/* * pdc_adma.c - Pacific Digital Corporation ADMA * * Maintained by: Mark Lord <mlord@pobox.com> * * Copyright 2005 Mark Lord * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * * Supports ATA disks in single-packet ADMA mode. * Uses PIO for everything else. * * TODO: Use ADMA transfers for ATAPI devices, when possible. * This requires careful attention to a number of quirks of the chip. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/device.h> #include <scsi/scsi_host.h> #include <linux/libata.h> #define DRV_NAME "pdc_adma" #define DRV_VERSION "1.0" /* macro to calculate base address for ATA regs */ #define ADMA_ATA_REGS(base,port_no) ((base) + ((port_no) * 0x40)) /* macro to calculate base address for ADMA regs */ #define ADMA_REGS(base,port_no) ((base) + 0x80 + ((port_no) * 0x20)) /* macro to obtain addresses from ata_port */ #define ADMA_PORT_REGS(ap) \ ADMA_REGS((ap)->host->iomap[ADMA_MMIO_BAR], ap->port_no) enum { ADMA_MMIO_BAR = 4, ADMA_PORTS = 2, ADMA_CPB_BYTES = 40, ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16, ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES, ADMA_DMA_BOUNDARY = 0xffffffff, /* global register offsets */ ADMA_MODE_LOCK = 0x00c7, /* per-channel register offsets */ ADMA_CONTROL = 0x0000, /* ADMA control */ ADMA_STATUS = 0x0002, /* ADMA status */ ADMA_CPB_COUNT = 0x0004, /* CPB count */ ADMA_CPB_CURRENT = 0x000c, /* current CPB address */ ADMA_CPB_NEXT = 0x000c, /* next CPB address */ ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */ ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */ ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */ /* ADMA_CONTROL register bits */ aNIEN = (1 << 8), /* irq mask: 1==masked */ aGO = (1 << 7), /* packet trigger ("Go!") */ aRSTADM = (1 << 5), /* ADMA logic reset */ aPIOMD4 = 0x0003, /* PIO mode 4 */ /* ADMA_STATUS register bits */ aPSD = (1 << 6), aUIRQ = (1 << 4), aPERR = (1 << 0), /* CPB bits */ cDONE = (1 << 0), cATERR = (1 << 3), cVLD = (1 << 0), cDAT = (1 << 2), cIEN = (1 << 3), /* PRD bits */ pORD = (1 << 4), pDIRO = (1 << 5), pEND = (1 << 7), /* ATA register flags */ rIGN = (1 << 5), rEND = (1 << 7), /* ATA register addresses */ ADMA_REGS_CONTROL = 0x0e, ADMA_REGS_SECTOR_COUNT = 0x12, ADMA_REGS_LBA_LOW = 0x13, ADMA_REGS_LBA_MID = 0x14, ADMA_REGS_LBA_HIGH = 0x15, ADMA_REGS_DEVICE = 0x16, ADMA_REGS_COMMAND = 0x17, /* PCI device IDs */ board_1841_idx = 0, /* ADMA 2-port controller */ }; typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t; struct adma_port_priv { u8 *pkt; dma_addr_t pkt_dma; adma_state_t state; }; static int adma_ata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent); static int adma_port_start(struct ata_port *ap); static void adma_host_stop(struct ata_host *host); static void adma_port_stop(struct ata_port *ap); static void adma_qc_prep(struct ata_queued_cmd *qc); static unsigned int adma_qc_issue(struct ata_queued_cmd *qc); static int adma_check_atapi_dma(struct ata_queued_cmd *qc); static void adma_bmdma_stop(struct ata_queued_cmd *qc); static u8 adma_bmdma_status(struct ata_port *ap); static void adma_irq_clear(struct ata_port *ap); static void adma_freeze(struct ata_port *ap); static void adma_thaw(struct ata_port *ap); static void adma_error_handler(struct ata_port *ap); static struct scsi_host_template