// SPDX-License-Identifier: GPL-2.0 #define pr_fmt(fmt) "ASYM-TPM: "fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TPM_ORD_FLUSHSPECIFIC 186 #define TPM_ORD_LOADKEY2 65 #define TPM_ORD_UNBIND 30 #define TPM_ORD_SIGN 60 #define TPM_LOADKEY2_SIZE 59 #define TPM_FLUSHSPECIFIC_SIZE 18 #define TPM_UNBIND_SIZE 63 #define TPM_SIGN_SIZE 63 #define TPM_RT_KEY 0x00000001 /* * Load a TPM key from the blob provided by userspace */ static int tpm_loadkey2(struct tpm1_buf *tb, uint32_t keyhandle, unsigned char *keyauth, const unsigned char *keyblob, int keybloblen, uint32_t *newhandle) { unsigned char nonceodd[TPM_NONCE_SIZE]; unsigned char enonce[TPM_NONCE_SIZE]; unsigned char authdata[SHA1_DIGEST_SIZE]; uint32_t authhandle = 0; unsigned char cont = 0; uint32_t ordinal; int ret; ordinal = htonl(TPM_ORD_LOADKEY2); /* session for loading the key */ ret = oiap(tb, &authhandle, enonce); if (ret < 0) { pr_info("oiap failed (%d)\n", ret); return ret; } /* generate odd nonce */ ret = tpm_get_random(NULL, nonceodd, TPM_NONCE_SIZE); if (ret < 0) { pr_info("tpm_get_random failed (%d)\n", ret); return ret; } /* calculate authorization HMAC value */ ret = TSS_authhmac(authdata, keyauth, SHA1_DIGEST_SIZE, enonce, nonceodd, cont, sizeof(uint32_t), &ordinal, keybloblen, keyblob, 0, 0); if (ret < 0) return ret; /* build the request buffer */ INIT_BUF(tb); store16(tb, TPM_TAG_RQU_AUTH1_COMMAND); store32(tb, TPM_LOADKEY2_SIZE + keybloblen); store32(tb, TPM_ORD_LOADKEY2); store32(tb, keyhandle); storebytes(tb, keyblob, keybloblen); store32(tb, authhandle); storebytes(tb, nonceodd, TPM_NONCE_SIZE); store8(tb, cont); storebytes(tb, authdata, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE); if (ret < 0) { pr_info("authhmac failed (%d)\n", ret); return ret; } ret = TSS_checkhmac1(tb->data, ordinal, nonceodd, keyauth, SHA1_DIGEST_SIZE, 0, 0); if (ret < 0) { pr_info("TSS_checkhmac1 failed (%d)\n", ret); return ret; } *newhandle = LOAD32(tb->data, TPM_DATA_OFFSET); return 0; } /* * Execute the FlushSpecific TPM command */ static int tpm_flushspecific(struct tpm1_buf *tb, uint32_t handle) { INIT_BUF(tb); store16(tb, TPM_TAG_RQU_COMMAND); store32(tb, TPM_FLUSHSPECIFIC_SIZE); store32(tb, TPM_ORD_FLUSHSPECIFIC); store32(tb, handle); store32(tb, TPM_RT_KEY); return trusted_tpm_send(tb->data, MAX_BUF_SIZE); } /* * Decrypt a blob provided by userspace using a specific key handle. * The handle is a well known handle or previously loaded by e.g. LoadKey2 */ static int tpm_unbind(struct tpm1_buf *tb, uint32_t keyhandle, unsigned char *keyauth, const unsigned char *blob, uint32_t bloblen, void *out, uint32_t outlen) { unsigned char nonceodd[TPM_NONCE_SIZE]; unsigned char enonce[TPM_NONCE_SIZE]; unsigned char authdata[SHA1_DIGEST_SIZE]; uint32_t authhandle = 0; unsigned char cont = 0; uint32_t ordinal; uint32_t datalen; int ret; ordinal = htonl(TPM_ORD_UNBIND); datalen = htonl(bloblen); /* session for loading the key */ ret = oiap(tb, &authhandle, enonce); if (ret < 0) { pr_info("oiap failed (%d)\n", ret); return ret; } /* generate odd nonce */ ret = tpm_get_random(NULL, nonceodd, TPM_NONCE_SIZE); if (ret < 0) { pr_info("tpm_get_random failed (%d)\n", ret); return ret; } /* calculate authorization HMAC value */ ret = TSS_authhmac(authdata, keyauth, SHA1_DIGEST_SIZE, enonce, nonceodd, cont, sizeof(uint32_t), &ordinal, sizeof(uint32_t), &datalen, bloblen, blob, 0, 0); if (ret < 0) return ret; /* build the request buffer */ INIT_BUF(tb); store16(tb, TPM_TAG_RQU_AUTH1_COMMAND); store32(tb, TPM_UNBIND_SIZE + bloblen); store32(tb, TPM_ORD_UNBIND); store32(tb, keyhandle); store32(tb, bloblen); storebytes(tb, blob, bloblen); store32(tb, authhandle); storebytes(tb, nonceodd, TPM_NONCE_SIZE); store8(tb, cont); storebytes(tb, authdata, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE); if (ret < 0) { pr_info("authhmac failed (%d)\n", ret); return ret; } datalen = LOAD32(tb->data, TPM_DATA_OFFSET); ret = TSS_checkhmac1(tb->data, ordinal, nonceodd, keyauth, SHA1_DIGEST_SIZE, sizeof(uint32_t), TPM_DATA_OFFSET, datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0, 0); if (ret < 0) { pr_info("TSS_checkhmac1 failed (%d)\n", ret); return ret; } memcpy(out, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), min(outlen, datalen)); return datalen; } /* * Sign a blob provided by userspace (that has had the hash function applied) * using a specific key handle. The handle is assumed to have been previously * loaded by e.g. LoadKey2. * * Note that the key signature scheme of the used key should be set to * TPM_SS_RSASSAPKCS1v15_DER. This allows the hashed input to be of any size * up to key_length_in_bytes - 11 and not be limited to size 20 like the * TPM_SS_RSASSAPKCS1v15_SHA1 signature scheme. */ static int tpm_sign(struct tpm1_buf *tb, uint32_t keyhandle, unsigned char *keyauth, const unsigned char *blob, uint32_t bloblen, void *out, uint32_t outlen) { unsigned char nonceodd[TPM_NONCE_SIZE]; unsigned char enonce[TPM_NONCE_SIZE]; unsigned char authdata[SHA1_DIGEST_SIZE]; uint32_t authhandle = 0; unsigned char cont = 0; uint32_t ordinal; uint32_t datalen; int ret; ordinal = htonl(TPM_ORD_SIGN); datalen = htonl(bloblen); /* session for loading the key */ ret = oiap(tb, &authhandle, enonce); if (ret < 0) { pr_info("oiap failed (%d)\n", ret); return ret; } /* generate odd nonce */ ret = tpm_get_random(NULL, nonceodd, TPM_NONCE_SIZE); if (ret < 0) { pr_info("tpm_get_random failed (%d)\n", ret); return ret; } /* calculate authorization HMAC value */ ret = TSS_authhmac(authdata, keyauth, SHA1_DIGEST_SIZE, enonce, nonceodd, cont, sizeof(uint32_t), &ordinal, sizeof(uint32_t), &datalen, bloblen, blob, 0, 0); if (ret < 0) return ret; /* build the request buffer */ INIT_BUF(tb); store16(tb, TPM_TAG_RQU_AUTH1_COMMAND); store32(tb, TPM_SIGN_SIZE + bloblen); store32(tb, TPM_ORD_SIGN); store32(tb, keyhandle); store32(tb, bloblen); storebytes(tb, blob, bloblen); store32(tb, authhandle); storebytes(tb, nonceodd, TPM_NONCE_SIZE); store8(tb, cont); storebytes(tb, authdata, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE); if (ret < 0) { pr_info("authhmac failed (%d)\n", ret); return ret; } datalen = LOAD32(tb->data, TPM_DATA_OFFSET); ret = TSS_checkhmac1(tb->data, ordinal, nonceodd, keyauth, SHA1_DIGEST_SIZE, sizeof(uint32_t), TPM_DATA_OFFSET, datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0, 0); if (ret < 0) { pr_info("TSS_checkhmac1 failed (%d)\n", ret); return ret; } memcpy(out, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), min(datalen, outlen)); return datalen; } /* Room to fit two u32 zeros for algo id and parameters length. */ #define SETKEY_PARAMS_SIZE (sizeof(u32) * 2) /* * Maximum buffer size for the BER/DER encoded public key. The public key * is of the form SEQUENCE { INTEGER n, INTEGER e } where n is a maximum 2048 * bit key and e is usually 65537 * The encoding overhead is: * - max 4 bytes for SEQUENCE * - max 4 bytes for INTEGER n type/length * - 257 bytes of n * - max 2 bytes for INTEGER