/* * Software multibuffer async crypto daemon. * * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com> * * Adapted from crypto daemon. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/algapi.h> #include <crypto/internal/hash.h> #include <crypto/internal/aead.h> #include <crypto/mcryptd.h> #include <crypto/crypto_wq.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/sched/stat.h> #include <linux/slab.h> #define MCRYPTD_MAX_CPU_QLEN 100 #define MCRYPTD_BATCH 9 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, unsigned int tail); struct mcryptd_flush_list { struct list_head list; struct mutex lock; }; static struct mcryptd_flush_list __percpu *mcryptd_flist; struct hashd_instance_ctx { struct crypto_ahash_spawn spawn; struct mcryptd_queue *queue; }; static void mcryptd_queue_worker(struct work_struct *work); void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay) { struct mcryptd_flush_list *flist; if (!cstate->flusher_engaged) { /* put the flusher on the flush list */ flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); mutex_lock(&flist->lock); list_add_tail(&cstate->flush_list, &flist->list); cstate->flusher_engaged = true; cstate->next_flush = jiffies + delay; queue_delayed_work_on(smp_processor_id(), kcrypto_wq, &cstate->flush, delay); mutex_unlock(&flist->lock); } } EXPORT_SYMBOL(mcryptd_arm_flusher); static int mcryptd_init_queue(struct mcryptd_queue *queue, unsigned int max_cpu_qlen) { int cpu; struct mcryptd_cpu_queue *cpu_queue; queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue); pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue); if (!queue->cpu_queue) return -ENOMEM; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue); crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); INIT_WORK(&cpu_queue->work, mcryptd_queue_worker); spin_lock_init(&cpu_queue->q_lock); } return 0; } static void mcryptd_fini_queue(struct mcryptd_queue *queue) { int cpu; struct mcryptd_cpu_queue *cpu_queue; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); BUG_ON(cpu_queue->queue.qlen); } free_percpu(queue->cpu_queue); } static int mcryptd_enqueue_request(struct mcryptd_queue *queue, struct crypto_async_request *request, struct mcryptd_hash_request_ctx *rctx) { int cpu, err; struct mcryptd_cpu_queue *cpu_queue; cpu_queue = raw_cpu_ptr(queue->cpu_queue); spin_lock(&cpu_queue->q_lock); cpu = smp_processor_id(); rctx->tag.cpu = smp_processor_id(); err = crypto_enqueue_request(&cpu_queue->queue, request); pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n", cpu, cpu_queue, request); spin_unlock(&cpu_queue->q_lock); queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); return err; } /* * Try to opportunisticlly flush the partially completed jobs if * crypto daemon is the only task running. */ static void mcryptd_opportunistic_flush(void) { struct mcryptd_flush_list *flist; struct mcryptd_alg_cstate *cstate; flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); while (single_task_running()) { mutex_lock(&flist->lock); cstate = list_first_entry_or_null(&flist->list, struct mcryptd_alg_cstate, flush_list); if (!cstate || !cstate->flusher_engaged) { mutex_unlock(&flist->lock); return; } list_del(&cstate->flush_list); cstate->flusher_engaged = false; mutex_unlock(&flist->lock); cstate->alg_state->flusher(cstate); } } /* * Called in workqueue context, do one real cryption work (via * req->complete) and reschedule itself if there are more work to * do. */ static void mcryptd_queue_worker(struct work_struct *work) { struct mcryptd_cpu_queue *cpu_queue; struct crypto_async_request *req, *backlog; int i; /* * Need to loop through more than once for multi-buffer to * be effective. */ cpu_queue = container_of(work, struct mcryptd_cpu_queue, work); i = 0; while (i < MCRYPTD_BATCH || single_task_running()) { spin_lock_bh(&cpu_queue->q_lock); backlog = crypto_get_backlog(&cpu_queue->queue); req = crypto_dequeue_request(&cpu_queue->queue); spin_unlock_bh(&cpu_queue->q_lock); if (!req) { mcryptd_opportunistic_flush(); return; } if (backlog) backlog->complete(backlog, -EINPROGRESS); req->complete(req, 0); if (!cpu_queue->queue.qlen) return; ++i; } if (cpu_queue->queue.qlen) queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work); } void mcryptd_flusher(struct work_struct *__work) { struct mcryptd_alg_cstate *alg_cpu_state; struct mcryptd_alg_state *alg_state; struct mcryptd_flush_list *flist; int cpu; cpu = smp_processor_id(); alg_cpu_state = container_of(to_delayed_work(__work), struct mcryptd_alg_cstate, flush); alg_state = alg_cpu_state->alg_state; if (alg_cpu_state->cpu != cpu) pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n", cpu, alg_cpu_state->cpu); if (alg_cpu_state->flusher_engaged) { flist = per_cpu_ptr(mcryptd_flist, cpu); mutex_lock(&flist->lock); list_del(&alg_cpu_state->flush_list); alg_cpu_state->flusher_engaged = false; mutex_unlock(&flist->lock); alg_state->flusher(alg_cpu_state); } } EXPORT_SYMBOL_GPL(mcryptd_flusher); static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst); return ictx->queue; } static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, unsigned int tail) { char *p; struct crypto_instance *inst; int err; p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); inst = (void *)(p + head); err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto out_free_inst; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); inst->alg.cra_priority = alg->cra_priority + 50; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; out: return p; out_free_inst: kfree(p); p = ERR_PTR(err); goto out; } static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type, u32 *mask) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return false; *type |= algt->type & CRYPTO_ALG_INTERNAL; *mask |= algt->mask & CRYPTO_ALG_INTERNAL; if (*type & *mask & CRYPTO_ALG_INTERNAL) return true; else return false; } static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); struct crypto_ahash_spawn *spawn = &ictx->spawn; struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_ahash *hash; hash = crypto_spawn_ahash(spawn); if (IS_ERR(hash)) return PTR_ERR(hash); ctx->child = hash; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct mcryptd_hash_request_ctx) + crypto_ahash_reqsize(hash)); return 0; } static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm) { struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_ahash(ctx->child); } static int mcryptd_hash_setkey(struct crypto_ahash *parent, const u8 *key, unsigned int keylen) { struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); struct crypto_ahash *child = ctx->child; int err; crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_ahash_setkey(child, key, keylen); crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int mcryptd_hash_enqueue(struct ahash_request *req, crypto_completion_t complete) { int ret; struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct mcryptd_queue *queue = mcryptd_get_queue(crypto_ahash_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = complete; ret = mcryptd_enqueue_request(queue, &req->base, rctx); return ret; } static void mcryptd_hash_init(struct crypto_async_request *req_async, int err) { struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_ahash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct ahash_request *desc = &rctx->areq; if (unlikely(err == -EINPROGRESS)) goto out; ahash_request_set_tfm(desc, child); ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, rctx->complete, req_async); rctx->out = req->result; err = crypto_ahash_init(desc); out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int mcryptd_hash_init_enqueue(struct ahash_request *req) { return mcryptd_hash_enqueue(req, mcryptd_hash_init); } static void mcryptd_hash_update(struct crypto_async_request *req_async, int err) { struct ahash_request *req = ahash_request_cast(req_async); struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; rctx->out = req->result; err = ahash_mcryptd_update(&rctx->areq); if (err) { req->base.complete = rctx->complete; goto out; } return; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int mcryptd_hash_update_enqueue(struct ahash_request *req) { return mcryptd_hash_enqueue(req, mcryptd_hash_update); } static void mcryptd_hash_final(struct crypto_async_request *req_async, int err) { struct ahash_request *req = ahash_request_cast(req_async); struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; rctx->out = req->result; err = ahash_mcryptd_final(&rctx->areq); if (err) { req->base.complete = rctx->complete; goto out; } return; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int mcryptd_hash_final_enqueue(struct ahash_request *req) { return mcryptd_hash_enqueue(req, mcryptd_hash_final); } static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err) { struct ahash_request *req = ahash_request_cast(req_async); struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; rctx->out = req->result; err = ahash_mcryptd_finup(&rctx->areq); if (err) { req->base.complete = rctx->complete; goto out; } return; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int mcryptd_hash_finup_enqueue(struct ahash_request *req) { return mcryptd_hash_enqueue(req, mcryptd_hash_finup); } static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err) { struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_ahash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct ahash_request *desc = &rctx->areq; if (unlikely(err == -EINPROGRESS)) goto out; ahash_request_set_tfm(desc, child); ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, rctx->complete, req_async); rctx->out = req->result; err = ahash_mcryptd_digest(desc); out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int mcryptd_hash_digest_enqueue(struct ahash_request *req) { return mcryptd_hash_enqueue(req, mcryptd_hash_digest); } static int