// SPDX-License-Identifier: GPL-2.0 /* * The Kyber I/O scheduler. Controls latency by throttling queue depths using * scalable techniques. * * Copyright (C) 2017 Facebook */ #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/blk-mq.h> #include <linux/module.h> #include <linux/sbitmap.h> #include <trace/events/block.h> #include "elevator.h" #include "blk.h" #include "blk-mq.h" #include "blk-mq-debugfs.h" #include "blk-mq-sched.h" #include "blk-mq-tag.h" #define CREATE_TRACE_POINTS #include <trace/events/kyber.h> /* * Scheduling domains: the device is divided into multiple domains based on the * request type. */ enum { KYBER_READ, KYBER_WRITE, KYBER_DISCARD, KYBER_OTHER, KYBER_NUM_DOMAINS, }; static const char *kyber_domain_names[] = { [KYBER_READ] = "READ", [KYBER_WRITE] = "WRITE", [KYBER_DISCARD] = "DISCARD", [KYBER_OTHER] = "OTHER", }; enum { /* * In order to prevent starvation of synchronous requests by a flood of * asynchronous requests, we reserve 25% of requests for synchronous * operations. */ KYBER_ASYNC_PERCENT = 75, }; /* * Maximum device-wide depth for each scheduling domain. * * Even for fast devices with lots of tags like NVMe, you can saturate the * device with only a fraction of the maximum possible queue depth. So, we cap * these to a reasonable value. */ static const unsigned int kyber_depth[] = { [KYBER_READ] = 256, [KYBER_WRITE] = 128, [KYBER_DISCARD] = 64, [KYBER_OTHER] = 16, }; /* * Default latency targets for each scheduling domain. */ static const u64 kyber_latency_targets[] = { [KYBER_READ] = 2ULL * NSEC_PER_MSEC, [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC, [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC, }; /* * Batch size (number of requests we'll dispatch in a row) for each scheduling * domain. */ static const unsigned int kyber_batch_size[] = { [KYBER_READ] = 16, [KYBER_WRITE] = 8, [KYBER_DISCARD] = 1, [KYBER_OTHER] = 1, }; /* * Requests latencies are recorded in a histogram with buckets defined relative * to the target latency: * * <= 1/4 * target latency * <= 1/2 * target latency * <= 3/4 * target latency * <= target latency * <= 1 1/4 * target latency * <= 1 1/2 * target latency * <= 1 3/4 * target latency * > 1 3/4 * target latency */ enum { /* * The width of the latency histogram buckets is * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency. */ KYBER_LATENCY_SHIFT = 2, /* * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency, * thus, "good". */ KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT, /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */ KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT, }; /* * We measure both the total latency and the I/O latency (i.e., latency after * submitting to the device). */ enum { KYBER_TOTAL_LATENCY, KYBER_IO_LATENCY, }; static const char *kyber_latency_type_names[] = { [KYBER_TOTAL_LATENCY] = "total", [KYBER_IO_LATENCY] = "I/O", }; /* * Per-cpu latency histograms: total latency and I/O latency for each scheduling * domain except for KYBER_OTHER. */ struct kyber_cpu_latency { atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; }; /* * There is a same mapping between ctx & hctx and kcq & khd, * we use request->mq_ctx->index_hw to index the kcq in khd. */ struct kyber_ctx_queue { /* * Used to ensure operations on rq_list and kcq_map to be an atmoic one. * Also protect the rqs on rq_list when merge. */ spinlock_t lock; struct list_head rq_list[KYBER_NUM_DOMAINS]; } ____cacheline_aligned_in_smp; struct kyber_queue_data { struct request_queue *q; dev_t dev; /* * Each scheduling domain has a limited number of in-flight requests * device-wide, limited by these tokens. */ struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; /* * Async request percentage, converted to per-word depth for * sbitmap_get_shallow(). */ unsigned int async_depth; struct kyber_cpu_latency __percpu *cpu_latency; /* Timer for stats aggregation and adjusting domain tokens. */ struct timer_list timer; unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS]; unsigned long latency_timeout[KYBER_OTHER]; int domain_p99[KYBER_OTHER]; /* Target latencies in nanoseconds. */ u64 latency_targets[KYBER_OTHER]; }; struct kyber_hctx_data { spinlock_t lock; struct list_head rqs[KYBER_NUM_DOMAINS]; unsigned int cur_domain; unsigned int batching; struct kyber_ctx_queue *kcqs; struct sbitmap