/* * Freescale FlexTimer Module (FTM) timer driver. * * Copyright 2014 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> #define FTM_SC 0x00 #define FTM_SC_CLK_SHIFT 3 #define FTM_SC_CLK_MASK (0x3 << FTM_SC_CLK_SHIFT) #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_SHIFT) #define FTM_SC_PS_MASK 0x7 #define FTM_SC_TOIE BIT(6) #define FTM_SC_TOF BIT(7) #define FTM_CNT 0x04 #define FTM_MOD 0x08 #define FTM_CNTIN 0x4C #define FTM_PS_MAX 7 struct ftm_clock_device { void __iomem *clksrc_base; void __iomem *clkevt_base; unsigned long periodic_cyc; unsigned long ps; bool big_endian; }; static struct ftm_clock_device *priv; static inline u32 ftm_readl(void __iomem *addr) { if (priv->big_endian) return ioread32be(addr); else return ioread32(addr); } static inline void ftm_writel(u32 val, void __iomem *addr) { if (priv->big_endian) iowrite32be(val, addr); else iowrite32(val, addr); } static inline void ftm_counter_enable(void __iomem *base) { u32 val; /* select and enable counter clock source */ val = ftm_readl(base + FTM_SC); val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); val |= priv->ps | FTM_SC_CLK(1); ftm_writel(val, base + FTM_SC); } static inline void ftm_counter_disable(void __iomem *base) { u32 val; /* disable counter clock source */ val = ftm_readl(base + FTM_SC); val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); ftm_writel(val, base + FTM_SC); } static inline void ftm_irq_acknowledge(void __iomem *base) { u32 val; val = ftm_readl(base + FTM_SC); val &= ~FTM_SC_TOF; ftm_writel(val, base + FTM_SC); } static inline void ftm_irq_enable(void __iomem *base) { u32 val; val = ftm_readl(base + FTM_SC); val |= FTM_SC_TOIE; ftm_writel(val, base + FTM_SC); } static inline void ftm_irq_disable(void __iomem *base) { u32 val; val = ftm_readl(base + FTM_SC); val &= ~FTM_SC_TOIE; ftm_writel(val, base + FTM_SC); } static inline void ftm_reset_counter(void __iomem *base) { /* * The CNT register contains the FTM counter value. * Reset clears the CNT register. Writing any value to COUNT * updates the counter with its initial value, CNTIN. */ ftm_writel(0x00, base + FTM_CNT); } static u64 notrace ftm_read_sched_clock(void) { return ftm_readl(priv->clksrc_base + FTM_CNT); } static int ftm_set_next_event(unsigned long delta, struct clock_event_device *unused) { /* * The CNNIN and MOD are all double buffer registers, writing * to the MOD register latches the value into a buffer. The MOD * register is updated with the value of its write buffer with * the following scenario: * a, the counter source clock is diabled. */ ftm_counter_disable(priv->clkevt_base); /* Force the value of CNTIN to be loaded into the FTM counter */ ftm_reset_counter(priv->clkevt_base); /* * The counter increments until the value of MOD is reached, * at which point the counter is reloaded with the value of CNTIN. * The TOF (the overflow flag) bit is set when the FTM counter * changes from MOD to CNTIN. So we should using the delta - 1. */ ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD); ftm_counter_enable(priv->clkevt_base); ftm_irq_enable(priv->clkevt_base); return 0; } static int ftm_set_oneshot(struct clock_event_device *evt) { ftm_counter_disable(priv->clkevt_base); return 0; } static int ftm_set_periodic(struct clock_event_device *evt) { ftm_set_next_event(priv->periodic_cyc, evt); return 0; } static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; ftm_irq_acknowledge(priv->clkevt_base); if (likely(clockevent_state_oneshot(evt))) { ftm_irq_disable(priv->clkevt_base); ftm_counter_disable(priv->clkevt_base); } evt->event_handler(evt); return IRQ_HANDLED; } static struct clock_event_device ftm_clockevent = { .name = "Freescale ftm timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_periodic = ftm_set_periodic, .set_state_oneshot = ftm_set_oneshot, .set_next_event = ftm_set_next_event, .rating = 300, }; static struct irqaction ftm_timer_irq = { .name = "Freescale ftm timer", .