/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SM2 asymmetric public-key algorithm * as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012 SM2 and * described at https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 * * Copyright (c) 2020, Alibaba Group. * Authors: Tianjia Zhang <tianjia.zhang@linux.alibaba.com> */ #include <linux/module.h> #include <linux/mpi.h> #include <crypto/internal/akcipher.h> #include <crypto/akcipher.h> #include <crypto/hash.h> #include <crypto/sm3_base.h> #include <crypto/rng.h> #include <crypto/sm2.h> #include "sm2signature.asn1.h" #define MPI_NBYTES(m) ((mpi_get_nbits(m) + 7) / 8) struct ecc_domain_parms { const char *desc; /* Description of the curve. */ unsigned int nbits; /* Number of bits. */ unsigned int fips:1; /* True if this is a FIPS140-2 approved curve */ /* The model describing this curve. This is mainly used to select * the group equation. */ enum gcry_mpi_ec_models model; /* The actual ECC dialect used. This is used for curve specific * optimizations and to select encodings etc. */ enum ecc_dialects dialect; const char *p; /* The prime defining the field. */ const char *a, *b; /* The coefficients. For Twisted Edwards * Curves b is used for d. For Montgomery * Curves (a,b) has ((A-2)/4,B^-1). */ const char *n; /* The order of the base point. */ const char *g_x, *g_y; /* Base point. */ unsigned int h; /* Cofactor. */ }; static const struct ecc_domain_parms sm2_ecp = { .desc = "sm2p256v1", .nbits = 256, .fips = 0, .model = MPI_EC_WEIERSTRASS, .dialect = ECC_DIALECT_STANDARD, .p = "0xfffffffeffffffffffffffffffffffffffffffff00000000ffffffffffffffff", .a = "0xfffffffeffffffffffffffffffffffffffffffff00000000fffffffffffffffc", .b = "0x28e9fa9e9d9f5e344d5a9e4bcf6509a7f39789f515ab8f92ddbcbd414d940e93", .n = "0xfffffffeffffffffffffffffffffffff7203df6b21c6052b53bbf40939d54123", .g_x = "0x32c4ae2c1f1981195f9904466a39c9948fe30bbff2660be1715a4589334c74c7", .g_y = "0xbc3736a2f4f6779c59bdcee36b692153d0a9877cc62a474002df32e52139f0a0", .h = 1 }; static int sm2_ec_ctx_init(struct mpi_ec_ctx *ec) { const struct ecc_domain_parms *ecp = &sm2_ecp; MPI p, a, b; MPI x, y; int rc = -EINVAL; p = mpi_scanval(ecp->p); a = mpi_scanval(ecp->a); b = mpi_scanval(ecp->b); if (!p || !a || !b) goto free_p; x = mpi_scanval(ecp->g_x); y = mpi_scanval(ecp->g_y); if (!x || !y) goto free; rc = -ENOMEM; ec->Q = mpi_point_new(0); if (!ec->Q) goto free; /* mpi_ec_setup_elliptic_curve */ ec->G = mpi_point_new(0); if (!ec->G) { mpi_point_release(ec->Q); goto free; } mpi_set(ec->G->x, x); mpi_set(ec->G->y, y); mpi_set_ui(ec->G->z, 1); rc = -EINVAL; ec->n = mpi_scanval(ecp->n); if (!ec->n) { mpi_point_release(ec->Q); mpi_point_release(ec->G); goto free; } ec->h = ecp->h; ec->name = ecp->desc; mpi_ec_init(ec, ecp->model, ecp->dialect, 0, p, a, b); rc = 0; free: mpi_free(x); mpi_free(y); free_p: mpi_free(p); mpi_free(a); mpi_free(b); return rc; } static void sm2_ec_ctx_deinit(struct mpi_ec_ctx *ec) { mpi_ec_deinit(ec); memset(ec, 0, sizeof(*ec)); } /* RESULT must have been initialized and is set on success to