e type/length * - 3 bytes of e * - 4+4 of zeros for set_pub_key parameters (SETKEY_PARAMS_SIZE) */ #define PUB_KEY_BUF_SIZE (4 + 4 + 257 + 2 + 3 + SETKEY_PARAMS_SIZE) /* * Provide a part of a description of the key for /proc/keys. */ static void asym_tpm_describe(const struct key *asymmetric_key, struct seq_file *m) { struct tpm_key *tk = asymmetric_key->payload.data[asym_crypto]; if (!tk) return; seq_printf(m, "TPM1.2/Blob"); } static void asym_tpm_destroy(void *payload0, void *payload3) { struct tpm_key *tk = payload0; if (!tk) return; kfree(tk->blob); tk->blob_len = 0; kfree(tk); } /* How many bytes will it take to encode the length */ static inline uint32_t definite_length(uint32_t len) { if (len <= 127) return 1; if (len <= 255) return 2; return 3; } static inline uint8_t *encode_tag_length(uint8_t *buf, uint8_t tag, uint32_t len) { *buf++ = tag; if (len <= 127) { buf[0] = len; return buf + 1; } if (len <= 255) { buf[0] = 0x81; buf[1] = len; return buf + 2; } buf[0] = 0x82; put_unaligned_be16(len, buf + 1); return buf + 3; } static uint32_t derive_pub_key(const void *pub_key, uint32_t len, uint8_t *buf) { uint8_t *cur = buf; uint32_t n_len = definite_length(len) + 1 + len + 1; uint32_t e_len = definite_length(3) + 1 + 3; uint8_t e[3] = { 0x01, 0x00, 0x01 }; /* SEQUENCE */ cur = encode_tag_length(cur, 0x30, n_len + e_len); /* INTEGER n */ cur = encode_tag_length(cur, 0x02, len + 1); cur[0] = 0x00; memcpy(cur + 1, pub_key, len); cur += len + 1; cur = encode_tag_length(cur, 0x02, sizeof(e)); memcpy(cur, e, sizeof(e)); cur += sizeof(e); /* Zero parameters to satisfy set_pub_key ABI. */ memset(cur, 0, SETKEY_PARAMS_SIZE); return cur - buf; } /* * Determine the crypto algorithm name. */ static int determine_akcipher(const char *encoding, const char *hash_algo, char alg_name[CRYPTO_MAX_ALG_NAME]) { if (strcmp(encoding, "pkcs1") == 0) { if (!hash_algo) { strcpy(alg_name, "pkcs1pad(rsa)"); return 0; } if (snprintf(alg_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(rsa,%s)", hash_algo) >= CRYPTO_MAX_ALG_NAME) return -EINVAL; return 0; } if (strcmp(encoding, "raw") == 0) { strcpy(alg_name, "rsa"); return 0; } return -ENOPKG; } /* * Query information about a key. */ static int tpm_key_query(const struct kernel_pkey_params *params, struct kernel_pkey_query *info) { struct tpm_key *tk = params->key->payload.data[asym_crypto]; int ret; char alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_akcipher *tfm; uint8_t der_pub_key[PUB_KEY_BUF_SIZE]; uint32_t der_pub_key_len; int len; /* TPM only works on private keys, public keys still done in software */ ret = determine_akcipher(params->encoding, params->hash_algo, alg_name); if (ret < 0) return ret; tfm = crypto_alloc_akcipher(alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); der_pub_key_len = derive_pub_key(tk->pub_key, tk->pub_key_len, der_pub_key); ret = crypto_akcipher_set_pub_key(tfm, der_pub_key, der_pub_key_len); if (ret < 0) goto error_free_tfm; len = crypto_akcipher_maxsize(tfm); info->key_size = tk->key_len; info->max_data_size = tk->key_len / 8; info->max_sig_size = len; info->max_enc_size = len; info->max_dec_size = tk->key_len / 8; info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT | KEYCTL_SUPPORTS_DECRYPT | KEYCTL_SUPPORTS_VERIFY | KEYCTL_SUPPORTS_SIGN; ret = 0; error_free_tfm: crypto_free_akcipher(tfm); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } /* * Encryption operation is performed with the public key. Hence it is done * in software */ static int tpm_key_encrypt(struct tpm_key *tk, struct kernel_pkey_params *params, const void *in, void *out) { char alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_akcipher *tfm; struct akcipher_request *req; struct crypto_wait cwait; struct scatterlist in_sg, out_sg; uint8_t der_pub_key[PUB_KEY_BUF_SIZE]; uint32_t der_pub_key_len; int ret; pr_devel("==>%s()\n", __func__); ret = determine_akcipher(params->encoding, params->hash_algo, alg_name); if (ret < 0) return ret; tfm = crypto_alloc_akcipher(alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); der_pub_key_len = derive_pub_key(tk->pub_key, tk->pub_key_len, der_pub_key); ret = crypto_akcipher_set_pub_key(tfm, der_pub_key, der_pub_key_len); if (ret < 0) goto error_free_tfm; req = akcipher_request_alloc(tfm, GFP_KERNEL); if (!req) goto error_free_tfm; sg_init_one(&in_sg, in, params->in_len); sg_init_one(&out_sg, out, params->out_len); akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len, params->out_len); crypto_init_wait(&cwait); akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &cwait); ret = crypto_akcipher_encrypt(req); ret = crypto_wait_req(ret, &cwait); if (ret == 0) ret = req->dst_len; akcipher_request_free(req); error_free_tfm: crypto_free_akcipher(tfm); pr_devel("<==%s() = %d\n", __func__, ret); return ret; } /* * Decryption operation is performed with the private key in the TPM. */ static int tpm_key_decrypt(struct tpm_key *tk, struct kernel_pkey_params *params, const void *in, void *out) { struct tpm1_buf *tb; uint32_t keyhandle; uint8_t srkauth[SHA1_DIGEST_SIZE]; uint8_t keyauth[SHA1_DIGEST_SIZE]; int r; pr_devel("==>%s()\n", __func__); if (params->hash_algo) return -ENOPKG; if (strcmp(params->encoding, "pkcs1")) return -ENOPKG; tb = kzalloc(sizeof(*tb), GFP_KERNEL); if (!tb) return -ENOMEM; /* TODO: Handle a non-all zero SRK authorization */ memset(srkauth, 0, sizeof(srkauth)); r = tpm_loadkey2(tb, SRKHANDLE, srkauth, tk->blob, tk->blob_len, &keyhandle); if (r < 0) { pr_devel("loadkey2 failed (%d)\n", r); goto error; } /* TODO: Handle a non-all zero key authorization */ memset(keyauth, 0, sizeof(keyauth)); r = tpm_unbind(tb, keyhandle, keyauth, in, params->in_len, out, params->out_len); if (r < 0) pr_devel("tpm_unbind failed (%d)\n", r); if (tpm_flushspecific(tb, keyhandle) < 0) pr_devel("flushspecific failed (%d)\n", r); error: kzfree(tb); pr_devel("<==%s() = %d\n", __func__, r); return r; } /* * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. */ static const u8 digest_info_md5[] = { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 0x05, 0x00, 0x04, 0x10 }; static const u8 digest_info_sha1[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static const u8 digest_info_rmd160[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 }; static const u8 digest_info_sha224[] = { 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c }; static const u8 digest_info_sha256[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static const u8 digest_info_sha384[] = { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static const u8 digest_info_sha512[] = { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; static const struct asn1_template { const char *name; const u8 *data; size_t size; } asn1_templates[] = { #define _(X) { #X, digest_info_##X, sizeof(digest_info_##X) } _(md5), _(sha1), _(rmd160), _(sha256), _(sha384), _(sha512), _(sha224), { NULL } #undef _ }; static const struct asn1_template *lookup_asn1(const char *name) { const struct