra_pages = ra_kb >> (PAGE_SHIFT - 10); return ret; } static ssize_t queue_max_sectors_show(struct request_queue *q, char *page) { int max_sectors_kb = queue_max_sectors(q) >> 1; return queue_var_show(max_sectors_kb, page); } static ssize_t queue_max_segments_show(struct request_queue *q, char *page) { return queue_var_show(queue_max_segments(q), page); } static ssize_t queue_max_discard_segments_show(struct request_queue *q, char *page) { return queue_var_show(queue_max_discard_segments(q), page); } static ssize_t queue_max_integrity_segments_show(struct request_queue *q, char *page) { return queue_var_show(q->limits.max_integrity_segments, page); } static ssize_t queue_max_segment_size_show(struct request_queue *q, char *page) { return queue_var_show(queue_max_segment_size(q), page); } static ssize_t queue_logical_block_size_show(struct request_queue *q, char *page) { return queue_var_show(queue_logical_block_size(q), page); } static ssize_t queue_physical_block_size_show(struct request_queue *q, char *page) { return queue_var_show(queue_physical_block_size(q), page); } static ssize_t queue_chunk_sectors_show(struct request_queue *q, char *page) { return queue_var_show(q->limits.chunk_sectors, page); } static ssize_t queue_io_min_show(struct request_queue *q, char *page) { return queue_var_show(queue_io_min(q), page); } static ssize_t queue_io_opt_show(struct request_queue *q, char *page) { return queue_var_show(queue_io_opt(q), page); } static ssize_t queue_discard_granularity_show(struct request_queue *q, char *page) { return queue_var_show(q->limits.discard_granularity, page); } static ssize_t queue_discard_max_hw_show(struct request_queue *q, char *page) { return sprintf(page, "%llu\n", (unsigned long long)q->limits.max_hw_discard_sectors << 9); } static ssize_t queue_discard_max_show(struct request_queue *q, char *page) { return sprintf(page, "%llu\n", (unsigned long long)q->limits.max_discard_sectors << 9); } static ssize_t queue_discard_max_store(struct request_queue *q, const char *page, size_t count) { unsigned long max_discard; ssize_t ret = queue_var_store(&max_discard, page, count); if (ret < 0) return ret; if (max_discard & (q->limits.discard_granularity - 1)) return -EINVAL; max_discard >>= 9; if (max_discard > UINT_MAX) return -EINVAL; if (max_discard > q->limits.max_hw_discard_sectors) max_discard = q->limits.max_hw_discard_sectors; q->limits.max_discard_sectors = max_discard; return ret; } static ssize_t queue_discard_zeroes_data_show(struct request_queue *q, char *page) { return queue_var_show(0, page); } static ssize_t queue_write_same_max_show(struct request_queue *q, char *page) { return queue_var_show(0, page); } static ssize_t queue_write_zeroes_max_show(struct request_queue *q, char *page) { return sprintf(page, "%llu\n", (unsigned long long)q->limits.max_write_zeroes_sectors << 9); } static ssize_t queue_zone_write_granularity_show(struct request_queue *q, char *page) { return queue_var_show(queue_zone_write_granularity(q), page); } static ssize_t queue_zone_append_max_show(struct request_queue *q, char *page) { unsigned long long max_sectors = q->limits.max_zone_append_sectors; return sprintf(page, "%llu\n", max_sectors << SECTOR_SHIFT); } static ssize_t queue_max_sectors_store(struct request_queue *q, const char *page, size_t count) { unsigned long max_sectors_kb, max_hw_sectors_kb = queue_max_hw_sectors(q) >> 1, page_kb = 1 << (PAGE_SHIFT - 10); ssize_t ret = queue_var_store(&max_sectors_kb, page, count); if (ret < 0) return ret; max_hw_sectors_kb = min_not_zero(max_hw_sectors_kb, (unsigned