kcq_map[KYBER_NUM_DOMAINS]; struct sbq_wait domain_wait[KYBER_NUM_DOMAINS]; struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS]; atomic_t wait_index[KYBER_NUM_DOMAINS]; }; static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags, void *key); static unsigned int kyber_sched_domain(blk_opf_t opf) { switch (opf & REQ_OP_MASK) { case REQ_OP_READ: return KYBER_READ; case REQ_OP_WRITE: return KYBER_WRITE; case REQ_OP_DISCARD: return KYBER_DISCARD; default: return KYBER_OTHER; } } static void flush_latency_buckets(struct kyber_queue_data *kqd, struct kyber_cpu_latency *cpu_latency, unsigned int sched_domain, unsigned int type) { unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type]; unsigned int bucket; for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0); } /* * Calculate the histogram bucket with the given percentile rank, or -1 if there * aren't enough samples yet. */ static int calculate_percentile(struct kyber_queue_data *kqd, unsigned int sched_domain, unsigned int type, unsigned int percentile) { unsigned int *buckets = kqd->latency_buckets[sched_domain][type]; unsigned int bucket, samples = 0, percentile_samples; for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++) samples += buckets[bucket]; if (!samples) return -1; /* * We do the calculation once we have 500 samples or one second passes * since the first sample was recorded, whichever comes first. */ if (!kqd->latency_timeout[sched_domain]) kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL); if (samples < 500 && time_is_after_jiffies(kqd->latency_timeout[sched_domain])) { return -1; } kqd->latency_timeout[sched_domain] = 0; percentile_samples = DIV_ROUND_UP(samples * percentile, 100); for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) { if (buckets[bucket] >= percentile_samples) break; percentile_samples -= buckets[bucket]; } memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type])); trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain], kyber_latency_type_names[type], percentile, bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples); return bucket; } static void kyber_resize_domain(struct kyber_queue_data *kqd, unsigned int sched_domain, unsigned int depth) { depth = clamp(depth, 1U, kyber_depth[sched_domain]); if (depth != kqd->domain_tokens[sched_domain].sb.depth) { sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain], depth); } } static void kyber_timer_fn(struct timer_list *t) { struct kyber_queue_data *kqd = from_timer(kqd, t, timer); unsigned int sched_domain; int cpu; bool bad = false; /* Sum all of the per-cpu latency histograms. */ for_each_online_cpu(cpu) { struct kyber_cpu_latency *cpu_latency; cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu); for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { flush_latency_buckets(kqd, cpu_latency, sched_domain, KYBER_TOTAL_LATENCY); flush_latency_buckets(kqd, cpu_latency, sched_domain, KYBER_IO_LATENCY); } } /* * Check if any domains have a high I/O latency, which might indicate * congestion in the device. Note that we use the p90; we don't want to * be too sensitive to outliers here. */ for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { int p90; p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY, 90); if (p90 >= KYBER_GOOD_BUCKETS) bad = true; } /* * Adjust the scheduling domain depths. If we determined that there was * congestion, we throttle all domains with good latencies. Either way, * we ease up on throttling domains with bad latencies. */ for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) { unsigned int orig_depth, depth; int p99; p99 = calculate_percentile(kqd, sched_domain, KYBER_TOTAL_LATENCY, 99); /* * This is kind of subtle: different domains will not * necessarily have enough samples to calculate the latency * percentiles during the same window, so we have to remember * the p99 for the next time we observe congestion; once we do, * we don't want to throttle again until we get more data, so we * reset it to -1. */ if (bad) { if (p99 < 0) p99 = kqd->domain_p99[sched_domain]; kqd->domain_p99[sched_domain] = -1; } else if (p99 >= 0) { kqd->domain_p99[sched_domain] = p99; } if (p99 < 0) continue; /* * If this domain has bad latency, throttle less. Otherwise, * throttle more iff we determined that there is congestion. * * The new depth is scaled linearly with the p99 latency