asn1_template *p; for (p = asn1_templates; p->name; p++) if (strcmp(name, p->name) == 0) return p; return NULL; } /* * Sign operation is performed with the private key in the TPM. */ static int tpm_key_sign(struct tpm_key *tk, struct kernel_pkey_params *params, const void *in, void *out) { struct tpm1_buf *tb; uint32_t keyhandle; uint8_t srkauth[SHA1_DIGEST_SIZE]; uint8_t keyauth[SHA1_DIGEST_SIZE]; void *asn1_wrapped = NULL; uint32_t in_len = params->in_len; int r; pr_devel("==>%s()\n", __func__); if (strcmp(params->encoding, "pkcs1")) return -ENOPKG; if (params->hash_algo) { const struct asn1_template *asn1 = lookup_asn1(params->hash_algo); if (!asn1) return -ENOPKG; /* request enough space for the ASN.1 template + input hash */ asn1_wrapped = kzalloc(in_len + asn1->size, GFP_KERNEL); if (!asn1_wrapped) return -ENOMEM; /* Copy ASN.1 template, then the input */ memcpy(asn1_wrapped, asn1->data, asn1->size); memcpy(asn1_wrapped + asn1->size, in, in_len); in = asn1_wrapped; in_len += asn1->size; } if (in_len > tk->key_len / 8 - 11) { r = -EOVERFLOW; goto error_free_asn1_wrapped; } r = -ENOMEM; tb = kzalloc(sizeof(*tb), GFP_KERNEL); if (!tb) goto error_free_asn1_wrapped; /* TODO: Handle a non-all zero SRK authorization */ memset(srkauth, 0, sizeof(srkauth)); r = tpm_loadkey2(tb, SRKHANDLE, srkauth, tk->blob, tk->blob_len, &keyhandle); if (r < 0) { pr_devel("loadkey2 failed (%d)\n", r); goto error_free_tb; } /* TODO: Handle a non-all zero key authorization */ memset(keyauth, 0, sizeof(keyauth)); r = tpm_sign(tb, keyhandle, keyauth, in, in_len, out, params->out_len); if (r < 0) pr_devel("tpm_sign failed (%d)\n", r); if (tpm_flushspecific(tb, keyhandle) < 0) pr_devel("flushspecific failed (%d)\n", r); error_free_tb: kzfree(tb); error_free_asn1_wrapped: kfree(asn1_wrapped); pr_devel("<==%s() = %d\n", __func__, r); return r; } /* * Do encryption, decryption and signing ops. */ static int tpm_key_eds_op(struct kernel_pkey_params *params, const void *in, void *out) { struct tpm_key *tk = params->key->payload.data[asym_crypto]; int ret = -EOPNOTSUPP; /* Perform the encryption calculation. */ switch (params->op) { case kernel_pkey_encrypt: ret = tpm_key_encrypt(tk, params, in, out); break; case kernel_pkey_decrypt: ret = tpm_key_decrypt(tk, params, in, out); break; case kernel_pkey_sign: ret = tpm_key_sign(tk, params, in, out); break; default: BUG(); } return ret; } /* * Verify a signature using a public key. */ static int tpm_key_verify_signature(const struct key *key, const struct public_key_signature *sig) { const struct tpm_key *tk = key->payload.data[asym_crypto]; struct crypto_wait cwait; struct crypto_akcipher *tfm; struct akcipher_request *req; struct scatterlist src_sg[2]; char alg_name[CRYPTO_MAX_ALG_NAME]; uint8_t der_pub_key[PUB_KEY_BUF_SIZE]; uint32_t der_pub_key_len; int ret; pr_devel("==>%s()\n", __func__); BUG_ON(!tk); BUG_ON(!sig); BUG_ON(!sig->s); if (!sig->digest) return -ENOPKG; ret = determine_akcipher(sig->encoding, sig->hash_algo, alg_name); if (ret < 0) return ret; tfm = crypto_alloc_akcipher(alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); der_pub_key_len = derive_pub_key(tk->pub_key, tk->pub_key_len, der_pub_key); ret = crypto_akcipher_set_pub_key(tfm, der_pub_key, der_pub_key_len); if (ret < 0) goto error_free_tfm; ret = -ENOMEM; req = akcipher_request_alloc(tfm, GFP_KERNEL); if (!req) goto error_free_tfm; sg_init_table(src_sg, 