/* ** z2ram - Amiga pseudo-driver to access 16bit-RAM in ZorroII space ** as a block device, to be used as a RAM disk or swap space ** ** Copyright (C) 1994 by Ingo Wilken (Ingo.Wilken@informatik.uni-oldenburg.de) ** ** ++Geert: support for zorro_unused_z2ram, better range checking ** ++roman: translate accesses via an array ** ++Milan: support for ChipRAM usage ** ++yambo: converted to 2.0 kernel ** ++yambo: modularized and support added for 3 minor devices including: ** MAJOR MINOR DESCRIPTION ** ----- ----- ---------------------------------------------- ** 37 0 Use Zorro II and Chip ram ** 37 1 Use only Zorro II ram ** 37 2 Use only Chip ram ** 37 4-7 Use memory list entry 1-4 (first is 0) ** ++jskov: support for 1-4th memory list entry. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ #define DEVICE_NAME "Z2RAM" #include <linux/major.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/module.h> #include <linux/blk-mq.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/pgtable.h> #include <asm/setup.h> #include <asm/amigahw.h> #include <linux/zorro.h> #define Z2MINOR_COMBINED (0) #define Z2MINOR_Z2ONLY (1) #define Z2MINOR_CHIPONLY (2) #define Z2MINOR_MEMLIST1 (4) #define Z2MINOR_MEMLIST2 (5) #define Z2MINOR_MEMLIST3 (6) #define Z2MINOR_MEMLIST4 (7) #define Z2MINOR_COUNT (8) /* Move this down when adding a new minor */ #define Z2RAM_CHUNK1024 ( Z2RAM_CHUNKSIZE >> 10 ) static DEFINE_MUTEX(z2ram_mutex); static u_long *z2ram_map = NULL; static u_long z2ram_size = 0; static int z2_count = 0; static int chip_count = 0; static int list_count = 0; static int current_device = -1; static DEFINE_SPINLOCK(z2ram_lock); static struct gendisk *z2ram_gendisk[Z2MINOR_COUNT]; static blk_status_t z2_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request *req = bd->rq; unsigned long start = blk_rq_pos(req) << 9; unsigned long len = blk_rq_cur_bytes(req); blk_mq_start_request(req); if (start + len > z2ram_size) { pr_err(DEVICE_NAME ": bad access: block=%llu, " "count=%u\n", (unsigned long long)blk_rq_pos(req), blk_rq_cur_sectors(req)); return BLK_STS_IOERR; } spin_lock_irq(&z2ram_lock); while (len) { unsigned long addr = start & Z2RAM_CHUNKMASK; unsigned long size = Z2RAM_CHUNKSIZE - addr; void *buffer = bio_data(req->bio); if (len < size) size = len; addr += z2ram_map[start >> Z2RAM_CHUNKSHIFT]; if (rq_data_dir(req) == READ) memcpy(buffer, (char *)addr, size); else memcpy((char *)addr, buffer, size); start += size; len -= size; } spin_unlock_irq(&z2ram_lock); blk_mq_end_request(req, BLK_STS_OK); return BLK_STS_OK; } static void get_z2ram(void) { int i; for (i = 0; i < Z2RAM_SIZE / Z2RAM_CHUNKSIZE; i++) { if (test_bit(i, zorro_unused_z2ram)) { z2_count++; z2ram_map[z2ram_size++] = (unsigned long)ZTWO_VADDR(Z2RAM_START) + (i << Z2RAM_CHUNKSHIFT); clear_bit(i, zorro_unused_z2ram); } } return; } static void get_chipram(void) { while (amiga_chip_avail() > (Z2RAM_CHUNKSIZE * 4)) { chip_count++; z2ram_map[z2ram_size] = (u_long) amiga_chip_alloc(Z2RAM_CHUNKSIZE, "z2ram"); if (z2ram_map[z2ram_size] == 0) { break; } z2ram_size++; } return; } static int z2_open(struct block_device *bdev, fmode_t mode) { int device; int max_z2_map = (Z2RAM_SIZE / Z2RAM_CHUNKSIZE) * sizeof(z2ram_map[0]); int max_chip_map = (amiga_chip_size / Z2RAM_CHUNKSIZE) * sizeof(z2ram_map[0]); int rc = -ENOMEM; device = MINOR(bdev->bd_dev); mutex_lock(&z2ram_mutex); if (current_device != -1 && current_device != device) { rc = -EBUSY; goto err_out; } if (current_device == -1) { z2_count = 0; chip_count = 0; list_count = 0; z2ram_size = 0; /* Use a specific list entry. */ if (device >= Z2MINOR_MEMLIST1 && device <= Z2MINOR_MEMLIST4) { int index = device - Z2MINOR_MEMLIST1 + 1; unsigned long size, paddr, vaddr; if (index >= m68k_realnum_memory) { printk(KERN_ERR DEVICE_NAME ": no such entry in z2ram_map\n"); goto err_out; } paddr = m68k_memory[index].addr; size = m68k_memory[index].size & ~(Z2RAM_CHUNKSIZE - 1); #ifdef __powerpc__ /* FIXME: ioremap doesn't build