long) q->limits.max_dev_sectors >> 1); if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb) return -EINVAL; spin_lock_irq(&q->queue_lock); q->limits.max_sectors = max_sectors_kb << 1; if (q->disk) q->disk->bdi->io_pages = max_sectors_kb >> (PAGE_SHIFT - 10); spin_unlock_irq(&q->queue_lock); return ret; } static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page) { int max_hw_sectors_kb = queue_max_hw_sectors(q) >> 1; return queue_var_show(max_hw_sectors_kb, page); } static ssize_t queue_virt_boundary_mask_show(struct request_queue *q, char *page) { return queue_var_show(q->limits.virt_boundary_mask, page); } #define QUEUE_SYSFS_BIT_FNS(name, flag, neg) \ static ssize_t \ queue_##name##_show(struct request_queue *q, char *page) \ { \ int bit; \ bit = test_bit(QUEUE_FLAG_##flag, &q->queue_flags); \ return queue_var_show(neg ? !bit : bit, page); \ } \ static ssize_t \ queue_##name##_store(struct request_queue *q, const char *page, size_t count) \ { \ unsigned long val; \ ssize_t ret; \ ret = queue_var_store(&val, page, count); \ if (ret < 0) \ return ret; \ if (neg) \ val = !val; \ \ if (val) \ blk_queue_flag_set(QUEUE_FLAG_##flag, q); \ else \ blk_queue_flag_clear(QUEUE_FLAG_##flag, q); \ return ret; \ } QUEUE_SYSFS_BIT_FNS(nonrot, NONROT, 1); QUEUE_SYSFS_BIT_FNS(random, ADD_RANDOM, 0); QUEUE_SYSFS_BIT_FNS(iostats, IO_STAT, 0); QUEUE_SYSFS_BIT_FNS(stable_writes, STABLE_WRITES, 0); #undef QUEUE_SYSFS_BIT_FNS static ssize_t queue_zoned_show(struct request_queue *q, char *page) { switch (blk_queue_zoned_model(q)) { case BLK_ZONED_HA: return sprintf(page, "host-aware\n"); case BLK_ZONED_HM: return sprintf(page, "host-managed\n"); default: return sprintf(page, "none\n"); } } static ssize_t queue_nr_zones_show(struct request_queue *q, char *page) { return queue_var_show(blk_queue_nr_zones(q), page); } static ssize_t queue_max_open_zones_show(struct request_queue *q, char *page) { return queue_var_show(queue_max_open_zones(q), page); } static ssize_t queue_max_active_zones_show(struct request_queue *q, char *page) { return queue_var_show(queue_max_active_zones(q), page); } static ssize_t queue_nomerges_show(struct request_queue *q, char *page) { return queue_var_show((blk_queue_nomerges(q) << 1) | blk_queue_noxmerges(q), page); } static ssize_t queue_nomerges_store(struct request_queue *q, const char *page, size_t count) { unsigned long nm; ssize_t ret = queue_var_store(&nm, page, count); if (ret < 0) return ret; blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, q); blk_queue_flag_clear(QUEUE_FLAG_NOXMERGES, q); if (nm == 2) blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); else if (nm) blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); return ret; } static ssize_t queue_rq_affinity_show(struct request_queue *q, char *page) { bool set = test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags); bool force = test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags); return queue_var_show(set << force, page); } static ssize_t queue_rq_affinity_store(struct request_queue *q, const char *page, size_t count) { ssize_t ret = -EINVAL; #ifdef CONFIG_SMP unsigned long val; ret = queue_var_store(&val, page, count); if (ret < 0) return ret; if (val == 2) { blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, q); blk_queue_flag_set(QUEUE_FLAG_SAME_FORCE, q); } else if (val == 1) { blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, q); blk_queue_flag_clear(QUEUE_FLAG_SAME_FORCE, q); } else if (val == 0) { blk_queue_flag_clear(QUEUE_FLAG_SAME_COMP, q); blk_queue_flag_clear(QUEUE_FLAG_SAME_FORCE, q); } #endif return