vs the * latency target. E.g., if the p99 is 3/4 of the target, then * we throttle down to 3/4 of the current depth, and if the p99 * is 2x the target, then we double the depth. */ if (bad || p99 >= KYBER_GOOD_BUCKETS) { orig_depth = kqd->domain_tokens[sched_domain].sb.depth; depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT; kyber_resize_domain(kqd, sched_domain, depth); } } } static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) { struct kyber_queue_data *kqd; int ret = -ENOMEM; int i; kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); if (!kqd) goto err; kqd->q = q; kqd->dev = disk_devt(q->disk); kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency, GFP_KERNEL | __GFP_ZERO); if (!kqd->cpu_latency) goto err_kqd; timer_setup(&kqd->timer, kyber_timer_fn, 0); for (i = 0; i < KYBER_NUM_DOMAINS; i++) { WARN_ON(!kyber_depth[i]); WARN_ON(!kyber_batch_size[i]); ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], kyber_depth[i], -1, false, GFP_KERNEL, q->node); if (ret) { while (--i >= 0) sbitmap_queue_free(&kqd->domain_tokens[i]); goto err_buckets; } } for (i = 0; i < KYBER_OTHER; i++) { kqd->domain_p99[i] = -1; kqd->latency_targets[i] = kyber_latency_targets[i]; } return kqd; err_buckets: free_percpu(kqd->cpu_latency); err_kqd: kfree(kqd); err: return ERR_PTR(ret); } static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) { struct kyber_queue_data *kqd; struct elevator_queue *eq; eq = elevator_alloc(q, e); if (!eq) return -ENOMEM; kqd = kyber_queue_data_alloc(q); if (IS_ERR(kqd)) { kobject_put(&eq->kobj); return PTR_ERR(kqd); } blk_stat_enable_accounting(q); blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q); eq->elevator_data = kqd; q->elevator = eq; return 0; } static void kyber_exit_sched(struct elevator_queue *e) { struct kyber_queue_data *kqd = e->elevator_data; int i; timer_shutdown_sync(&kqd->timer); blk_stat_disable_accounting(kqd->q); for (i = 0; i < KYBER_NUM_DOMAINS; i++) sbitmap_queue_free(&kqd->domain_tokens[i]); free_percpu(kqd->cpu_latency); kfree(kqd); } static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq) { unsigned int i; spin_lock_init(&kcq->lock); for (i = 0; i < KYBER_NUM_DOMAINS; i++) INIT_LIST_HEAD(&kcq->rq_list[i]); } static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx) { struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; struct blk_mq_tags *tags = hctx->sched_tags; unsigned int shift = tags->bitmap_tags.sb.shift; kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth); } static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct kyber_hctx_data *khd; int i; khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); if (!khd) return -ENOMEM; khd->kcqs = kmalloc_array_node(hctx->nr_ctx, sizeof(struct kyber_ctx_queue), GFP_KERNEL, hctx->numa_node); if (!khd->kcqs) goto err_khd; for (i = 0; i < hctx->nr_ctx; i++) kyber_ctx_queue_init(&khd->kcqs[i]); for (i = 0; i < KYBER_NUM_DOMAINS; i++) { if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx, ilog2(8), GFP_KERNEL, hctx->numa_node, false, false)) { while (--i >= 0) sbitmap_free(&khd->kcq_map[i]); goto err_kcqs; } } spin_lock_init(&khd->lock); for (i = 0; i < KYBER_NUM_DOMAINS; i++) { INIT_LIST_HEAD(&khd->rqs[i]); khd->domain_wait[i].sbq = NULL; init_waitqueue_func_entry(&khd->domain_wait[i].wait, kyber_domain_wake); khd->domain_wait[i].wait.private = hctx; INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry); atomic_set(&khd->wait_index[i], 0); } khd->cur_domain = 0; khd->batching = 0; hctx->sched_data = khd; kyber_depth_updated(hctx); return 0; err_kcqs: kfree(khd->kcqs); err_khd: kfree(khd); return -ENOMEM; } static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct kyber_hctx_data *khd = hctx->sched_data; int i; for (i = 0; i < KYBER_NUM_DOMAINS; i++) sbitmap_free(&khd->kcq_map[i]); kfree(khd->kcqs); kfree(hctx->sched_data); } static int rq_get_domain_token(struct request *rq) { return (long)rq->elv.priv[0]; } static void rq_set_domain_token(struct request *rq, int token) { rq->elv.priv[0] = (void *)(long)token; } static void rq_clear_domain_token(struct kyber_queue_data *kqd, struct request *rq) { unsigned int sched_domain; int nr; nr = rq_get_domain_token(rq); if (nr != -1) { sched_domain = kyber_sched_domain(rq->cmd_flags); sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, rq->mq_ctx->cpu); } } static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data) { /* * We