correct memory tables. */ { vfree(vmalloc(size)); } vaddr = (unsigned long)ioremap_wt(paddr, size); #else vaddr = (unsigned long)z_remap_nocache_nonser(paddr, size); #endif z2ram_map = kmalloc_array(size / Z2RAM_CHUNKSIZE, sizeof(z2ram_map[0]), GFP_KERNEL); if (z2ram_map == NULL) { printk(KERN_ERR DEVICE_NAME ": cannot get mem for z2ram_map\n"); goto err_out; } while (size) { z2ram_map[z2ram_size++] = vaddr; size -= Z2RAM_CHUNKSIZE; vaddr += Z2RAM_CHUNKSIZE; list_count++; } if (z2ram_size != 0) printk(KERN_INFO DEVICE_NAME ": using %iK List Entry %d Memory\n", list_count * Z2RAM_CHUNK1024, index); } else switch (device) { case Z2MINOR_COMBINED: z2ram_map = kmalloc(max_z2_map + max_chip_map, GFP_KERNEL); if (z2ram_map == NULL) { printk(KERN_ERR DEVICE_NAME ": cannot get mem for z2ram_map\n"); goto err_out; } get_z2ram(); get_chipram(); if (z2ram_size != 0) printk(KERN_INFO DEVICE_NAME ": using %iK Zorro II RAM and %iK Chip RAM (Total %dK)\n", z2_count * Z2RAM_CHUNK1024, chip_count * Z2RAM_CHUNK1024, (z2_count + chip_count) * Z2RAM_CHUNK1024); break; case Z2MINOR_Z2ONLY: z2ram_map = kmalloc(max_z2_map, GFP_KERNEL); if (!z2ram_map) goto err_out; get_z2ram(); if (z2ram_size != 0) printk(KERN_INFO DEVICE_NAME ": using %iK of Zorro II RAM\n", z2_count * Z2RAM_CHUNK1024); break; case Z2MINOR_CHIPONLY: z2ram_map = kmalloc(max_chip_map, GFP_KERNEL); if (!z2ram_map) goto err_out; get_chipram(); if (z2ram_size != 0) printk(KERN_INFO DEVICE_NAME ": using %iK Chip RAM\n", chip_count * Z2RAM_CHUNK1024); break; default: rc = -ENODEV; goto err_out; break; } if (z2ram_size == 0) { printk(KERN_NOTICE DEVICE_NAME ": no unused ZII/Chip RAM found\n"); goto err_out_kfree; } current_device = device; z2ram_size <<= Z2RAM_CHUNKSHIFT; set_capacity(z2ram_gendisk[device], z2ram_size >> 9); } mutex_unlock(&z2ram_mutex); return 0; err_out_kfree: kfree(z2ram_map); err_out: mutex_unlock(&z2ram_mutex); return rc; } static void z2_release(struct gendisk *disk, fmode_t mode) { mutex_lock(&z2ram_mutex); if (current_device == -1) { mutex_unlock(&z2ram_mutex); return; } mutex_unlock(&z2ram_mutex); /* * FIXME: unmap memory */ } static const struct block_device_operations z2_fops = { .owner = THIS_MODULE, .open = z2_open, .release = z2_release, }; static struct blk_mq_tag_set tag_set; static const struct blk_mq_ops z2_mq_ops = { .queue_rq = z2_queue_rq, }; static int z2ram_register_disk(int minor) { struct gendisk *disk; disk = blk_mq_alloc_disk(&tag_set, NULL); if (IS_ERR(disk)) return PTR_ERR(disk); disk->major = Z2RAM_MAJOR; disk->first_minor = minor; disk->minors = 1; disk->fops = &z2_fops; if (minor) sprintf(disk->disk_name, "z2ram%d", minor); else sprintf(disk->disk_name, "z2ram"); z2ram_gendisk[minor] = disk; add_disk(disk); return 0; } static int __init z2_init(void) { int ret, i; if (!MACH_IS_AMIGA) return -ENODEV; if (register_blkdev(Z2RAM_MAJOR, DEVICE_NAME)) return -EBUSY; tag_set.ops = &z2_mq_ops; tag_set.nr_hw_queues = 1; tag_set.nr_maps = 1; tag_set.queue_depth = 16; tag_set.numa_node = NUMA_NO_NODE; tag_set.flags = BLK_MQ_F_SHOULD_MERGE; ret = blk_mq_alloc_tag_set(&tag_set); if (ret) goto out_unregister_blkdev; for (i = 0; i < Z2MINOR_COUNT; i++) { ret = z2ram_register_disk(i); if (ret && i == 0) goto out_free_tagset; } return 0; out_free_tagset: blk_mq_free_tag_set(&tag_set); out_unregister_blkdev: unregister_blkdev(Z2RAM_MAJOR, DEVICE_NAME); return ret; } static void __exit z2_exit(void) { int i, j; unregister_blkdev(Z2RAM_MAJOR, DEVICE_NAME); for (i = 0; i < Z2MINOR_COUNT; i++) { del_gendisk(z2ram_gendisk[i]); blk_cleanup_queue(z2ram_gendisk[i]->queue); put_disk(z2ram_gendisk[i]); } blk_mq_free_tag_set(&tag_set); if (current_device != -1) { i = 0; for (j = 0; j < z2_count; j++) { set_bit(i++, zorro_unused_z2ram); } for (j = 0; j < chip_count; j++) { if (z2ram_map[i]) { amiga_chip_free((void *)z2ram_map[i++]); } } if (z2ram_map != NULL) { kfree(z2ram_map); } } return; } module_init(z2_init); module_exit(z2_exit); MODULE_LICENSE("GPL");