ret; } static ssize_t queue_poll_delay_show(struct request_queue *q, char *page) { int val; if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) val = BLK_MQ_POLL_CLASSIC; else val = q->poll_nsec / 1000; return sprintf(page, "%d\n", val); } static ssize_t queue_poll_delay_store(struct request_queue *q, const char *page, size_t count) { int err, val; if (!q->mq_ops || !q->mq_ops->poll) return -EINVAL; err = kstrtoint(page, 10, &val); if (err < 0) return err; if (val == BLK_MQ_POLL_CLASSIC) q->poll_nsec = BLK_MQ_POLL_CLASSIC; else if (val >= 0) q->poll_nsec = val * 1000; else return -EINVAL; return count; } static ssize_t queue_poll_show(struct request_queue *q, char *page) { return queue_var_show(test_bit(QUEUE_FLAG_POLL, &q->queue_flags), page); } static ssize_t queue_poll_store(struct request_queue *q, const char *page, size_t count) { if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) return -EINVAL; pr_info_ratelimited("writes to the poll attribute are ignored.\n"); pr_info_ratelimited("please use driver specific parameters instead.\n"); return count; } static ssize_t queue_io_timeout_show(struct request_queue *q, char *page) { return sprintf(page, "%u\n", jiffies_to_msecs(q->rq_timeout)); } static ssize_t queue_io_timeout_store(struct request_queue *q, const char *page, size_t count) { unsigned int val; int err; err = kstrtou32(page, 10, &val); if (err || val == 0) return -EINVAL; blk_queue_rq_timeout(q, msecs_to_jiffies(val)); return count; } static ssize_t queue_wb_lat_show(struct request_queue *q, char *page) { if (!wbt_rq_qos(q)) return -EINVAL; return sprintf(page, "%llu\n", div_u64(wbt_get_min_lat(q), 1000)); } static ssize_t queue_wb_lat_store(struct request_queue *q, const char *page, size_t count) { struct rq_qos *rqos; ssize_t ret; s64 val; ret = queue_var_store64(&val, page); if (ret < 0) return ret; if (val < -1) return -EINVAL; rqos = wbt_rq_qos(q); if (!rqos) { ret = wbt_init(q); if (ret) return ret; } if (val == -1) val = wbt_default_latency_nsec(q); else if (val >= 0) val *= 1000ULL; if (wbt_get_min_lat(q) == val) return count; /* * Ensure that the queue is idled, in case the latency update * ends up either enabling or disabling wbt completely. We can't * have IO inflight if that happens. */ blk_mq_freeze_queue(q); blk_mq_quiesce_queue(q); wbt_set_min_lat(q, val); blk_mq_unquiesce_queue(q); blk_mq_unfreeze_queue(q); return count; } static ssize_t queue_wc_show(struct request_queue *q, char *page) { if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) return sprintf(page, "write back\n"); return sprintf(page, "write through\n"); } static ssize_t queue_wc_store(struct request_queue *q, const char *page, size_t count) { int set = -1; if (!strncmp(page, "write back", 10)) set = 1; else if (!strncmp(page, "write through", 13) || !strncmp(page, "none", 4)) set = 0; if (set == -1) return -EINVAL; if (set) blk_queue_flag_set(QUEUE_FLAG_WC, q); else blk_queue_flag_clear(QUEUE_FLAG_WC, q); return count; } static ssize_t queue_fua_show(struct request_queue *q, char *page) { return sprintf(page, "%u\n", test_bit(QUEUE_FLAG_FUA, &q->queue_flags)); } static ssize_t queue_dax_show(struct request_queue *q, char *page) { return queue_var_show(blk_queue_dax(q), page); } #define QUEUE_RO_ENTRY(_prefix, _name) \ static struct queue_sysfs_entry _prefix##_entry = { \ .attr = { .name = _name, .mode = 0444 }, \ .show = _prefix##_show, \ }; #define QUEUE_RW_ENTRY(_prefix, _name) \ static struct queue_sysfs_entry _prefix##_entry = { \ .attr = { .name = _name, .mode = 0644 }, \ .show = _prefix##_show, \ .store = _prefix##_store, \ }; QUEUE_RW_ENTRY(queue_requests, "nr_requests"); QUEUE_RW_ENTRY(queue_ra, "read_ahead_kb"); QUEUE_RW_ENTRY(queue_max_sectors, "max_sectors_kb"); QUEUE_RO_ENTRY(queue_max_hw_sectors, "max_hw_sectors_kb"); QUEUE_RO_ENTRY(queue_max_segments, "max_segments"); QUEUE_RO_ENTRY(queue_max_integrity_segments, "max_integrity_segments"); QUEUE_RO_ENTRY(queue_max_segment_size, "max_segment_size"); QUEUE_RW_ENTRY(elv_iosched, "scheduler"); QUEUE_RO_ENTRY(queue_logical_block_size, "logical_block_size"); QUEUE_RO_ENTRY(queue_physical_block_size, "physical_block_size"); QUEUE_RO_ENTRY(queue_chunk_sectors, "chunk_sectors"); QUEUE_RO_ENTRY(queue_io_min, "minimum_io_size"); QUEUE_RO_ENTRY(queue_io_opt, "optimal_io_size"); QUEUE_RO_ENTRY(queue_max_discard_segments, "max_discard_segments"); QUEUE_RO_ENTRY(queue_discard_granularity, "discard_granularity"); QUEUE_RO_ENTRY(queue_discard_max_hw, "discard_max_hw_bytes"); QUEUE_RW_ENTRY(queue_discard_max, "discard_max_bytes"); QUEUE_RO_ENTRY(queue_discard_zeroes_data, "discard_zeroes_data"); QUEUE_RO_ENTRY(queue_write_same_max, "write_same_max_bytes"); QUEUE_RO_ENTRY(queue_write_zeroes_max, "write_zeroes_max_bytes"); QUEUE_RO_ENTRY(queue_zone_append_max, "zone_append_max_bytes"); QUEUE_RO_ENTRY(queue_zone_write_granularity, "zone_write_granularity"); QUEUE_RO_ENTRY(queue_zoned, "zoned"); QUEUE_RO_ENTRY(queue_nr_zones, "nr_zones"); QUEUE_RO_ENTRY(queue_max_open_zones, "max_open_zones"); QUEUE_RO_ENTRY(queue_max_active_zones, "max_active_zones"); QUEUE_RW_ENTRY(queue_nomerges, "nomerges"); QUEUE_RW_ENTRY(queue_rq_affinity, "rq_affinity"); QUEUE_RW_ENTRY(queue_poll, "io_poll"); QUEUE_RW_ENTRY(queue_poll_delay, "io_poll_delay"); QUEUE_RW_ENTRY(queue_wc, "write_cache"); QUEUE_RO_ENTRY(queue_fua, "fua"); QUEUE_RO_ENTRY(queue_dax, "dax"); QUEUE_RW_ENTRY(queue_io_timeout, "io_timeout"); QUEUE_RW_ENTRY(queue_wb_lat, "wbt_lat_usec"); QUEUE_RO_ENTRY(queue_virt_boundary_mask, "virt_boundary_mask"); #ifdef CONFIG_BLK_DEV_THROTTLING_LOW QUEUE_RW_ENTRY(blk_throtl_sample_time, "throttle_sample_time"); #endif /* legacy alias for logical_block_size: */ static struct queue_sysfs_entry queue_hw_sector_size_entry = { .attr = {.name = "hw_sector_size", .mode = 0444 }, .show = queue_logical_block_size_show, }; QUEUE_RW_ENTRY(queue_nonrot, "rotational"); QUEUE_RW_ENTRY(queue_iostats, "iostats"); QUEUE_RW_ENTRY(queue_random, "add_random"); QUEUE_RW_ENTRY(queue_stable_writes, "stable_writes"); static struct attribute *queue_attrs[] = { &queue_requests_entry.attr, &queue_ra_entry.attr, &queue_max_hw_sectors_entry.attr, &queue_max_sectors_entry.attr, &queue_max_segments_entry.attr, &queue_max_discard_segments_entry.attr, &queue_max_integrity_segments_entry.attr, &queue_max_segment_size_entry.attr, &elv_iosched_entry.attr, &queue_hw_sector_size_entry.attr, &queue_logical_block_size_entry.attr, &queue_physical_block_size_entry.attr, &queue_chunk_sectors_entry.attr, &queue_io_min_entry.attr, &queue_io_opt_entry.attr, &queue_discard_granularity_entry.attr, &queue_discard_max_entry.attr, &queue_discard_max_hw_entry.attr, &queue_discard_zeroes_data_entry.attr, &queue_write_same_max_entry.attr, &queue_write_zeroes_max_entry.attr, &queue_zone_append_max_entry.attr, &queue_zone_write_granularity_entry.attr, &queue_nonrot_entry.attr, &queue_zoned_entry.attr, &queue_nr_zones_entry.attr, &queue_max_open_zones_entry.attr, &queue_max_active_zones_entry.attr, &queue_nomerges_entry.attr, &queue_rq_affinity_entry.attr, &queue_iostats_entry.attr, &queue_stable_writes_entry.attr, &queue_random_entry.attr, &queue_poll_entry.attr, &queue_wc_entry.attr, &queue_fua_entry.attr, &queue_dax_entry.attr, &queue_wb_lat_entry.attr, &queue_poll_delay_entry.attr, &queue_io_timeout_entry.attr, #ifdef