adma_ata_sht = { .module = THIS_MODULE, .name = DRV_NAME, .ioctl = ata_scsi_ioctl, .queuecommand = ata_scsi_queuecmd, .slave_configure = ata_scsi_slave_config, .slave_destroy = ata_scsi_slave_destroy, .bios_param = ata_std_bios_param, .proc_name = DRV_NAME, .can_queue = ATA_DEF_QUEUE, .this_id = ATA_SHT_THIS_ID, .sg_tablesize = LIBATA_MAX_PRD, .dma_boundary = ADMA_DMA_BOUNDARY, .cmd_per_lun = ATA_SHT_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .emulated = ATA_SHT_EMULATED, }; static const struct ata_port_operations adma_ata_ops = { .tf_load = ata_tf_load, .tf_read = ata_tf_read, .exec_command = ata_exec_command, .check_status = ata_check_status, .dev_select = ata_std_dev_select, .check_atapi_dma = adma_check_atapi_dma, .data_xfer = ata_data_xfer, .qc_prep = adma_qc_prep, .qc_issue = adma_qc_issue, .freeze = adma_freeze, .thaw = adma_thaw, .error_handler = adma_error_handler, .irq_clear = adma_irq_clear, .irq_on = ata_irq_on, .port_start = adma_port_start, .port_stop = adma_port_stop, .host_stop = adma_host_stop, .bmdma_stop = adma_bmdma_stop, .bmdma_status = adma_bmdma_status, }; static struct ata_port_info adma_port_info[] = { /* board_1841_idx */ { .flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING, .pio_mask = 0x10, /* pio4 */ .udma_mask = ATA_UDMA4, .port_ops = &adma_ata_ops, }, }; static const struct pci_device_id adma_ata_pci_tbl[] = { { PCI_VDEVICE(PDC, 0x1841), board_1841_idx }, { } /* terminate list */ }; static struct pci_driver adma_ata_pci_driver = { .name = DRV_NAME, .id_table = adma_ata_pci_tbl, .probe = adma_ata_init_one, .remove = ata_pci_remove_one, }; static int adma_check_atapi_dma(struct ata_queued_cmd *qc) { return 1; /* ATAPI DMA not yet supported */ } static void adma_bmdma_stop(struct ata_queued_cmd *qc) { /* nothing */ } static u8 adma_bmdma_status(struct ata_port *ap) { return 0; } static void adma_irq_clear(struct ata_port *ap) { /* nothing */ } static void adma_reset_engine(struct ata_port *ap) { void __iomem *chan = ADMA_PORT_REGS(ap); /* reset ADMA to idle state */ writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL); udelay(2); writew(aPIOMD4, chan + ADMA_CONTROL); udelay(2); } static void adma_reinit_engine(struct ata_port *ap) { struct adma_port_priv *pp = ap->private_data; void __iomem *chan = ADMA_PORT_REGS(ap); /* mask/clear ATA interrupts */ writeb(ATA_NIEN, ap->ioaddr.ctl_addr); ata_check_status(ap); /* reset the ADMA engine */ adma_reset_engine(ap); /* set in-FIFO threshold to 0x100 */ writew(0x100, chan + ADMA_FIFO_IN); /* set CPB pointer */ writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT); /* set out-FIFO threshold to 0x100 */ writew(0x100, chan + ADMA_FIFO_OUT); /* set CPB count */ writew(1, chan + ADMA_CPB_COUNT); /* read/discard ADMA status */ readb(chan + ADMA_STATUS); } static inline void adma_enter_reg_mode(struct ata_port *ap) { void __iomem *chan = ADMA_PORT_REGS(ap); writew(aPIOMD4, chan + ADMA_CONTROL); readb(chan + ADMA_STATUS); /* flush */ } static void adma_freeze(struct ata_port *ap) { void __iomem *chan = ADMA_PORT_REGS(ap); /* mask/clear ATA interrupts */ writeb(ATA_NIEN, ap->ioaddr.ctl_addr); ata_check_status(ap); /* reset ADMA to idle state */ writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL); udelay(2); writew(aPIOMD4 | aNIEN, chan + ADMA_CONTROL); udelay(2); } static void adma_thaw(struct ata_port *ap) { adma_reinit_engine(ap); } static int adma_prereset(struct ata_link *link, unsigned long deadline) { struct ata_port *ap = link->ap; struct adma_port_priv *pp = ap->private_data; if (pp->state != adma_state_idle) /* healthy paranoia */ pp->state = adma_state_mmio; adma_reinit_engine(ap); return ata_std_prereset(link, deadline); } static void adma_error_handler(struct ata_port *ap) { ata_do_eh(ap, adma_prereset, ata_std_softreset, NULL, ata_std_postreset); } static int adma_fill_sg(struct ata_queued_cmd *qc) { struct scatterlist *sg; struct ata_port *ap = qc->ap; struct adma_port_priv *pp = ap->private_data; u8 *buf = pp->pkt, *last_buf = NULL; int i = (2 + buf[3]) * 8; u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0); ata_for_each_sg(sg, qc) { u32 addr; u32 len; addr = (u32)sg_dma_address(sg); *(__le32 *)(buf + i) = cpu_to_le32(addr); i += 4; len = sg_dma_len(sg) >> 3; *(__le32 *)(buf + i) = cpu_to_le32(len); i += 4; last_buf = &buf[i]; buf[i++] = pFLAGS; buf[i++] = qc->dev->dma_mode & 0xf; buf[i++] = 0; /* pPKLW */ buf[i++] = 0; /* reserved */ *(__le32 *)(buf + i) = (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4); i += 4; VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", i/4, (unsigned long)addr, len); } if (likely(last_buf)) *last_buf |= pEND; return i; } static void adma_qc_prep(struct ata_queued_cmd *qc) { struct adma_port_priv *pp = qc->ap->private_data; u8 *buf = pp->pkt; u32 pkt_dma = (u32)pp->pkt_dma; int i = 0; VPRINTK("ENTER\n"); adma_enter_reg_mode(qc->ap); if (qc->tf.protocol != ATA_PROT_DMA) { ata_qc_prep(qc); return; } buf[i++] = 0; /* Response flags */ buf[i++] = 0; /* reserved */ buf[i++] = cVLD | cDAT | cIEN; i++; /* cLEN, gets filled in below */ *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */ i += 4; /* cNCPB */ i += 4; /* cPRD, gets filled in below */ buf[i++] = 0; /* reserved */ buf[i++] = 0; /* reserved */ buf[i++] = 0; /* reserved */ buf[i++] = 0; /* reserved */ /* ATA registers; must be a multiple of 4 */ buf[i++] = qc->tf.device; buf[i++] = ADMA_REGS_DEVICE; if ((qc->tf.flags & ATA_TFLAG_LBA48)) { buf[i++] = qc->tf.hob_nsect; buf[i++] = ADMA_REGS_SECTOR_COUNT; buf[i++] = qc->tf.hob_lbal; buf[i++] = ADMA_REGS_LBA_LOW; buf[i++] = qc->tf.hob_lbam; buf[i++] = ADMA_REGS_LBA_MID; buf[i++] = qc->tf.hob_lbah; buf[i++] = ADMA_REGS_LBA_HIGH; } buf[i++] = qc->tf.nsect; buf[i++] = ADMA_REGS_SECTOR_COUNT; buf[i++] = qc->tf.lbal; buf[i++] = ADMA_REGS_LBA_LOW; buf[i++] = qc->tf.lbam; buf[i++] = ADMA_REGS_LBA_MID; buf[i++] = qc->tf.lbah; buf[i++] = ADMA_REGS_LBA_HIGH; buf[i++] = 0; buf[i++] = ADMA_REGS_CONTROL; buf[i++] = rIGN; buf[i++] = 0; buf[i++] = qc->tf.command; buf[i++] = ADMA_REGS_COMMAND | rEND; buf[3] = (i >> 3) - 2; /* cLEN */ *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */ i = adma_fill_sg(qc); wmb(); /* flush PRDs and pkt to memory */ #if 0 /* dump out CPB + PRDs for debug */ { int j, len = 0; static char obuf[2048]; for (j = 0; j < i; ++j) { len += sprintf(obuf+len, "%02x ", buf[j]); if ((j & 7) == 7) { printk("%s\n", obuf); len = 0; } } if (len) printk("%s\n", obuf); } #endif } static inline void adma_packet_start(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *chan = ADMA_PORT_REGS(ap); VPRINTK("ENTER, ap %p\n", ap); /* fire up the ADMA engine */ writew(aPIOMD4 | aGO, chan + ADMA_CONTROL); } static unsigned int adma_qc_issue(struct ata_queued_cmd *qc) { struct adma_port_priv *pp = qc->ap->private_data; switch (qc->tf.protocol) { case ATA_PROT_DMA: pp->state = adma_state_pkt; adma_packet_start(qc); return 0; case ATA_PROT_ATAPI_DMA: BUG(); break; default: break; } pp->state = adma_state_mmio; return ata_qc_issue_prot(qc); } static inline unsigned int adma_intr_pkt(struct ata_host *host) { unsigned int handled = 0, port_no; for (port_no = 0; port_no < host->n_ports; ++port_no) { struct ata_port *ap = host->ports[port_no]; struct adma_port_priv *pp; struct ata_queued_cmd *qc; void __iomem *chan = ADMA_PORT_REGS(ap); u8 status = readb(chan + ADMA_STATUS); if (status == 0) continue; handled = 1; adma_enter_reg_mode(ap); if (ap->flags & ATA_FLAG_DISABLED) continue; pp = ap->private_data; if (!pp || pp->state != adma_state_pkt) continue; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) { if (status & aPERR) qc->err_mask |= AC_ERR_HOST_BUS; else if ((status & (aPSD | aUIRQ))) qc->err_mask |= AC_ERR_OTHER; if (pp->pkt[0] & cATERR) qc->err_mask |= AC_ERR_DEV; else if (pp->pkt[0] != cDONE) qc->err_mask |= AC_ERR_OTHER; if (!qc->err_mask) ata_qc_complete(qc); else { struct ata_eh_info *ehi = &ap->link.eh_info; ata_ehi_clear_desc(ehi); ata_ehi_push_desc(ehi, "ADMA-status 0x%02X", status); ata_ehi_push_desc(ehi, "pkt[0] 0x%02X", pp->pkt[0]); if (qc->err_mask == AC_ERR_DEV) ata_port_abort(ap); else ata_port_freeze(ap); } } } return handled; } static inline unsigned int adma_intr_mmio(struct ata_host *host) { unsigned int handled = 0, port_no; for (port_no = 0; port_no < host->n_ports; ++port_no) { struct ata_port *ap; ap = host->ports[port_no]; if (ap && (!(ap->flags & ATA_FLAG_DISABLED))) { struct ata_queued_cmd *qc; struct adma_port_priv *pp = ap->private_data; if (!pp || pp->state != adma_state_mmio) continue; qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) { /* check main status, clearing INTRQ */ u8 status = ata_check_status(ap); if ((status & ATA_BUSY)) continue; DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n", ap->print_id, qc->tf.protocol, status); /* complete taskfile transaction */ pp->state = adma_state_idle; qc->err_mask |= ac_err_mask(status); if (!qc->err_mask) ata_qc_complete(qc); else { struct ata_eh_info *ehi = &ap->link.eh_info; ata_ehi_clear_desc(ehi); ata_ehi_push_desc(ehi, "status 0x%02X", status); if (qc->err_mask == AC_ERR_DEV) ata_port_abort(ap); else ata_port_freeze(ap); } handled = 1; } } } return handled; } static irqreturn_t adma_intr(int irq, void *dev_instance) { struct ata_host *host = dev_instance; unsigned int handled = 0; VPRINTK("ENTER\n"); spin_lock(&host->lock); handled = adma_intr_pkt(host) | adma_intr_mmio(host); spin_unlock(&host->lock); VPRINTK("EXIT\n"); return IRQ_RETVAL(handled); } static void adma_ata_setup_port(struct ata_ioports *port, void __iomem *base) { port->cmd_addr = port->data_addr = base + 0x000; port->error_addr = port->feature_addr = base + 0x004; port->nsect_addr = base + 0x008; port->lbal_addr = base + 0x00c; port->lbam_addr = base + 0x010; port->lbah_addr = base + 0x014; port->device_addr = base + 0x018; port->status_addr = port->command_addr = base + 0x01c; port->altstatus_addr = port->ctl_addr = base + 0x038; } static int adma_port_start(struct ata_port *ap) { struct device *dev = ap->host->dev; struct adma_port_priv *pp; int rc; rc = ata_port_start(ap); if (rc) return rc; adma_enter_reg_mode(ap); pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); if (!pp) return -ENOMEM; pp->pkt = dmam_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma, GFP_KERNEL); if (!pp->pkt) return -ENOMEM; /* paranoia? */ if ((pp->pkt_dma & 7) != 0) { printk("bad alignment for pp->pkt_dma: %08x\n", (u32)pp->pkt_dma); return -ENOMEM; } memset(pp->pkt, 0, ADMA_PKT_BYTES); ap->private_data = pp; adma_reinit_engine(ap); return 0; } static void adma_port_stop(struct ata_port *ap) { adma_reset_engine(ap); } static void adma_host_stop(struct ata_host *host) { unsigned int port_no; for (port_no = 0; port_no < ADMA_PORTS; ++port_no) adma_reset_engine(host->ports[port_no]); } static void adma_host_init(struct ata_host *host, unsigned int chip_id) { unsigned int port_no; /* enable/lock aGO operation */ writeb(7, host->iomap[ADMA_MMIO_BAR] + ADMA_MODE_LOCK); /* reset the ADMA logic */ for (port_no = 0; port_no < ADMA_PORTS; ++port_no) adma_reset_engine(host->ports[port_no]); } static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base) { int rc; rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "32-bit DMA enable failed\n"); return rc; } rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (rc) { dev_printk(KERN_ERR, &pdev->dev, "32-bit consistent DMA enable failed\n"); return rc; } return 0; } static int adma_ata_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int printed_version; unsigned int board_idx = (unsigned int) ent->driver_data; const struct ata_port_info *ppi[] = { &adma_port_info[board_idx], NULL }; struct ata_host *host; void __iomem *mmio_base; int rc, port_no; if (!printed_version++) dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); /* alloc host */ host = ata_host_alloc_pinfo(&pdev->dev, ppi, ADMA_PORTS); if (!host) return -ENOMEM; /* acquire resources and fill host */ rc = pcim_enable_device(pdev); if (rc) return rc; if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0) return -ENODEV; rc = pcim_iomap_regions(pdev, 1 << ADMA_MMIO_BAR, DRV_NAME); if (rc) return rc; host->iomap = pcim_iomap_table(pdev); mmio_base = host->iomap[ADMA_MMIO_BAR]; rc = adma_set_dma_masks(pdev, mmio_base); if (rc) return rc; for (port_no = 0; port_no < ADMA_PORTS; ++port_no) { struct ata_port *ap = host->ports[port_no]; void __iomem *port_base = ADMA_ATA_REGS(mmio_base, port_no); unsigned int offset = port_base - mmio_base; adma_ata_setup_port(&ap->ioaddr, port_base); ata_port_pbar_desc(ap, ADMA_MMIO_BAR, -1, "mmio"); ata_port_pbar_desc(ap, ADMA_MMIO_BAR, offset, "port"); } /* initialize adapter */ adma_host_init(host, board_idx); pci_set_master(pdev); return ata_host_activate(host, pdev->irq, adma_intr, IRQF_SHARED, &adma_ata_sht); } static int __init adma_ata_init(void) { return pci_register_driver(&adma_ata_pci_driver); } static void __exit adma_ata_exit(void) { pci_unregister_driver(&adma_ata_pci_driver); } MODULE_AUTHOR("Mark Lord"); MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl); MODULE_VERSION(DRV_VERSION); module_init(adma_ata_init); module_exit(adma_ata_exit);