2); sg_set_buf(&src_sg[0], sig->s, sig->s_size); sg_set_buf(&src_sg[1], sig->digest, sig->digest_size); akcipher_request_set_crypt(req, src_sg, NULL, sig->s_size, sig->digest_size); crypto_init_wait(&cwait); akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &cwait); ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait); akcipher_request_free(req); error_free_tfm: crypto_free_akcipher(tfm); pr_devel("<==%s() = %d\n", __func__, ret); if (WARN_ON_ONCE(ret > 0)) ret = -EINVAL; return ret; } /* * Parse enough information out of TPM_KEY structure: * TPM_STRUCT_VER -> 4 bytes * TPM_KEY_USAGE -> 2 bytes * TPM_KEY_FLAGS -> 4 bytes * TPM_AUTH_DATA_USAGE -> 1 byte * TPM_KEY_PARMS -> variable * UINT32 PCRInfoSize -> 4 bytes * BYTE* -> PCRInfoSize bytes * TPM_STORE_PUBKEY * UINT32 encDataSize; * BYTE* -> encDataSize; * * TPM_KEY_PARMS: * TPM_ALGORITHM_ID -> 4 bytes * TPM_ENC_SCHEME -> 2 bytes * TPM_SIG_SCHEME -> 2 bytes * UINT32 parmSize -> 4 bytes * BYTE* -> variable */ static int extract_key_parameters(struct tpm_key *tk) { const void *cur = tk->blob; uint32_t len = tk->blob_len; const void *pub_key; uint32_t sz; uint32_t key_len; if (len < 11) return -EBADMSG; /* Ensure this is a legacy key */ if (get_unaligned_be16(cur + 4) != 0x0015) return -EBADMSG; /* Skip to TPM_KEY_PARMS */ cur += 11; len -= 11; if (len < 12) return -EBADMSG; /* Make sure this is an RSA key */ if (get_unaligned_be32(cur) != 0x00000001) return -EBADMSG; /* Make sure this is TPM_ES_RSAESPKCSv15 encoding scheme */ if (get_unaligned_be16(cur + 4) != 0x0002) return -EBADMSG; /* Make sure this is TPM_SS_RSASSAPKCS1v15_DER signature scheme */ if (get_unaligned_be16(cur + 6) != 0x0003) return -EBADMSG; sz = get_unaligned_be32(cur + 8); if (len < sz + 12) return -EBADMSG; /* Move to TPM_RSA_KEY_PARMS */ len -= 12; cur += 12; /* Grab the RSA key length */ key_len = get_unaligned_be32(cur); switch (key_len) { case 512: case 1024: case 1536: case 2048: break; default: return -EINVAL; } /* Move just past TPM_KEY_PARMS */ cur += sz; len -= sz; if (len < 4) return -EBADMSG; sz = get_unaligned_be32(cur); if (len < 4 + sz) return -EBADMSG; /* Move to TPM_STORE_PUBKEY */ cur += 4 + sz; len -= 4 + sz; /* Grab the size of the public key, it should jive with the key size */ sz = get_unaligned_be32(cur); if (sz > 256) return -EINVAL; pub_key = cur + 4; tk->key_len = key_len; tk->pub_key = pub_key; tk->pub_key_len = sz; return 0; } /* Given the blob, parse it and load it into the TPM */ struct tpm_key *tpm_key_create(const void *blob, uint32_t blob_len) { int r; struct tpm_key *tk; r = tpm_is_tpm2(NULL); if (r < 0) goto error; /* We don't support TPM2 yet */ if (r > 0) { r = -ENODEV; goto error; } r = -ENOMEM; tk = kzalloc(sizeof(struct tpm_key), GFP_KERNEL); if (!tk) goto error; tk->blob = kmemdup(blob, blob_len, GFP_KERNEL); if (!tk->blob) goto error_memdup; tk->blob_len = blob_len; r = extract_key_parameters(tk); if (r < 0) goto error_extract; return tk; error_extract: kfree(tk->blob); tk->blob_len = 0; error_memdup: kfree(tk); error: return ERR_PTR(r); } EXPORT_SYMBOL_GPL(tpm_key_create); /* * TPM-based asymmetric key subtype */ struct asymmetric_key_subtype asym_tpm_subtype = { .owner = THIS_MODULE, .name = "asym_tpm", .name_len = sizeof("asym_tpm") - 1, .describe = asym_tpm_describe, .destroy = asym_tpm_destroy, .query = tpm_key_query, .eds_op = tpm_key_eds_op, .verify_signature = tpm_key_verify_signature, }; EXPORT_SYMBOL_GPL(asym_tpm_subtype); MODULE_DESCRIPTION("TPM based asymmetric key subtype"); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL v2");