the * point given by VALUE. */ static int sm2_ecc_os2ec(MPI_POINT result, MPI value) { int rc; size_t n; unsigned char *buf; MPI x, y; n = MPI_NBYTES(value); buf = kmalloc(n, GFP_KERNEL); if (!buf) return -ENOMEM; rc = mpi_print(GCRYMPI_FMT_USG, buf, n, &n, value); if (rc) goto err_freebuf; rc = -EINVAL; if (n < 1 || ((n - 1) % 2)) goto err_freebuf; /* No support for point compression */ if (*buf != 0x4) goto err_freebuf; rc = -ENOMEM; n = (n - 1) / 2; x = mpi_read_raw_data(buf + 1, n); if (!x) goto err_freebuf; y = mpi_read_raw_data(buf + 1 + n, n); if (!y) goto err_freex; mpi_normalize(x); mpi_normalize(y); mpi_set(result->x, x); mpi_set(result->y, y); mpi_set_ui(result->z, 1); rc = 0; mpi_free(y); err_freex: mpi_free(x); err_freebuf: kfree(buf); return rc; } struct sm2_signature_ctx { MPI sig_r; MPI sig_s; }; int sm2_get_signature_r(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct sm2_signature_ctx *sig = context; if (!value || !vlen) return -EINVAL; sig->sig_r = mpi_read_raw_data(value, vlen); if (!sig->sig_r) return -ENOMEM; return 0; } int sm2_get_signature_s(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct sm2_signature_ctx *sig = context; if (!value || !vlen) return -EINVAL; sig->sig_s = mpi_read_raw_data(value, vlen); if (!sig->sig_s) return -ENOMEM; return 0; } static int sm2_z_digest_update(struct shash_desc *desc, MPI m, unsigned int pbytes) { static const unsigned char zero[32]; unsigned char *in; unsigned int inlen; in = mpi_get_buffer(m, &inlen, NULL); if (!in) return -EINVAL; if (inlen < pbytes) { /* padding with zero */ crypto_sm3_update(desc, zero, pbytes - inlen); crypto_sm3_update(desc, in, inlen); } else if (inlen > pbytes) { /* skip the starting zero */ crypto_sm3_update(desc, in + inlen - pbytes, pbytes); } else { crypto_sm3_update(desc, in, inlen); } kfree(in); return 0; } static int sm2_z_digest_update_point(struct shash_desc *desc, MPI_POINT point, struct mpi_ec_ctx *ec, unsigned int pbytes) { MPI x, y; int ret = -EINVAL; x = mpi_new(0); y = mpi_new(0); if (!mpi_ec_get_affine(x, y, point, ec) && !sm2_z_digest_update(desc, x, pbytes) && !sm2_z_digest_update(desc, y, pbytes)) ret = 0; mpi_free(x); mpi_free(y); return ret; } int sm2_compute_z_digest(struct crypto_akcipher *tfm, const unsigned char *id, size_t id_len, unsigned char dgst[SM3_DIGEST_SIZE]) { struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm); uint16_t bits_len; unsigned char entl[2]; SHASH_DESC_ON_STACK(desc, NULL); unsigned int pbytes; if (id_len > (USHRT_MAX / 8) || !ec->Q) return -EINVAL; bits_len = (uint16_t)(id_len * 8); entl[0] = bits_len >> 8; entl[1] = bits_len & 0xff; pbytes = MPI_NBYTES(ec->p); /* ZA = H256(ENTLA | IDA | a | b | xG | yG | xA | yA) */ sm3_base_init(desc); crypto_sm3_update(desc, entl, 2); crypto_sm3_update(desc, id, id_len); if (sm2_z_digest_update(desc, ec->a, pbytes) || sm2_z_digest_update(desc, ec->b, pbytes) || sm2_z_digest_update_point(desc, ec->G, ec, pbytes) || sm2_z_digest_update_point(desc, ec->Q, ec, pbytes)) return -EINVAL; crypto_sm3_final(desc, dgst); return 