/* * Register map access API * * Copyright 2011 Wolfson Microelectronics plc * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include "internal.h" /* * Sometimes for failures during very early init the trace * infrastructure isn't available early enough to be used. For this * sort of problem defining LOG_DEVICE will add printks for basic * register I/O on a specific device. */ #undef LOG_DEVICE static int _regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change); static int _regmap_bus_reg_read(void *context, unsigned int reg, unsigned int *val); static int _regmap_bus_read(void *context, unsigned int reg, unsigned int *val); static int _regmap_bus_formatted_write(void *context, unsigned int reg, unsigned int val); static int _regmap_bus_reg_write(void *context, unsigned int reg, unsigned int val); static int _regmap_bus_raw_write(void *context, unsigned int reg, unsigned int val); bool regmap_reg_in_ranges(unsigned int reg, const struct regmap_range *ranges, unsigned int nranges) { const struct regmap_range *r; int i; for (i = 0, r = ranges; i < nranges; i++, r++) if (regmap_reg_in_range(reg, r)) return true; return false; } EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); bool regmap_check_range_table(struct regmap *map, unsigned int reg, const struct regmap_access_table *table) { /* Check "no ranges" first */ if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) return false; /* In case zero "yes ranges" are supplied, any reg is OK */ if (!table->n_yes_ranges) return true; return regmap_reg_in_ranges(reg, table->yes_ranges, table->n_yes_ranges); } EXPORT_SYMBOL_GPL(regmap_check_range_table); bool regmap_writeable(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->writeable_reg) return map->writeable_reg(map->dev, reg); if (map->wr_table) return regmap_check_range_table(map, reg, map->wr_table); return true; } bool regmap_readable(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->format.format_write) return false; if (map->readable_reg) return map->readable_reg(map->dev, reg); if (map->rd_table) return regmap_check_range_table(map, reg, map->rd_table); return true; } bool regmap_volatile(struct regmap *map, unsigned int reg) { if (!regmap_readable(map, reg)) return false; if (map->volatile_reg) return map->volatile_reg(map->dev, reg); if (map->volatile_table) return regmap_check_range_table(map, reg, map->volatile_table); if (map->cache_ops) return false; else return true; } bool regmap_precious(struct regmap *map, unsigned int reg) { if (!regmap_readable(map, reg)) return false; if (map->precious_reg) return map->precious_reg(map->dev, reg); if (map->precious_table) return regmap_check_range_table(map, reg, map->precious_table); return false; } static bool regmap_volatile_range(struct regmap *map, unsigned int reg, size_t num) { unsigned int i; for (i = 0; i < num; i++) if (!regmap_volatile(map, reg + i)) return false; return true; } static void regmap_format_2_6_write(struct regmap *map, unsigned int reg, unsigned int val) { u8 *out = map->work_buf; *out = (reg << 6) | val; } static void regmap_format_4_12_write(struct regmap *map, unsigned int reg, unsigned int val) { __be16 *out = map->work_buf; *out = cpu_to_be16((reg << 12) | val); } static void regmap_format_7_9_write(struct regmap *map, unsigned int reg, unsigned int val) { __be16 *out = map->work_buf; *out = cpu_to_be16((reg << 9) | val); } static void regmap_format_10_14_write(struct regmap *map, unsigned int reg, unsigned int val) { u8 *out = map->work_buf; out[2] = val; out[1] = (val >> 8) | (reg << 6); out[0] = reg >> 2; } static void regmap_format_8(void *buf, unsigned int val, unsigned int shift) { u8 *b = buf; b[0] = val << shift; } static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift) { __be16 *b = buf; b[0] = cpu_to_be16(val << shift); } static void regmap_format_16_native(void *buf, unsigned int val, unsigned int shift) { *(u16 *)buf = val << shift; } static void regmap_format_24(void *buf, unsigned int val, unsigned int shift) { u8 *b = buf; val <<= shift; b[0] = val >> 16; b[1] = val >> 8; b[2] = val; } static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift) { __be32 *b = buf; b[0] = cpu_to_be32(val << shift); } static void regmap_format_32_native(void *buf, unsigned int val, unsigned int shift) { *(u32 *)buf = val << shift; } static void regmap_parse_inplace_noop(void *buf) { } static unsigned int regmap_parse_8(const void *buf) { const u8 *b = buf; return b[0]; } static unsigned int regmap_parse_16_be(const void *buf) { const __be16 *b = buf; return be16_to_cpu(b[0]); } static void regmap_parse_16_be_inplace(void *buf) { __be16 *b = buf; b[0] = be16_to_cpu(b[0]); } static unsigned int regmap_parse_16_native(const void *buf) { return *(u16 *)buf; } static unsigned int regmap_parse_24(const void *buf) { const u8 *b = buf; unsigned int ret = b[2]; ret |= ((unsigned int)b[1]) << 8; ret |= ((unsigned int)b[0]) << 16; return ret; } static unsigned int regmap_parse_32_be(const void *buf) { const __be32 *b = buf; return be32_to_cpu(b[0]); } static void regmap_parse_32_be_inplace(void *buf) { __be32 *b = buf; b[0] = be32_to_cpu(b[0]); } static unsigned int regmap_parse_32_native(const void *buf) { return *(u32 *)buf; } static void regmap_lock_mutex(void *__map) { struct regmap *map = __map; mutex_lock(&map->mutex); } static void regmap_unlock_mutex(void *__map) { struct regmap *map = __map; mutex_unlock(&map->mutex); } static void regmap_lock_spinlock(void *__map) __acquires(&map->spinlock) { struct regmap *map = __map; unsigned long flags; spin_lock_irqsave(&map->spinlock, flags); map->spinlock_flags = flags; } static void regmap_unlock_spinlock(void *__map) __releases(&map->spinlock) { struct regmap *map = __map; spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags); } static void dev_get_regmap_release(struct device *dev, void *res) { /* * We don't actually have anything to do here; the goal here * is not to manage the regmap but to provide a simple way to * get the regmap back given a struct device. */ } static bool _regmap_range_add(struct regmap *map, struct regmap_range_node *data) { struct rb_root *root = &map->range_tree; struct rb_node **new = &(root->rb_node), *parent = NULL; while (*new) { struct regmap_range_node *this = container_of(*new, struct regmap_range_node, node); parent = *new; if (data->range_max < this->range_min) new = &((*new)->rb_left); else if (data->range_min > this->range_max) new = &((*new)->rb_right); else return false; } rb_link_node(&data->node, parent, new); rb_insert_color(&data->node, root); return true; } static struct regmap_range_node *_regmap_range_lookup(struct regmap *map, unsigned int reg) { struct rb_node *node = map->range_tree.rb_node; while (node) { struct