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = ftm_evt_interrupt, .dev_id = &ftm_clockevent, }; static int __init ftm_clockevent_init(unsigned long freq, int irq) { int err; ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN); ftm_writel(~0u, priv->clkevt_base + FTM_MOD); ftm_reset_counter(priv->clkevt_base); err = setup_irq(irq, &ftm_timer_irq); if (err) { pr_err("ftm: setup irq failed: %d\n", err); return err; } ftm_clockevent.cpumask = cpumask_of(0); ftm_clockevent.irq = irq; clockevents_config_and_register(&ftm_clockevent, freq / (1 << priv->ps), 1, 0xffff); ftm_counter_enable(priv->clkevt_base); return 0; } static int __init ftm_clocksource_init(unsigned long freq) { int err; ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN); ftm_writel(~0u, priv->clksrc_base + FTM_MOD); ftm_reset_counter(priv->clksrc_base); sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps)); err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm", freq / (1 << priv->ps), 300, 16, clocksource_mmio_readl_up); if (err) { pr_err("ftm: init clock source mmio failed: %d\n", err); return err; } ftm_counter_enable(priv->clksrc_base); return 0; } static int __init __ftm_clk_init(struct device_node *np, char *cnt_name, char *ftm_name) { struct clk *clk; int err; clk = of_clk_get_by_name(np, cnt_name); if (IS_ERR(clk)) { pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk)); return PTR_ERR(clk); } err = clk_prepare_enable(clk); if (err) { pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n", cnt_name, err); return err; } clk = of_clk_get_by_name(np, ftm_name); if (IS_ERR(clk)) { pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk)); return PTR_ERR(clk); } err = clk_prepare_enable(clk); if (err) pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n", ftm_name, err); return clk_get_rate(clk); } static unsigned long __init ftm_clk_init(struct device_node *np) { long freq; freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt"); if (freq <= 0) return 0; freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src"); if (freq <= 0) return 0; return freq; } static int __init ftm_calc_closest_round_cyc(unsigned long freq) { priv->ps = 0; /* The counter register is only using the lower 16 bits, and * if the 'freq' value is to big here, then the periodic_cyc * may exceed 0xFFFF. */ do { priv->periodic_cyc = DIV_ROUND_CLOSEST(freq, HZ * (1 << priv->ps++)); } while (priv->periodic_cyc > 0xFFFF); if (priv->ps > FTM_PS_MAX) { pr_err("ftm: the prescaler is %lu > %d\n", priv->ps, FTM_PS_MAX); return -EINVAL; } return 0; } static int __init ftm_timer_init(struct device_node *np) { unsigned long freq; int ret, irq; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ret = -ENXIO; priv->clkevt_base = of_iomap(np, 0); if (!priv->clkevt_base) { pr_err("ftm: unable to map event timer registers\n"); goto err_clkevt; } priv->clksrc_base = of_iomap(np, 1); if (!priv->clksrc_base) { pr_err("ftm: unable to map source timer registers\n"); goto err_clksrc; } ret = -EINVAL; irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("ftm: unable to get IRQ from DT, %d\n", irq); goto err; } priv->big_endian = of_property_read_bool(np, "big-endian"); freq = ftm_clk_init(np); if (!freq) goto err; ret = ftm_calc_closest_round_cyc(freq); if (ret) goto err; ret = ftm_clocksource_init(freq); if (ret) goto err; ret = ftm_clockevent_init(freq, irq); if (ret) goto err; return 0; err: iounmap(priv->clksrc_base); err_clksrc: iounmap(priv->clkevt_base); err_clkevt: kfree(priv); return ret; } TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);