use the scheduler tags as per-hardware queue queueing tokens. * Async requests can be limited at this stage. */ if (!op_is_sync(opf)) { struct kyber_queue_data *kqd = data->q->elevator->elevator_data; data->shallow_depth = kqd->async_depth; } } static bool kyber_bio_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); struct kyber_hctx_data *khd = hctx->sched_data; struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]]; unsigned int sched_domain = kyber_sched_domain(bio->bi_opf); struct list_head *rq_list = &kcq->rq_list[sched_domain]; bool merged; spin_lock(&kcq->lock); merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs); spin_unlock(&kcq->lock); return merged; } static void kyber_prepare_request(struct request *rq) { rq_set_domain_token(rq, -1); } static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx, struct list_head *rq_list, bool at_head) { struct kyber_hctx_data *khd = hctx->sched_data; struct request *rq, *next; list_for_each_entry_safe(rq, next, rq_list, queuelist) { unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags); struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]]; struct list_head *head = &kcq->rq_list[sched_domain]; spin_lock(&kcq->lock); trace_block_rq_insert(rq); if (at_head) list_move(&rq->queuelist, head); else list_move_tail(&rq->queuelist, head); sbitmap_set_bit(&khd->kcq_map[sched_domain], rq->mq_ctx->index_hw[hctx->type]); spin_unlock(&kcq->lock); } } static void kyber_finish_request(struct request *rq) { struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; rq_clear_domain_token(kqd, rq); } static void add_latency_sample(struct kyber_cpu_latency *cpu_latency, unsigned int sched_domain, unsigned int type, u64 target, u64 latency) { unsigned int bucket; u64 divisor; if (latency > 0) { divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1); bucket = min_t(unsigned int, div64_u64(latency - 1, divisor), KYBER_LATENCY_BUCKETS - 1); } else { bucket = 0; } atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]); } static void kyber_completed_request(struct request *rq, u64 now) { struct kyber_queue_data *kqd = rq->q->elevator->elevator_data; struct kyber_cpu_latency *cpu_latency; unsigned int sched_domain; u64 target; sched_domain = kyber_sched_domain(rq->cmd_flags); if (sched_domain == KYBER_OTHER) return; cpu_latency = get_cpu_ptr(kqd->cpu_latency); target = kqd->latency_targets[sched_domain]; add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY, target, now - rq->start_time_ns); add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target, now - rq->io_start_time_ns); put_cpu_ptr(kqd->cpu_latency); timer_reduce(&kqd->timer, jiffies + HZ / 10); } struct flush_kcq_data { struct kyber_hctx_data *khd; unsigned int sched_domain; struct list_head *list; }; static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data) { struct flush_kcq_data *flush_data = data; struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr]; spin_lock(&kcq->lock); list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain], flush_data->list); sbitmap_clear_bit(sb, bitnr); spin_unlock(&kcq->lock); return true; } static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd, unsigned int sched_domain, struct list_head *list) { struct flush_kcq_data data = { .khd = khd, .sched_domain = sched_domain, .list = list, }; sbitmap_for_each_set(&khd->kcq_map[sched_domain], flush_busy_kcq, &data); } static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags, void *key) { struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private); struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait); sbitmap_del_wait_queue(wait); blk_mq_run_hw_queue(hctx, true); return 1; } static int kyber_get_domain_token(struct kyber_queue_data *kqd, struct kyber_hctx_data *khd, struct blk_mq_hw_ctx *hctx) { unsigned int sched_domain = khd->cur_domain; struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; struct sbq_wait *wait = &khd->domain_wait[sched_domain]; struct sbq_wait_state *ws; int nr; nr = __sbitmap_queue_get(domain_tokens); /* * If we failed to get a domain token, make sure the hardware queue is * run when one becomes available. Note that this is serialized on * khd->lock, but we still need to be careful about the waker. */ if (nr < 0 && list_empty_careful(&wait->wait.entry)) { ws = sbq_wait_ptr(domain_tokens, &khd->wait_index[sched_domain]); khd->domain_ws[sched_domain] = ws; sbitmap_add_wait_queue(domain_tokens, ws, wait); /* * Try again in case a token was freed before we got on the wait * queue. */ nr = __sbitmap_queue_get(domain_tokens); } /* * If we got a token while we were on the wait queue, remove ourselves * from the wait queue to ensure that all wake ups make forward * progress. It's possible that the waker already deleted the entry * between the !list_empty_careful() check and us grabbing the lock, but * list_del_init() is okay with that. */ if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) { ws = khd->domain_ws[sched_domain]; spin_lock_irq(&ws->wait.lock); sbitmap_del_wait_queue(wait); spin_unlock_irq(&ws->wait.lock); } return nr; } static struct request * kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, struct kyber_hctx_data *khd, struct blk_mq_hw_ctx *hctx) { struct list_head *rqs; struct request *rq; int nr; rqs = &khd->rqs[khd->cur_domain]; /* * If we already have a flushed request, then we just need to get a * token for it. Otherwise, if there are pending requests in the kcqs, * flush the kcqs, but only if we can get a token. If not, we should * leave the requests in the kcqs so that they can be merged. Note that * khd->lock serializes the flushes, so if we observed any bit set in * the kcq_map, we will always get a request. */ rq = list_first_entry_or_null(rqs, struct request, queuelist); if (rq) { nr = kyber_get_domain_token(kqd, khd, hctx); if (nr >= 0) { khd->batching++; rq_set_domain_token(rq, nr); list_del_init(&rq->queuelist); return rq; } else { trace_kyber_throttled(kqd->dev, kyber_domain_names[khd->cur_domain]); } } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) { nr = kyber_get_domain_token(kqd, khd, hctx); if (nr >= 0) { kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs); rq = list_first_entry(rqs, struct request, queuelist); khd->batching++; rq_set_domain_token(rq, nr); list_del_init(&rq->queuelist); return rq; } else { trace_kyber_throttled(kqd->dev, kyber_domain_names[khd->cur_domain]); } } /* There were either no pending requests or no tokens. */ return NULL; } static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) { struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; struct kyber_hctx_data *khd = hctx->sched_data; struct request *rq; int i; spin_lock(&khd->lock); /* * First, if we are still entitled to batch, try to dispatch a request * from the batch. */ if (khd->batching < kyber_batch_size[khd->cur_domain]) { rq = kyber_dispatch_cur_domain(kqd, khd, hctx); if (rq) goto out; } /* * Either, * 1. We were no longer entitled to a batch. * 2. The domain we were batching didn't have any requests. * 3. The domain we were batching was out of tokens. * * Start another batch. Note that this wraps back around to the original * domain if no other domains have requests or tokens. */ khd->batching = 0; for (i = 0; i < KYBER_NUM_DOMAINS; i++) { if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) khd->cur_domain = 0; else khd->cur_domain++; rq = kyber_dispatch_cur_domain(kqd, khd, hctx); if (rq) goto out; } rq = NULL; out: spin_unlock(&khd->lock); return rq; } static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) { struct kyber_hctx_data *khd = hctx->sched_data; int i; for (i = 0; i < KYBER_NUM_DOMAINS; i++) { if (!list_empty_careful(&khd->rqs[i]) || sbitmap_any_bit_set(&khd->kcq_map[i])) return true; } return false; } #define KYBER_LAT_SHOW_STORE(domain, name) \ static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \ char *page) \ { \ struct kyber_queue_data *kqd = e->elevator_data; \ \ return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \ } \ \ static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \ const char *page, size_t count) \ { \ struct kyber_queue_data *kqd = e->elevator_data; \ unsigned long long nsec; \ int ret; \ \ ret = kstrtoull(page, 10, &nsec); \ if (ret) \ return ret; \ \ kqd->latency_targets[domain] = nsec; \ \ return count; \ } KYBER_LAT_SHOW_STORE(KYBER_READ, read); KYBER_LAT_SHOW_STORE(KYBER_WRITE, write); #undef KYBER_LAT_SHOW_STORE #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) static struct elv_fs_entry kyber_sched_attrs[] = { KYBER_LAT_ATTR(read), KYBER_LAT_ATTR(write), __ATTR_NULL }; #undef KYBER_LAT_ATTR #ifdef CONFIG_BLK_DEBUG_FS #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \ static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \ { \ struct request_queue *q = data; \ struct kyber_queue_data *kqd = q->elevator->elevator_data; \ \ sbitmap_queue_show(&kqd->domain_tokens[domain], m); \ return 0; \ } \ \ static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \ __acquires(&khd->lock) \ { \ struct blk_mq_hw_ctx *hctx = m->private; \ struct kyber_hctx_data *khd = hctx->sched_data; \ \ spin_lock(&khd->lock); \ return seq_list_start(&khd->rqs[domain], *pos); \ } \ \ static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \ loff_t *pos) \ { \ struct blk_mq_hw_ctx *hctx = m->private; \ struct kyber_hctx_data *khd = hctx->sched_data; \ \ return seq_list_next(v, &khd->rqs[domain], pos); \ } \ \ static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \ __releases(&khd->lock) \ { \ struct blk_mq_hw_ctx *hctx = m->private; \ struct kyber_hctx_data *khd = hctx->sched_data; \ \ spin_unlock(&khd->lock); \ } \ \ static const struct seq_operations kyber_##name##_rqs_seq_ops = { \ .start = kyber_##name##_rqs_start, \ .next = kyber_##name##_rqs_next, \ .stop = kyber_##name##_rqs_stop, \ .show = blk_mq_debugfs_rq_show, \ }; \ \ static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \ { \ struct blk_mq_hw_ctx *hctx = data; \ struct kyber_hctx_data *khd = hctx->sched_data; \ wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \ \ seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \ return 0; \ } KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read) KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write) KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard) KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other) #undef KYBER_DEBUGFS_DOMAIN_ATTRS static int kyber_async_depth_show(void *data, struct seq_file *m) { struct request_queue *q = data; struct kyber_queue_data *kqd = q->elevator->elevator_data; seq_printf(m, "%u\n", kqd->async_depth); return 0; } static int kyber_cur_domain_show(void *data, struct seq_file *m) { struct blk_mq_hw_ctx *hctx = data; struct kyber_hctx_data *khd = hctx->sched_data; seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]); return 0; } static int kyber_batching_show(void *data, struct seq_file *m) { struct blk_mq_hw_ctx *hctx = data; struct kyber_hctx_data *khd = hctx->sched_data; seq_printf(m, "%u\n", khd->batching); return 0; } #define KYBER_QUEUE_DOMAIN_ATTRS(name) \ {#name "_tokens", 0400, kyber_##name##_tokens_show} static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = { KYBER_QUEUE_DOMAIN_ATTRS(read), KYBER_QUEUE_DOMAIN_ATTRS(write), KYBER_QUEUE_DOMAIN_ATTRS(discard), KYBER_QUEUE_DOMAIN_ATTRS(other), {"async_depth", 0400, kyber_async_depth_show}, {}, }; #undef KYBER_QUEUE_DOMAIN_ATTRS #define KYBER_HCTX_DOMAIN_ATTRS(name) \ {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \ {#name "_waiting", 0400, kyber_##name##_waiting_show} static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = { KYBER_HCTX_DOMAIN_ATTRS(read), KYBER_HCTX_DOMAIN_ATTRS(write), KYBER_HCTX_DOMAIN_ATTRS(discard), KYBER_HCTX_DOMAIN_ATTRS(other), {"cur_domain", 0400, kyber_cur_domain_show}, {"batching", 0400, kyber_batching_show}, {}, }; #undef KYBER_HCTX_DOMAIN_ATTRS #endif static struct elevator_type kyber_sched = { .ops = { .init_sched = kyber_init_sched, .exit_sched = kyber_exit_sched, .init_hctx = kyber_init_hctx, .exit_hctx = kyber_exit_hctx, .limit_depth = kyber_limit_depth, .bio_merge = kyber_bio_merge, .prepare_request = kyber_prepare_request, .insert_requests = kyber_insert_requests, .finish_request = kyber_finish_request, .requeue_request = kyber_finish_request, .completed_request = kyber_completed_request, .dispatch_request = kyber_dispatch_request, .has_work = kyber_has_work, .depth_updated = kyber_depth_updated, }, #ifdef CONFIG_BLK_DEBUG_FS .queue_debugfs_attrs = kyber_queue_debugfs_attrs, .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs, #endif .elevator_attrs = kyber_sched_attrs, .elevator_name = "kyber", .elevator_owner = THIS_MODULE, }; static int __init kyber_init(void) { return elv_register(&kyber_sched); } static void __exit kyber_exit(void) { elv_unregister(&kyber_sched); } module_init(kyber_init); module_exit(kyber_exit); MODULE_AUTHOR("Omar Sandoval"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Kyber I/O scheduler");