CONFIG_BLK_DEV_THROTTLING_LOW &blk_throtl_sample_time_entry.attr, #endif &queue_virt_boundary_mask_entry.attr, NULL, }; static umode_t queue_attr_visible(struct kobject *kobj, struct attribute *attr, int n) { struct request_queue *q = container_of(kobj, struct request_queue, kobj); if (attr == &queue_io_timeout_entry.attr && (!q->mq_ops || !q->mq_ops->timeout)) return 0; if ((attr == &queue_max_open_zones_entry.attr || attr == &queue_max_active_zones_entry.attr) && !blk_queue_is_zoned(q)) return 0; return attr->mode; } static struct attribute_group queue_attr_group = { .attrs = queue_attrs, .is_visible = queue_attr_visible, }; #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr) static ssize_t queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct queue_sysfs_entry *entry = to_queue(attr); struct request_queue *q = container_of(kobj, struct request_queue, kobj); ssize_t res; if (!entry->show) return -EIO; mutex_lock(&q->sysfs_lock); res = entry->show(q, page); mutex_unlock(&q->sysfs_lock); return res; } static ssize_t queue_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct queue_sysfs_entry *entry = to_queue(attr); struct request_queue *q; ssize_t res; if (!entry->store) return -EIO; q = container_of(kobj, struct request_queue, kobj); mutex_lock(&q->sysfs_lock); res = entry->store(q, page, length); mutex_unlock(&q->sysfs_lock); return res; } static void blk_free_queue_rcu(struct rcu_head *rcu_head) { struct request_queue *q = container_of(rcu_head, struct request_queue, rcu_head); kmem_cache_free(blk_get_queue_kmem_cache(blk_queue_has_srcu(q)), q); } /** * blk_release_queue - releases all allocated resources of the request_queue * @kobj: pointer to a kobject, whose container is a request_queue * * This function releases all allocated resources of the request queue. * * The struct request_queue refcount is incremented with blk_get_queue() and * decremented with blk_put_queue(). Once the refcount reaches 0 this function * is called. * * For drivers that have a request_queue on a gendisk and added with * __device_add_disk() the refcount to request_queue will reach 0 with * the last put_disk() called by the driver. For drivers which don't use * __device_add_disk() this happens with blk_cleanup_queue(). * * Drivers exist which depend on the release of the request_queue to be * synchronous, it should not be deferred. * * Context: can sleep */ static void blk_release_queue(struct kobject *kobj) { struct request_queue *q = container_of(kobj, struct request_queue, kobj); might_sleep(); percpu_ref_exit(&q->q_usage_counter); if (q->poll_stat) blk_stat_remove_callback(q, q->poll_cb); blk_stat_free_callback(q->poll_cb); blk_free_queue_stats(q->stats); kfree(q->poll_stat); blk_queue_free_zone_bitmaps(q); if (queue_is_mq(q)) blk_mq_release(q); mutex_lock(&q->debugfs_mutex); blk_trace_shutdown(q); debugfs_remove_recursive(q->debugfs_dir); q->debugfs_dir = NULL; q->sched_debugfs_dir = NULL; mutex_unlock(&q->debugfs_mutex); bioset_exit(&q->bio_split); if (blk_queue_has_srcu(q)) cleanup_srcu_struct(q->srcu); ida_simple_remove(&blk_queue_ida, q->id); call_rcu(&q->rcu_head, blk_free_queue_rcu); } static const struct sysfs_ops queue_sysfs_ops = { .show = queue_attr_show, .store = queue_attr_store, }; struct kobj_type blk_queue_ktype = { .sysfs_ops = &queue_sysfs_ops, .release = blk_release_queue, }; /** * blk_register_queue - register a block layer queue with sysfs * @disk: Disk of which the