regmap_range_node *this = container_of(node, struct regmap_range_node, node); if (reg < this->range_min) node = node->rb_left; else if (reg > this->range_max) node = node->rb_right; else return this; } return NULL; } static void regmap_range_exit(struct regmap *map) { struct rb_node *next; struct regmap_range_node *range_node; next = rb_first(&map->range_tree); while (next) { range_node = rb_entry(next, struct regmap_range_node, node); next = rb_next(&range_node->node); rb_erase(&range_node->node, &map->range_tree); kfree(range_node); } kfree(map->selector_work_buf); } int regmap_attach_dev(struct device *dev, struct regmap *map, const struct regmap_config *config) { struct regmap **m; map->dev = dev; regmap_debugfs_init(map, config->name); /* Add a devres resource for dev_get_regmap() */ m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL); if (!m) { regmap_debugfs_exit(map); return -ENOMEM; } *m = map; devres_add(dev, m); return 0; } EXPORT_SYMBOL_GPL(regmap_attach_dev); /** * regmap_init(): Initialise register map * * @dev: Device that will be interacted with * @bus: Bus-specific callbacks to use with device * @bus_context: Data passed to bus-specific callbacks * @config: Configuration for register map * * The return value will be an ERR_PTR() on error or a valid pointer to * a struct regmap. This function should generally not be called * directly, it should be called by bus-specific init functions. */ struct regmap *regmap_init(struct device *dev, const struct regmap_bus *bus, void *bus_context, const struct regmap_config *config) { struct regmap *map; int ret = -EINVAL; enum regmap_endian reg_endian, val_endian; int i, j; if (!config) goto err; map = kzalloc(sizeof(*map), GFP_KERNEL); if (map == NULL) { ret = -ENOMEM; goto err; } if (config->lock && config->unlock) { map->lock = config->lock; map->unlock = config->unlock; map->lock_arg = config->lock_arg; } else { if ((bus && bus->fast_io) || config->fast_io) { spin_lock_init(&map->spinlock); map->lock = regmap_lock_spinlock; map->unlock = regmap_unlock_spinlock; } else { mutex_init(&map->mutex); map->lock = regmap_lock_mutex; map->unlock = regmap_unlock_mutex; } map->lock_arg = map; } map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8); map->format.pad_bytes = config->pad_bits / 8; map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8); map->format.buf_size = DIV_ROUND_UP(config->reg_bits + config->val_bits + config->pad_bits, 8); map->reg_shift = config->pad_bits % 8; if (config->reg_stride) map->reg_stride = config->reg_stride; else map->reg_stride = 1; map->use_single_rw = config->use_single_rw; map->can_multi_write = config->can_multi_write; map->dev = dev; map->bus = bus; map->bus_context = bus_context; map->max_register = config->max_register; map->wr_table = config->wr_table; map->rd_table = config->rd_table; map->volatile_table = config->volatile_table; map->precious_table = config->precious_table; map->writeable_reg = config->writeable_reg; map->readable_reg = config->readable_reg; map->volatile_reg = config->volatile_reg; map->precious_reg = config->precious_reg; map->cache_type = config->cache_type; map->name = config->name; spin_lock_init(&map->async_lock); INIT_LIST_HEAD(&map->async_list); INIT_LIST_HEAD(&map->async_free); init_waitqueue_head(&map->async_waitq); if (config->read_flag_mask || config->write_flag_mask) { map->read_flag_mask = config->read_flag_mask; map->write_flag_mask = config->write_flag_mask; } else if (bus) { map->read_flag_mask = bus->read_flag_mask; } if (!bus) { map->reg_read = config->reg_read; map->reg_write = config->reg_write; map->defer_caching = false; goto skip_format_initialization; } else if (!bus->read || !bus->write) { map->reg_read = _regmap_bus_reg_read; map->reg_write = _regmap_bus_reg_write; map->defer_caching = false; goto skip_format_initialization; } else { map->reg_read = _regmap_bus_read; } reg_endian = config->reg_format_endian; if (reg_endian == REGMAP_ENDIAN_DEFAULT) reg_endian = bus->reg_format_endian_default; if (reg_endian == REGMAP_ENDIAN_DEFAULT) reg_endian = REGMAP_ENDIAN_BIG; val_endian = config->val_format_endian; if (val_endian == REGMAP_ENDIAN_DEFAULT) val_endian = bus->val_format_endian_default; if (val_endian == REGMAP_ENDIAN_DEFAULT) val_endian = REGMAP_ENDIAN_BIG; switch (config->reg_bits + map->reg_shift) { case 2: switch (config->val_bits) { case 6: map->format.format_write = regmap_format_2_6_write; break; default: goto err_map; } break; case 4: switch (config->val_bits) { case 12: map->format.format_write = regmap_format_4_12_write; break; default: goto err_map; } break; case 7: switch (config->val_bits) { case 9: map->format.format_write = regmap_format_7_9_write; break; default: goto err_map; } break; case 10: switch (config->val_bits) { case 14: map->format.format_write = regmap_format_10_14_write; break; default: goto err_map; } break; case 8: map->format.format_reg = regmap_format_8; break; case 16: switch (reg_endian) { case REGMAP_ENDIAN_BIG: map->format.format_reg = regmap_format_16_be; break; case REGMAP_ENDIAN_NATIVE: map->format.format_reg = regmap_format_16_native; break; default: goto err_map; } break; case 24: if (reg_endian != REGMAP_ENDIAN_BIG) goto err_map; map->format.format_reg = regmap_format_24; break; case 32: switch (reg_endian) { case REGMAP_ENDIAN_BIG: map->format.format_reg = regmap_format_32_be; break; case REGMAP_ENDIAN_NATIVE: map->format.format_reg = regmap_format_32_native; break; default: goto err_map; } break; default: goto err_map; } if (val_endian == REGMAP_ENDIAN_NATIVE) map->format.parse_inplace = regmap_parse_inplace_noop; switch (config->val_bits) { case 8: map->format.format_val = regmap_format_8; map->format.parse_val = regmap_parse_8; map->format.parse_inplace = regmap_parse_inplace_noop; break; case 16: switch (val_endian) { case REGMAP_ENDIAN_BIG: map->format.format_val = regmap_format_16_be; map->format.parse_val = regmap_parse_16_be; map->format.parse_inplace = regmap_parse_16_be_inplace; break; case REGMAP_ENDIAN_NATIVE: map->format.format_val = regmap_format_16_native; map->format.parse_val = regmap_parse_16_native; break; default: goto err_map; } break; case 24: if (val_endian != REGMAP_ENDIAN_BIG) goto err_map; map->format.format_val = regmap_format_24; map->format.parse_val = regmap_parse_24; break; case 32: switch (val_endian) { case REGMAP_ENDIAN_BIG: map->format.format_val = regmap_format_32_be; map->format.parse_val = regmap_parse_32_be; map->format.parse_inplace = regmap_parse_32_be_inplace; break; case REGMAP_ENDIAN_NATIVE: map->format.format_val = regmap_format_32_native; map->format.parse_val = regmap_parse_32_native; break; default: goto err_map; } break; } if (map->format.format_write) { if ((reg_endian != REGMAP_ENDIAN_BIG) || (val_endian != REGMAP_ENDIAN_BIG)) goto err_map; map->use_single_rw = true; } if (!map->format.format_write && !