mcryptd_hash_export(struct ahash_request *req, void *out) { struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return crypto_ahash_export(&rctx->areq, out); } static int mcryptd_hash_import(struct ahash_request *req, const void *in) { struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return crypto_ahash_import(&rctx->areq, in); } static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, struct mcryptd_queue *queue) { struct hashd_instance_ctx *ctx; struct ahash_instance *inst; struct hash_alg_common *halg; struct crypto_alg *alg; u32 type = 0; u32 mask = 0; int err; if (!mcryptd_check_internal(tb, &type, &mask)) return -EINVAL; halg = ahash_attr_alg(tb[1], type, mask); if (IS_ERR(halg)) return PTR_ERR(halg); alg = &halg->base; pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name); inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(), sizeof(*ctx)); err = PTR_ERR(inst); if (IS_ERR(inst)) goto out_put_alg; ctx = ahash_instance_ctx(inst); ctx->queue = queue; err = crypto_init_ahash_spawn(&ctx->spawn, halg, ahash_crypto_instance(inst)); if (err) goto out_free_inst; inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC | (alg->cra_flags & (CRYPTO_ALG_INTERNAL | CRYPTO_ALG_OPTIONAL_KEY)); inst->alg.halg.digestsize = halg->digestsize; inst->alg.halg.statesize = halg->statesize; inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx); inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm; inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm; inst->alg.init = mcryptd_hash_init_enqueue; inst->alg.update = mcryptd_hash_update_enqueue; inst->alg.final = mcryptd_hash_final_enqueue; inst->alg.finup = mcryptd_hash_finup_enqueue; inst->alg.export = mcryptd_hash_export; inst->alg.import = mcryptd_hash_import; if (crypto_hash_alg_has_setkey(halg)) inst->alg.setkey = mcryptd_hash_setkey; inst->alg.digest = mcryptd_hash_digest_enqueue; err = ahash_register_instance(tmpl, inst); if (err) { crypto_drop_ahash(&ctx->spawn); out_free_inst: kfree(inst); } out_put_alg: crypto_mod_put(alg); return err; } static struct mcryptd_queue mqueue; static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_DIGEST: return mcryptd_create_hash(tmpl, tb, &mqueue); break; } return -EINVAL; } static void mcryptd_free(struct crypto_instance *inst) { struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst); struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_AHASH: crypto_drop_ahash(&hctx->spawn); kfree(ahash_instance(inst)); return; default: crypto_drop_spawn(&ctx->spawn); kfree(inst); } } static struct crypto_template mcryptd_tmpl = { .name = "mcryptd", .create = mcryptd_create, .free = mcryptd_free, .module = THIS_MODULE, }; struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name, u32 type, u32 mask) { char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_ahash *tfm; if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME, "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_ahash(tfm); return ERR_PTR(-EINVAL); } return __mcryptd_ahash_cast(tfm); } EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash); int ahash_mcryptd_digest(struct ahash_request *desc) { return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc); } int ahash_mcryptd_update(struct ahash_request *desc) { /* alignment is to be done by multi-buffer crypto algorithm if needed */ return crypto_ahash_update(desc); } int ahash_mcryptd_finup(struct ahash_request *desc) { /* alignment is to be done by multi-buffer crypto algorithm if needed */ return crypto_ahash_finup(desc); } int ahash_mcryptd_final(struct ahash_request *desc) { /* alignment is to be done by multi-buffer crypto algorithm if needed */ return crypto_ahash_final(desc); } struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm) { struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(mcryptd_ahash_child); struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req) { struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return &rctx->areq; } EXPORT_SYMBOL_GPL(mcryptd_ahash_desc); void mcryptd_free_ahash(struct mcryptd_ahash *tfm) { crypto_free_ahash(&tfm->base); } EXPORT_SYMBOL_GPL(mcryptd_free_ahash); static int __init mcryptd_init(void) { int err, cpu; struct mcryptd_flush_list *flist; mcryptd_flist = alloc_percpu(struct mcryptd_flush_list); for_each_possible_cpu(cpu) { flist = per_cpu_ptr(mcryptd_flist, cpu); INIT_LIST_HEAD(&flist->list); mutex_init(&flist->lock); } err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN); if (err) { free_percpu(mcryptd_flist); return err; } err = crypto_register_template(&mcryptd_tmpl); if (err) { mcryptd_fini_queue(&mqueue); free_percpu(mcryptd_flist); } return err; } static void __exit mcryptd_exit(void) { mcryptd_fini_queue(&mqueue); crypto_unregister_template(&mcryptd_tmpl); free_percpu(mcryptd_flist); } subsys_initcall(mcryptd_init); module_exit(mcryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); MODULE_ALIAS_CRYPTO("mcryptd");