request queue should be registered with sysfs. */ int blk_register_queue(struct gendisk *disk) { int ret; struct device *dev = disk_to_dev(disk); struct request_queue *q = disk->queue; ret = blk_trace_init_sysfs(dev); if (ret) return ret; mutex_lock(&q->sysfs_dir_lock); ret = kobject_add(&q->kobj, kobject_get(&dev->kobj), "%s", "queue"); if (ret < 0) { blk_trace_remove_sysfs(dev); goto unlock; } ret = sysfs_create_group(&q->kobj, &queue_attr_group); if (ret) { blk_trace_remove_sysfs(dev); kobject_del(&q->kobj); kobject_put(&dev->kobj); goto unlock; } if (queue_is_mq(q)) __blk_mq_register_dev(dev, q); mutex_lock(&q->sysfs_lock); mutex_lock(&q->debugfs_mutex); q->debugfs_dir = debugfs_create_dir(kobject_name(q->kobj.parent), blk_debugfs_root); if (queue_is_mq(q)) blk_mq_debugfs_register(q); mutex_unlock(&q->debugfs_mutex); ret = disk_register_independent_access_ranges(disk, NULL); if (ret) goto put_dev; if (q->elevator) { ret = elv_register_queue(q, false); if (ret) goto put_dev; } ret = blk_crypto_sysfs_register(q); if (ret) goto put_dev; blk_queue_flag_set(QUEUE_FLAG_REGISTERED, q); wbt_enable_default(q); blk_throtl_register_queue(q); /* Now everything is ready and send out KOBJ_ADD uevent */ kobject_uevent(&q->kobj, KOBJ_ADD); if (q->elevator) kobject_uevent(&q->elevator->kobj, KOBJ_ADD); mutex_unlock(&q->sysfs_lock); unlock: mutex_unlock(&q->sysfs_dir_lock); /* * SCSI probing may synchronously create and destroy a lot of * request_queues for non-existent devices. Shutting down a fully * functional queue takes measureable wallclock time as RCU grace * periods are involved. To avoid excessive latency in these * cases, a request_queue starts out in a degraded mode which is * faster to shut down and is made fully functional here as * request_queues for non-existent devices never get registered. */ if (!blk_queue_init_done(q)) { blk_queue_flag_set(QUEUE_FLAG_INIT_DONE, q); percpu_ref_switch_to_percpu(&q->q_usage_counter); } return ret; put_dev: elv_unregister_queue(q); disk_unregister_independent_access_ranges(disk); mutex_unlock(&q->sysfs_lock); mutex_unlock(&q->sysfs_dir_lock); kobject_del(&q->kobj); blk_trace_remove_sysfs(dev); kobject_put(&dev->kobj); return ret; } /** * blk_unregister_queue - counterpart of blk_register_queue() * @disk: Disk of which the request queue should be unregistered from sysfs. * * Note: the caller is responsible for guaranteeing that this function is called * after blk_register_queue() has finished. */ void blk_unregister_queue(struct gendisk *disk) { struct request_queue *q = disk->queue; if (WARN_ON(!q)) return; /* Return early if disk->queue was never registered. */ if (!blk_queue_registered(q)) return; /* * Since sysfs_remove_dir() prevents adding new directory entries * before removal of existing entries starts, protect against * concurrent elv_iosched_store() calls. */ mutex_lock(&q->sysfs_lock); blk_queue_flag_clear(QUEUE_FLAG_REGISTERED, q); mutex_unlock(&q->sysfs_lock); mutex_lock(&q->sysfs_dir_lock); /* * Remove the sysfs attributes before unregistering the queue data * structures that can be modified through sysfs. */ if (queue_is_mq(q)) blk_mq_unregister_dev(disk_to_dev(disk), q); blk_crypto_sysfs_unregister(q); blk_trace_remove_sysfs(disk_to_dev(disk)); mutex_lock(&q->sysfs_lock); elv_unregister_queue(q); disk_unregister_independent_access_ranges(disk); mutex_unlock(&q->sysfs_lock); /* Now that we've deleted all child objects, we can delete the queue. */ kobject_uevent(&q->kobj, KOBJ_REMOVE); kobject_del(&q->kobj); mutex_unlock(&q->sysfs_dir_lock); kobject_put(&disk_to_dev(disk)->kobj); }