0; } EXPORT_SYMBOL(sm2_compute_z_digest); static int _sm2_verify(struct mpi_ec_ctx *ec, MPI hash, MPI sig_r, MPI sig_s) { int rc = -EINVAL; struct gcry_mpi_point sG, tP; MPI t = NULL; MPI x1 = NULL, y1 = NULL; mpi_point_init(&sG); mpi_point_init(&tP); x1 = mpi_new(0); y1 = mpi_new(0); t = mpi_new(0); /* r, s in [1, n-1] */ if (mpi_cmp_ui(sig_r, 1) < 0 || mpi_cmp(sig_r, ec->n) > 0 || mpi_cmp_ui(sig_s, 1) < 0 || mpi_cmp(sig_s, ec->n) > 0) { goto leave; } /* t = (r + s) % n, t == 0 */ mpi_addm(t, sig_r, sig_s, ec->n); if (mpi_cmp_ui(t, 0) == 0) goto leave; /* sG + tP = (x1, y1) */ rc = -EBADMSG; mpi_ec_mul_point(&sG, sig_s, ec->G, ec); mpi_ec_mul_point(&tP, t, ec->Q, ec); mpi_ec_add_points(&sG, &sG, &tP, ec); if (mpi_ec_get_affine(x1, y1, &sG, ec)) goto leave; /* R = (e + x1) % n */ mpi_addm(t, hash, x1, ec->n); /* check R == r */ rc = -EKEYREJECTED; if (mpi_cmp(t, sig_r)) goto leave; rc = 0; leave: mpi_point_free_parts(&sG); mpi_point_free_parts(&tP); mpi_free(x1); mpi_free(y1); mpi_free(t); return rc; } static int sm2_verify(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm); unsigned char *buffer; struct sm2_signature_ctx sig; MPI hash; int ret; if (unlikely(!ec->Q)) return -EINVAL; buffer = kmalloc(req->src_len + req->dst_len, GFP_KERNEL); if (!buffer) return -ENOMEM; sg_pcopy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len + req->dst_len), buffer, req->src_len + req->dst_len, 0); sig.sig_r = NULL; sig.sig_s = NULL; ret = asn1_ber_decoder(&sm2signature_decoder, &sig, buffer, req->src_len); if (ret) goto error; ret = -ENOMEM; hash = mpi_read_raw_data(buffer + req->src_len, req->dst_len); if (!hash) goto error; ret = _sm2_verify(ec, hash, sig.sig_r, sig.sig_s); mpi_free(hash); error: mpi_free(sig.sig_r); mpi_free(sig.sig_s); kfree(buffer); return ret; } static int sm2_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm); MPI a; int rc; /* include the uncompressed flag '0x04' */ a = mpi_read_raw_data(key, keylen); if (!a) return -ENOMEM; mpi_normalize(a); rc = sm2_ecc_os2ec(ec->Q, a); mpi_free(a); return rc; } static unsigned int sm2_max_size(struct crypto_akcipher *tfm) { /* Unlimited max size */ return PAGE_SIZE; } static int sm2_init_tfm(struct crypto_akcipher *tfm) { struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm); return sm2_ec_ctx_init(ec); } static void sm2_exit_tfm(struct crypto_akcipher *tfm) { struct mpi_ec_ctx *ec = akcipher_tfm_ctx(tfm); sm2_ec_ctx_deinit(ec); } static struct akcipher_alg sm2 = { .verify = sm2_verify, .set_pub_key = sm2_set_pub_key, .max_size = sm2_max_size, .init = sm2_init_tfm, .exit = sm2_exit_tfm, .base = { .cra_name = "sm2", .cra_driver_name = "sm2-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct mpi_ec_ctx), }, }; static int sm2_init(void) { return crypto_register_akcipher(&sm2); } static void sm2_exit(void) { crypto_unregister_akcipher(&sm2); } subsys_initcall(sm2_init); module_exit(sm2_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Tianjia Zhang <tianjia.zhang@linux.alibaba.com>"); MODULE_DESCRIPTION("SM2 generic algorithm"); MODULE_ALIAS_CRYPTO("sm2-generic");