(map->format.format_reg && map->format.format_val)) goto err_map; map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); if (map->work_buf == NULL) { ret = -ENOMEM; goto err_map; } if (map->format.format_write) { map->defer_caching = false; map->reg_write = _regmap_bus_formatted_write; } else if (map->format.format_val) { map->defer_caching = true; map->reg_write = _regmap_bus_raw_write; } skip_format_initialization: map->range_tree = RB_ROOT; for (i = 0; i < config->num_ranges; i++) { const struct regmap_range_cfg *range_cfg = &config->ranges[i]; struct regmap_range_node *new; /* Sanity check */ if (range_cfg->range_max < range_cfg->range_min) { dev_err(map->dev, "Invalid range %d: %d < %d\n", i, range_cfg->range_max, range_cfg->range_min); goto err_range; } if (range_cfg->range_max > map->max_register) { dev_err(map->dev, "Invalid range %d: %d > %d\n", i, range_cfg->range_max, map->max_register); goto err_range; } if (range_cfg->selector_reg > map->max_register) { dev_err(map->dev, "Invalid range %d: selector out of map\n", i); goto err_range; } if (range_cfg->window_len == 0) { dev_err(map->dev, "Invalid range %d: window_len 0\n", i); goto err_range; } /* Make sure, that this register range has no selector or data window within its boundary */ for (j = 0; j < config->num_ranges; j++) { unsigned sel_reg = config->ranges[j].selector_reg; unsigned win_min = config->ranges[j].window_start; unsigned win_max = win_min + config->ranges[j].window_len - 1; /* Allow data window inside its own virtual range */ if (j == i) continue; if (range_cfg->range_min <= sel_reg && sel_reg <= range_cfg->range_max) { dev_err(map->dev, "Range %d: selector for %d in window\n", i, j); goto err_range; } if (!(win_max < range_cfg->range_min || win_min > range_cfg->range_max)) { dev_err(map->dev, "Range %d: window for %d in window\n", i, j); goto err_range; } } new = kzalloc(sizeof(*new), GFP_KERNEL); if (new == NULL) { ret = -ENOMEM; goto err_range; } new->map = map; new->name = range_cfg->name; new->range_min = range_cfg->range_min; new->range_max = range_cfg->range_max; new->selector_reg = range_cfg->selector_reg; new->selector_mask = range_cfg->selector_mask; new->selector_shift = range_cfg->selector_shift; new->window_start = range_cfg->window_start; new->window_len = range_cfg->window_len; if (!_regmap_range_add(map, new)) { dev_err(map->dev, "Failed to add range %d\n", i); kfree(new); goto err_range; } if (map->selector_work_buf == NULL) { map->selector_work_buf = kzalloc(map->format.buf_size, GFP_KERNEL); if (map->selector_work_buf == NULL) { ret = -ENOMEM; goto err_range; } } } ret = regcache_init(map, config); if (ret != 0) goto err_range; if (dev) { ret = regmap_attach_dev(dev, map, config); if (ret != 0) goto err_regcache; } return map; err_regcache: regcache_exit(map); err_range: regmap_range_exit(map); kfree(map->work_buf); err_map: kfree(map); err: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(regmap_init); static void devm_regmap_release(struct device *dev, void *res) { regmap_exit(*(struct regmap **)res); } /** * devm_regmap_init(): Initialise managed register map * * @dev: Device that will be interacted with * @bus: Bus-specific callbacks to use with device * @bus_context: Data passed to bus-specific callbacks * @config: Configuration for register map * * The return value will be an ERR_PTR() on error or a valid pointer * to a struct regmap. This function should generally not be called * directly, it should be called by bus-specific init functions. The * map will be automatically freed by the device management code. */ struct regmap *devm_regmap_init(struct device *dev, const struct regmap_bus *bus, void *bus_context, const struct regmap_config *config) { struct regmap **ptr, *regmap; ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); regmap = regmap_init(dev, bus, bus_context, config); if (!IS_ERR(regmap)) { *ptr = regmap; devres_add(dev, ptr); } else { devres_free(ptr); } return regmap; } EXPORT_SYMBOL_GPL(devm_regmap_init); static void regmap_field_init(struct regmap_field *rm_field, struct regmap *regmap, struct reg_field reg_field) { int field_bits = reg_field.msb - reg_field.lsb + 1; rm_field->regmap = regmap; rm_field->reg = reg_field.reg; rm_field->shift = reg_field.lsb; rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb); rm_field->id_size = reg_field.id_size; rm_field->id_offset = reg_field.id_offset; } /** * devm_regmap_field_alloc(): Allocate and initialise a register field * in a register map. * * @dev: Device that will be interacted with * @regmap: regmap bank in which this register field is located. * @reg_field: Register field with in the bank. * * The return value will be an ERR_PTR() on error or a valid pointer * to a struct regmap_field. The regmap_field will be automatically freed * by the device management code. */ struct regmap_field *devm_regmap_field_alloc(struct device *dev, struct regmap *regmap, struct reg_field reg_field) { struct regmap_field *rm_field = devm_kzalloc(dev, sizeof(*rm_field), GFP_KERNEL); if (!rm_field) return ERR_PTR(-ENOMEM); regmap_field_init(rm_field, regmap, reg_field); return rm_field; } EXPORT_SYMBOL_GPL(devm_regmap_field_alloc); /** * devm_regmap_field_free(): Free register field allocated using * devm_regmap_field_alloc. Usally drivers need not call this function, * as the memory allocated via devm will be freed as per device-driver * life-cyle. * * @dev: Device that will be interacted with * @field: regmap field which should be freed. */ void devm_regmap_field_free(struct device *dev, struct regmap_field *field) { devm_kfree(dev, field); } EXPORT_SYMBOL_GPL(devm_regmap_field_free); /** * regmap_field_alloc(): Allocate and initialise a register field * in a register map. * * @regmap: regmap bank in which this register field is located. * @reg_field: Register field with in the bank. * * The return value will be an ERR_PTR() on error or a valid pointer * to a struct regmap_field. The regmap_field should be freed by the * user once its finished working with it using regmap_field_free(). */ struct regmap_field *regmap_field_alloc(struct regmap *regmap, struct reg_field reg_field) { struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL); if (!rm_field) return ERR_PTR(-ENOMEM); regmap_field_init(rm_field, regmap, reg_field); return rm_field; } EXPORT_SYMBOL_GPL(regmap_field_alloc); /** * regmap_field_free(): Free register field allocated using regmap_field_alloc * * @field: regmap field which should be freed. */ void regmap_field_free(struct regmap_field *field) { kfree(field); } EXPORT_SYMBOL_GPL(regmap_field_free); /** * regmap_reinit_cache(): Reinitialise the current register cache * * @map: Register map to operate on. * @config: New configuration. Only the cache data will be used. * * Discard any existing register cache for the map and initialize a * new cache. This can be used to restore the cache to defaults or to * update the cache configuration to reflect runtime discovery of the * hardware. * * No explicit locking is done here, the user needs to ensure that * this function will not race with other calls to regmap. */ int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config) { regcache_exit(map); regmap_debugfs_exit(map); map->max_register = config->max_register; map->writeable_reg = config->writeable_reg; map->readable_reg = config->readable_reg; map->volatile_reg = config->volatile_reg; map->precious_reg = config->precious_reg; map->cache_type = config->cache_type; regmap_debugfs_init(map, config->name); map->cache_bypass = false; map->cache_only = false; return regcache_init(map, config); } EXPORT_SYMBOL_GPL(regmap_reinit_cache); /** * regmap_exit(): Free a previously allocated register map */ void regmap_exit(struct regmap *map) { struct regmap_async *async; regcache_exit(map); regmap_debugfs_exit(map); regmap_range_exit(map); if (map->bus && map->bus->free_context) map->bus->free_context(map->bus_context); kfree(map->work_buf); while (!list_empty(&map->async_free)) { async = list_first_entry_or_null(&map->async_free, struct regmap_async, list); list_del(&async->list); kfree(async->work_buf); kfree(async); } kfree(map); } EXPORT_SYMBOL_GPL(regmap_exit); static int dev_get_regmap_match(struct device *dev, void *res, void *data) { struct regmap **r = res; if (!r || !*r) { WARN_ON(!r || !*r); return 0; } /* If the user didn't specify a name match any */ if (data) return (*r)->name == data; else return 1; } /** * dev_get_regmap(): Obtain the regmap (if any) for a device * * @dev: Device to retrieve the map for * @name: Optional name for the register map, usually NULL. * * Returns the regmap for the device if one is present, or NULL. If * name is specified then it must match the name specified when * registering the device, if it is NULL then the first regmap found * will be used. Devices with multiple register maps are very rare, * generic code should normally not need to specify a name. */ struct regmap *dev_get_regmap(struct device *dev, const char *name) { struct regmap **r = devres_find(dev, dev_get_regmap_release, dev_get_regmap_match, (void *)name); if (!r) return NULL; return *r; } EXPORT_SYMBOL_GPL(dev_get_regmap); static int _regmap_select_page(struct regmap *map, unsigned int *reg, struct regmap_range_node *range, unsigned int val_num) { void *orig_work_buf; unsigned int win_offset; unsigned int win_page; bool page_chg; int ret; win_offset = (*reg - range->range_min) % range->window_len; win_page = (*reg - range->range_min) / range->window_len; if (val_num > 1) { /* Bulk write shouldn't cross range boundary */ if (*reg + val_num - 1 > range->range_max) return -EINVAL; /* ... or single page boundary */ if (val_num > range->window_len - win_offset) return -EINVAL; } /* It is possible to have selector register inside data window. In that case, selector register is located on every page and it needs no page switching, when accessed alone. */ if (val_num > 1 || range->window_start + win_offset != range->selector_reg) { /* Use separate work_buf during page switching */ orig_work_buf = map->work_buf; map->work_buf = map->selector_work_buf; ret = _regmap_update_bits(map, range->selector_reg, range->selector_mask, win_page << range->selector_shift, &page_chg); map->work_buf = orig_work_buf; if (ret != 0) return ret; } *reg = range->window_start + win_offset; return 0; } int _regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { struct regmap_range_node *range; unsigned long flags; u8 *u8 = map->work_buf; void *work_val = map->work_buf + map->format.reg_bytes + map->format.pad_bytes; void *buf; int ret = -ENOTSUPP; size_t len; int i; WARN_ON(!map->bus); /* Check for unwritable registers before we start */ if (map->writeable_reg) for (i = 0; i < val_len / map->format.val_bytes; i++) if (!map->writeable_reg(map->dev, reg + (i * map->reg_stride))) return -EINVAL; if (!map->cache_bypass && map->format.parse_val) { unsigned int ival; int val_bytes = map->format.val_bytes; for (i = 0; i < val_len / val_bytes; i++) { ival = map->format.parse_val(val + (i * val_bytes)); ret = regcache_write(map, reg + (i * map->reg_stride), ival); if (ret) { dev_err(map->dev, "Error in caching of register: %x ret: %d\n", reg + i, ret); return ret; } } if (map->cache_only) { map->cache_dirty = true; return 0; } } range = _regmap_range_lookup(map, reg); if (range) { int val_num = val_len / map->format.val_bytes; int win_offset = (reg - range->range_min) % range->window_len; int win_residue = range->window_len - win_offset; /* If the write goes beyond the end of the window split it */ while (val_num > win_residue) { dev_dbg(map->dev, "Writing window %d/%zu\n", win_residue, val_len / map->format.val_bytes); ret = _regmap_raw_write(map, reg, val, win_residue * map->format.val_bytes); if (ret != 0) return ret; reg += win_residue; val_num -= win_residue; val += win_residue * map->format.val_bytes; val_len -= win_residue * map->format.val_bytes; win_offset = (reg - range->range_min) % range->window_len; win_residue = range->window_len - win_offset; } ret = _regmap_select_page(map, ®, range, val_num); if (ret != 0) return ret; } map->format.format_reg(map->work_buf, reg, map->reg_shift); u8[0] |= map->write_flag_mask; /* * Essentially all I/O mechanisms will be faster with a single * buffer to write. Since register syncs often generate raw * writes of single registers optimise that case. */ if (val != work_val && val_len == map->format.val_bytes) { memcpy(work_val, val, map->format.val_bytes); val = work_val; } if (map->async && map->bus->async_write) { struct regmap_async *async; trace_regmap_async_write_start(map->dev, reg, val_len); spin_lock_irqsave(&map->async_lock, flags); async = list_first_entry_or_null(&map->async_free, struct regmap_async, list); if (async) list_del(&async->list); spin_unlock_irqrestore(&map->async_lock, flags); if (!async) { async = map->bus->async_alloc(); if (!async) return -ENOMEM; async->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL | GFP_DMA); if (!async->work_buf) { kfree(async); return -ENOMEM; } } async->map = map; /* If the caller supplied the value we can use it safely. */ memcpy(async->work_buf, map->work_buf, map->format.pad_bytes + map->format.reg_bytes + map->format.val_bytes); spin_lock_irqsave(&map->async_lock, flags); list_add_tail(&async->list, &map->async_list); spin_unlock_irqrestore(&map->async_lock, flags); if (val != work_val) ret = map->bus->async_write(map->bus_context, async->work_buf, map->format.reg_bytes + map->format.pad_bytes, val, val_len, async); else ret = map->bus->async_write(map->bus_context, async->work_buf, map->format.reg_bytes + map->format.pad_bytes + val_len, NULL, 0, async); if (ret != 0) { dev_err(map->dev, "Failed to schedule write: %d\n", ret); spin_lock_irqsave(&map->async_lock, flags); list_move(&async->list, &map->async_free); spin_unlock_irqrestore(&map->async_lock, flags); } return ret; } trace_regmap_hw_write_start(map->dev, reg, val_len / map->format.val_bytes); /* If we're doing a single register write we can probably just * send the work_buf directly, otherwise try to do a gather * write. */ if (val == work_val) ret = map->bus->write(map->bus_context, map->work_buf, map->format.reg_bytes + map->format.pad_bytes + val_len); else if (map->bus->gather_write) ret = map->bus->gather_write(map->bus_context, map->work_buf, map->format.reg_bytes + map->format.pad_bytes, val, val_len); /* If that didn't work fall back on linearising by hand. */ if (ret == -ENOTSUPP) { len = map->format.reg_bytes + map->format.pad_bytes + val_len; buf = kzalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, map->work_buf, map->format.reg_bytes); memcpy(buf + map->format.reg_bytes + map->format.pad_bytes, val, val_len); ret = map->bus->write(map->bus_context, buf, len); kfree(buf); } trace_regmap_hw_write_done(map->dev, reg, val_len / map->format.val_bytes); return ret; } /** * regmap_can_raw_write - Test if regmap_raw_write() is supported * * @map: Map to check. */ bool regmap_can_raw_write(struct regmap *map) { return map->bus && map->format.format_val && map->format.format_reg; } EXPORT_SYMBOL_GPL(regmap_can_raw_write); static int _regmap_bus_formatted_write(void *context, unsigned int reg, unsigned int val) { int ret; struct regmap_range_node *range; struct regmap *map = context; WARN_ON(!map->bus || !map->format.format_write); range = _regmap_range_lookup(map, reg); if (range) { ret = _regmap_select_page(map, ®, range, 1); if (ret != 0) return ret; } map->format.format_write(map, reg, val); trace_regmap_hw_write_start(map->dev, reg, 1); ret = map->bus->write(map->bus_context, map->work_buf, map->format.buf_size); trace_regmap_hw_write_done(map->dev, reg, 1); return ret; } static int _regmap_bus_reg_write(void *context, unsigned int reg, unsigned int val) { struct regmap *map = context; return map->bus->reg_write(map->bus_context, reg, val); } static int _regmap_bus_raw_write(void *context, unsigned int reg, unsigned int val) { struct regmap *map = context; WARN_ON(!map->bus || !map->format.format_val); map->format.format_val(map->work_buf + map->format.reg_bytes + map->format.pad_bytes, val, 0); return _regmap_raw_write(map, reg, map->work_buf + map->format.reg_bytes + map->format.pad_bytes, map->format.val_bytes); } static inline void *_regmap_map_get_context(struct regmap *map) { return (map->bus) ? map : map->bus_context; } int _regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; void *context = _regmap_map_get_context(map); if (!regmap_writeable(map, reg)) return -EIO; if (!map->cache_bypass && !map->defer_caching) { ret = regcache_write(map, reg, val); if (ret != 0) return ret; if (map->cache_only) { map->cache_dirty = true; return 0; } } #ifdef LOG_DEVICE if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) dev_info(map->dev, "%x <= %x\n", reg, val); #endif trace_regmap_reg_write(map->dev, reg, val); return map->reg_write(context, reg, val); } /** * regmap_write(): Write a value to a single register * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; if (reg % map->reg_stride) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_write(map, reg, val); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_write); /** * regmap_write_async(): Write a value to a single register asynchronously * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) { int ret; if (reg % map->reg_stride) return -EINVAL; map->lock(map->lock_arg); map->async = true; ret = _regmap_write(map, reg, val); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_write_async); /** * regmap_raw_write(): Write raw values to one or more registers * * @map: Register map to write to * @reg: Initial register to write to * @val: Block of data to be written, laid out for direct transmission to the * device * @val_len: Length of data pointed to by val. * * This function is intended to be used for things like firmware * download where a large block of data needs to be transferred to the * device. No formatting will be done on the data provided. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { int ret; if (!regmap_can_raw_write(map)) return -EINVAL; if (val_len % map->format.val_bytes) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_raw_write(map, reg, val, val_len); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_write); /** * regmap_field_write(): Write a value to a single register field * * @field: Register field to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_field_write(struct regmap_field *field, unsigned int val) { return regmap_update_bits(field->regmap, field->reg, field->mask, val << field->shift); } EXPORT_SYMBOL_GPL(regmap_field_write); /** * regmap_field_update_bits(): Perform a read/modify/write cycle * on the register field * * @field: Register field to write to * @mask: Bitmask to change * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val) { mask = (mask << field->shift) & field->mask; return regmap_update_bits(field->regmap, field->reg, mask, val << field->shift); } EXPORT_SYMBOL_GPL(regmap_field_update_bits); /** * regmap_fields_write(): Write a value to a single register field with port ID * * @field: Register field to write to * @id: port ID * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_fields_write(struct regmap_field *field, unsigned int id, unsigned int val) { if (id >= field->id_size) return -EINVAL; return regmap_update_bits(field->regmap, field->reg + (field->id_offset * id), field->mask, val << field->shift); } EXPORT_SYMBOL_GPL(regmap_fields_write); /** * regmap_fields_update_bits(): Perform a read/modify/write cycle * on the register field * * @field: Register field to write to * @id: port ID * @mask: Bitmask to change * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_fields_update_bits(struct regmap_field *field, unsigned int id, unsigned int mask, unsigned int val) { if (id >= field->id_size) return -EINVAL; mask = (mask << field->shift) & field->mask; return regmap_update_bits(field->regmap, field->reg + (field->id_offset * id), mask, val << field->shift); } EXPORT_SYMBOL_GPL(regmap_fields_update_bits); /* * regmap_bulk_write(): Write multiple registers to the device * * @map: Register map to write to * @reg: First register to be write from * @val: Block of data to be written, in native register size for device * @val_count: Number of registers to write * * This function is intended to be used for writing a large block of * data to the device either in single transfer or multiple transfer. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, size_t val_count) { int ret = 0, i; size_t val_bytes = map->format.val_bytes; if (map->bus && !map->format.parse_inplace) return -EINVAL; if (reg % map->reg_stride) return -EINVAL; /* * Some devices don't support bulk write, for * them we have a series of single write operations. */ if (!map->bus || map->use_single_rw) { map->lock(map->lock_arg); for (i = 0; i < val_count; i++) { unsigned int ival; switch (val_bytes) { case 1: ival = *(u8 *)(val + (i * val_bytes)); break; case 2: ival = *(u16 *)(val + (i * val_bytes)); break; case 4: ival = *(u32 *)(val + (i * val_bytes)); break; #ifdef CONFIG_64BIT case 8: ival = *(u64 *)(val + (i * val_bytes)); break; #endif default: ret = -EINVAL; goto out; } ret = _regmap_write(map, reg + (i * map->reg_stride), ival); if (ret != 0) goto out; } out: map->unlock(map->lock_arg); } else { void *wval; wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL); if (!wval) { dev_err(map->dev, "Error in memory allocation\n"); return -ENOMEM; } for (i = 0; i < val_count * val_bytes; i += val_bytes) map->format.parse_inplace(wval + i); map->lock(map->lock_arg); ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count); map->unlock(map->lock_arg); kfree(wval); } return ret; } EXPORT_SYMBOL_GPL(regmap_bulk_write); /* * _regmap_raw_multi_reg_write() * * the (register,newvalue) pairs in regs have not been formatted, but * they are all in the same page and have been changed to being page * relative. The page register has been written if that was neccessary. */ static int _regmap_raw_multi_reg_write(struct regmap *map, const struct reg_default *regs, size_t num_regs) { int ret; void *buf; int i; u8 *u8; size_t val_bytes = map->format.val_bytes; size_t reg_bytes = map->format.reg_bytes; size_t pad_bytes = map->format.pad_bytes; size_t pair_size = reg_bytes + pad_bytes + val_bytes; size_t len = pair_size * num_regs; buf = kzalloc(len, GFP_KERNEL); if (!buf) return -ENOMEM; /* We have to linearise by hand. */ u8 = buf; for (i = 0; i < num_regs; i++) { int reg = regs[i].reg; int val = regs[i].def; trace_regmap_hw_write_start(map->dev, reg, 1); map->format.format_reg(u8, reg, map->reg_shift); u8 += reg_bytes + pad_bytes; map->format.format_val(u8, val, 0); u8 += val_bytes; } u8 = buf; *u8 |= map->write_flag_mask; ret = map->bus->write(map->bus_context, buf, len); kfree(buf); for (i = 0; i < num_regs; i++) { int reg = regs[i].reg; trace_regmap_hw_write_done(map->dev, reg, 1); } return ret; } static unsigned int _regmap_register_page(struct regmap *map, unsigned int reg, struct regmap_range_node *range) { unsigned int win_page = (reg - range->range_min) / range->window_len; return win_page; } static int _regmap_range_multi_paged_reg_write(struct regmap *map, struct reg_default *regs, size_t num_regs) { int ret; int i, n; struct reg_default *base; unsigned int this_page; /* * the set of registers are not neccessarily in order, but * since the order of write must be preserved this algorithm * chops the set each time the page changes */ base = regs; for (i = 0, n = 0; i < num_regs; i++, n++) { unsigned int reg = regs[i].reg; struct regmap_range_node *range; range = _regmap_range_lookup(map, reg); if (range) { unsigned int win_page = _regmap_register_page(map, reg, range); if (i == 0) this_page = win_page; if (win_page != this_page) { this_page = win_page; ret = _regmap_raw_multi_reg_write(map, base, n); if (ret != 0) return ret; base += n; n = 0; } ret = _regmap_select_page(map, &base[n].reg, range, 1); if (ret != 0) return ret; } } if (n > 0) return _regmap_raw_multi_reg_write(map, base, n); return 0; } static int _regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs, size_t num_regs) { int i; int ret; if (!map->can_multi_write) { for (i = 0; i < num_regs; i++) { ret = _regmap_write(map, regs[i].reg, regs[i].def); if (ret != 0) return ret; } return 0; } if (!map->format.parse_inplace) return -EINVAL; if (map->writeable_reg) for (i = 0; i < num_regs; i++) { int reg = regs[i].reg; if (!map->writeable_reg(map->dev, reg)) return -EINVAL; if (reg % map->reg_stride) return -EINVAL; } if (!map->cache_bypass) { for (i = 0; i < num_regs; i++) { unsigned int val = regs[i].def; unsigned int reg = regs[i].reg; ret = regcache_write(map, reg, val); if (ret) { dev_err(map->dev, "Error in caching of register: %x ret: %d\n", reg, ret); return ret; } } if (map->cache_only) { map->cache_dirty = true; return 0; } } WARN_ON(!map->bus); for (i = 0; i < num_regs; i++) { unsigned int reg = regs[i].reg; struct regmap_range_node *range; range = _regmap_range_lookup(map, reg); if (range) { size_t len = sizeof(struct reg_default)*num_regs; struct reg_default *base = kmemdup(regs, len, GFP_KERNEL); if (!base) return -ENOMEM; ret = _regmap_range_multi_paged_reg_write(map, base, num_regs); kfree(base); return ret; } } return _regmap_raw_multi_reg_write(map, regs, num_regs); } /* * regmap_multi_reg_write(): Write multiple registers to the device * * where the set of register,value pairs are supplied in any order, * possibly not all in a single range. * * @map: Register map to write to * @regs: Array of structures containing register,value to be written * @num_regs: Number of registers to write * * The 'normal' block write mode will send ultimately send data on the * target bus as R,V1,V2,V3,..,Vn where successively higer registers are * addressed. However, this alternative block multi write mode will send * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device * must of course support the mode. * * A value of zero will be returned on success, a negative errno will be * returned in error cases. */ int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs, int num_regs) { int ret; map->lock(map->lock_arg); ret = _regmap_multi_reg_write(map, regs, num_regs); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_multi_reg_write); /* * regmap_multi_reg_write_bypassed(): Write multiple registers to the * device but not the cache * * where the set of register are supplied in any order * * @map: Register map to write to * @regs: Array of structures containing register,value to be written * @num_regs: Number of registers to write * * This function is intended to be used for writing a large block of data * atomically to the device in single transfer for those I2C client devices * that implement this alternative block write mode. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_multi_reg_write_bypassed(struct regmap *map, const struct reg_default *regs, int num_regs) { int ret; bool bypass; map->lock(map->lock_arg); bypass = map->cache_bypass; map->cache_bypass = true; ret = _regmap_multi_reg_write(map, regs, num_regs); map->cache_bypass = bypass; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed); /** * regmap_raw_write_async(): Write raw values to one or more registers * asynchronously * * @map: Register map to write to * @reg: Initial register to write to * @val: Block of data to be written, laid out for direct transmission to the * device. Must be valid until regmap_async_complete() is called. * @val_len: Length of data pointed to by val. * * This function is intended to be used for things like firmware * download where a large block of data needs to be transferred to the * device. No formatting will be done on the data provided. * * If supported by the underlying bus the write will be scheduled * asynchronously, helping maximise I/O speed on higher speed buses * like SPI. regmap_async_complete() can be called to ensure that all * asynchrnous writes have been completed. * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_write_async(struct regmap *map, unsigned int reg, const void *val, size_t val_len) { int ret; if (val_len % map->format.val_bytes) return -EINVAL; if (reg % map->reg_stride) return -EINVAL; map->lock(map->lock_arg); map->async = true; ret = _regmap_raw_write(map, reg, val, val_len); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_write_async); static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val, unsigned int val_len) { struct regmap_range_node *range; u8 *u8 = map->work_buf; int ret; WARN_ON(!map->bus); range = _regmap_range_lookup(map, reg); if (range) { ret = _regmap_select_page(map, ®, range, val_len / map->format.val_bytes); if (ret != 0) return ret; } map->format.format_reg(map->work_buf, reg, map->reg_shift); /* * Some buses or devices flag reads by setting the high bits in the * register addresss; since it's always the high bits for all * current formats we can do this here rather than in * formatting. This may break if we get interesting formats. */ u8[0] |= map->read_flag_mask; trace_regmap_hw_read_start(map->dev, reg, val_len / map->format.val_bytes); ret = map->bus->read(map->bus_context, map->work_buf, map->format.reg_bytes + map->format.pad_bytes, val, val_len); trace_regmap_hw_read_done(map->dev, reg, val_len / map->format.val_bytes); return ret; } static int _regmap_bus_reg_read(void *context, unsigned int reg, unsigned int *val) { struct regmap *map = context; return map->bus->reg_read(map->bus_context, reg, val); } static int _regmap_bus_read(void *context, unsigned int reg, unsigned int *val) { int ret; struct regmap *map = context; if (!map->format.parse_val) return -EINVAL; ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes); if (ret == 0) *val = map->format.parse_val(map->work_buf); return ret; } static int _regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; void *context = _regmap_map_get_context(map); WARN_ON(!map->reg_read); if (!map->cache_bypass) { ret = regcache_read(map, reg, val); if (ret == 0) return 0; } if (map->cache_only) return -EBUSY; if (!regmap_readable(map, reg)) return -EIO; ret = map->reg_read(context, reg, val); if (ret == 0) { #ifdef LOG_DEVICE if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0) dev_info(map->dev, "%x => %x\n", reg, *val); #endif trace_regmap_reg_read(map->dev, reg, *val); if (!map->cache_bypass) regcache_write(map, reg, *val); } return ret; } /** * regmap_read(): Read a value from a single register * * @map: Register map to read from * @reg: Register to be read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; if (reg % map->reg_stride) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_read(map, reg, val); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_read); /** * regmap_raw_read(): Read raw data from the device * * @map: Register map to read from * @reg: First register to be read from * @val: Pointer to store read value * @val_len: Size of data to read * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, size_t val_len) { size_t val_bytes = map->format.val_bytes; size_t val_count = val_len / val_bytes; unsigned int v; int ret, i; if (!map->bus) return -EINVAL; if (val_len % map->format.val_bytes) return -EINVAL; if (reg % map->reg_stride) return -EINVAL; map->lock(map->lock_arg); if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass || map->cache_type == REGCACHE_NONE) { /* Physical block read if there's no cache involved */ ret = _regmap_raw_read(map, reg, val, val_len); } else { /* Otherwise go word by word for the cache; should be low * cost as we expect to hit the cache. */ for (i = 0; i < val_count; i++) { ret = _regmap_read(map, reg + (i * map->reg_stride), &v); if (ret != 0) goto out; map->format.format_val(val + (i * val_bytes), v, 0); } } out: map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_raw_read); /** * regmap_field_read(): Read a value to a single register field * * @field: Register field to read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_field_read(struct regmap_field *field, unsigned int *val) { int ret; unsigned int reg_val; ret = regmap_read(field->regmap, field->reg, ®_val); if (ret != 0) return ret; reg_val &= field->mask; reg_val >>= field->shift; *val = reg_val; return ret; } EXPORT_SYMBOL_GPL(regmap_field_read); /** * regmap_fields_read(): Read a value to a single register field with port ID * * @field: Register field to read from * @id: port ID * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_fields_read(struct regmap_field *field, unsigned int id, unsigned int *val) { int ret; unsigned int reg_val; if (id >= field->id_size) return -EINVAL; ret = regmap_read(field->regmap, field->reg + (field->id_offset * id), ®_val); if (ret != 0) return ret; reg_val &= field->mask; reg_val >>= field->shift; *val = reg_val; return ret; } EXPORT_SYMBOL_GPL(regmap_fields_read); /** * regmap_bulk_read(): Read multiple registers from the device * * @map: Register map to read from * @reg: First register to be read from * @val: Pointer to store read value, in native register size for device * @val_count: Number of registers to read * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, size_t val_count) { int ret, i; size_t val_bytes = map->format.val_bytes; bool vol = regmap_volatile_range(map, reg, val_count); if (reg % map->reg_stride) return -EINVAL; if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) { /* * Some devices does not support bulk read, for * them we have a series of single read operations. */ if (map->use_single_rw) { for (i = 0; i < val_count; i++) { ret = regmap_raw_read(map, reg + (i * map->reg_stride), val + (i * val_bytes), val_bytes); if (ret != 0) return ret; } } else { ret = regmap_raw_read(map, reg, val, val_bytes * val_count); if (ret != 0) return ret; } for (i = 0; i < val_count * val_bytes; i += val_bytes) map->format.parse_inplace(val + i); } else { for (i = 0; i < val_count; i++) { unsigned int ival; ret = regmap_read(map, reg + (i * map->reg_stride), &ival); if (ret != 0) return ret; memcpy(val + (i * val_bytes), &ival, val_bytes); } } return 0; } EXPORT_SYMBOL_GPL(regmap_bulk_read); static int _regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { int ret; unsigned int tmp, orig; ret = _regmap_read(map, reg, &orig); if (ret != 0) return ret; tmp = orig & ~mask; tmp |= val & mask; if (tmp != orig) { ret = _regmap_write(map, reg, tmp); if (change) *change = true; } else { if (change) *change = false; } return ret; } /** * regmap_update_bits: Perform a read/modify/write cycle on the register map * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * * Returns zero for success, a negative number on error. */ int regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val) { int ret; map->lock(map->lock_arg); ret = _regmap_update_bits(map, reg, mask, val, NULL); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_update_bits); /** * regmap_update_bits_async: Perform a read/modify/write cycle on the register * map asynchronously * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * * With most buses the read must be done synchronously so this is most * useful for devices with a cache which do not need to interact with * the hardware to determine the current register value. * * Returns zero for success, a negative number on error. */ int regmap_update_bits_async(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val) { int ret; map->lock(map->lock_arg); map->async = true; ret = _regmap_update_bits(map, reg, mask, val, NULL); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_update_bits_async); /** * regmap_update_bits_check: Perform a read/modify/write cycle on the * register map and report if updated * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * @change: Boolean indicating if a write was done * * Returns zero for success, a negative number on error. */ int regmap_update_bits_check(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { int ret; map->lock(map->lock_arg); ret = _regmap_update_bits(map, reg, mask, val, change); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_update_bits_check); /** * regmap_update_bits_check_async: Perform a read/modify/write cycle on the * register map asynchronously and report if * updated * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * @change: Boolean indicating if a write was done * * With most buses the read must be done synchronously so this is most * useful for devices with a cache which do not need to interact with * the hardware to determine the current register value. * * Returns zero for success, a negative number on error. */ int regmap_update_bits_check_async(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { int ret; map->lock(map->lock_arg); map->async = true; ret = _regmap_update_bits(map, reg, mask, val, change); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_update_bits_check_async); void regmap_async_complete_cb(struct regmap_async *async, int ret) { struct regmap *map = async->map; bool wake; trace_regmap_async_io_complete(map->dev); spin_lock(&map->async_lock); list_move(&async->list, &map->async_free); wake = list_empty(&map->async_list); if (ret != 0) map->async_ret = ret; spin_unlock(&map->async_lock); if (wake) wake_up(&map->async_waitq); } EXPORT_SYMBOL_GPL(regmap_async_complete_cb); static int regmap_async_is_done(struct regmap *map) { unsigned long flags; int ret; spin_lock_irqsave(&map->async_lock, flags); ret = list_empty(&map->async_list); spin_unlock_irqrestore(&map->async_lock, flags); return ret; } /** * regmap_async_complete: Ensure all asynchronous I/O has completed. * * @map: Map to operate on. * * Blocks until any pending asynchronous I/O has completed. Returns * an error code for any failed I/O operations. */ int regmap_async_complete(struct regmap *map) { unsigned long flags; int ret; /* Nothing to do with no async support */ if (!map->bus || !map->bus->async_write) return 0; trace_regmap_async_complete_start(map->dev); wait_event(map->async_waitq, regmap_async_is_done(map)); spin_lock_irqsave(&map->async_lock, flags); ret = map->async_ret; map->async_ret = 0; spin_unlock_irqrestore(&map->async_lock, flags); trace_regmap_async_complete_done(map->dev); return ret; } EXPORT_SYMBOL_GPL(regmap_async_complete); /** * regmap_register_patch: Register and apply register updates to be applied * on device initialistion * * @map: Register map to apply updates to. * @regs: Values to update. * @num_regs: Number of entries in regs. * * Register a set of register updates to be applied to the device * whenever the device registers are synchronised with the cache and * apply them immediately. Typically this is used to apply * corrections to be applied to the device defaults on startup, such * as the updates some vendors provide to undocumented registers. * * The caller must ensure that this function cannot be called * concurrently with either itself or regcache_sync(). */ int regmap_register_patch(struct regmap *map, const struct reg_default *regs, int num_regs) { struct reg_default *p; int ret; bool bypass; if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", num_regs)) return 0; p = krealloc(map->patch, sizeof(struct reg_default) * (map->patch_regs + num_regs), GFP_KERNEL); if (p) { memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); map->patch = p; map->patch_regs += num_regs; } else { return -ENOMEM; } map->lock(map->lock_arg); bypass = map->cache_bypass; map->cache_bypass = true; map->async = true; ret = _regmap_multi_reg_write(map, regs, num_regs); if (ret != 0) goto out; out: map->async = false; map->cache_bypass = bypass; map->unlock(map->lock_arg); regmap_async_complete(map); return ret; } EXPORT_SYMBOL_GPL(regmap_register_patch); /* * regmap_get_val_bytes(): Report the size of a register value * * Report the size of a register value, mainly intended to for use by * generic infrastructure built on top of regmap. */ int regmap_get_val_bytes(struct regmap *map) { if (map->format.format_write) return -EINVAL; return map->format.val_bytes; } EXPORT_SYMBOL_GPL(regmap_get_val_bytes); int regmap_parse_val(struct regmap *map, const void *buf, unsigned int *val) { if (!map->format.parse_val) return -EINVAL; *val = map->format.parse_val(buf); return 0; } EXPORT_SYMBOL_GPL(regmap_parse_val); static int __init regmap_initcall(void) { regmap_debugfs_initcall(); return 0; } postcore_initcall(regmap_initcall);