/* * Copyright (c) 2013 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Amit Daniel Kachhap * * EXYNOS5440 - CPU frequency scaling support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include /* Register definitions */ #define XMU_DVFS_CTRL 0x0060 #define XMU_PMU_P0_7 0x0064 #define XMU_C0_3_PSTATE 0x0090 #define XMU_P_LIMIT 0x00a0 #define XMU_P_STATUS 0x00a4 #define XMU_PMUEVTEN 0x00d0 #define XMU_PMUIRQEN 0x00d4 #define XMU_PMUIRQ 0x00d8 /* PMU mask and shift definations */ #define P_VALUE_MASK 0x7 #define XMU_DVFS_CTRL_EN_SHIFT 0 #define P0_7_CPUCLKDEV_SHIFT 21 #define P0_7_CPUCLKDEV_MASK 0x7 #define P0_7_ATBCLKDEV_SHIFT 18 #define P0_7_ATBCLKDEV_MASK 0x7 #define P0_7_CSCLKDEV_SHIFT 15 #define P0_7_CSCLKDEV_MASK 0x7 #define P0_7_CPUEMA_SHIFT 28 #define P0_7_CPUEMA_MASK 0xf #define P0_7_L2EMA_SHIFT 24 #define P0_7_L2EMA_MASK 0xf #define P0_7_VDD_SHIFT 8 #define P0_7_VDD_MASK 0x7f #define P0_7_FREQ_SHIFT 0 #define P0_7_FREQ_MASK 0xff #define C0_3_PSTATE_VALID_SHIFT 8 #define C0_3_PSTATE_CURR_SHIFT 4 #define C0_3_PSTATE_NEW_SHIFT 0 #define PSTATE_CHANGED_EVTEN_SHIFT 0 #define PSTATE_CHANGED_IRQEN_SHIFT 0 #define PSTATE_CHANGED_SHIFT 0 /* some constant values for clock divider calculation */ #define CPU_DIV_FREQ_MAX 500 #define CPU_DBG_FREQ_MAX 375 #define CPU_ATB_FREQ_MAX 500 #define PMIC_LOW_VOLT 0x30 #define PMIC_HIGH_VOLT 0x28 #define CPUEMA_HIGH 0x2 #define CPUEMA_MID 0x4 #define CPUEMA_LOW 0x7 #define L2EMA_HIGH 0x1 #define L2EMA_MID 0x3 #define L2EMA_LOW 0x4 #define DIV_TAB_MAX 2 /* frequency unit is 20MHZ */ #define FREQ_UNIT 20 #define MAX_VOLTAGE 1550000 /* In microvolt */ #define VOLTAGE_STEP 12500 /* In microvolt */ #define CPUFREQ_NAME "exynos5440_dvfs" #define DEF_TRANS_LATENCY 100000 enum cpufreq_level_index { L0, L1, L2, L3, L4, L5, L6, L7, L8, L9, }; #define CPUFREQ_LEVEL_END (L7 + 1) struct exynos_dvfs_data { void __iomem *base; struct resource *mem; int irq; struct clk *cpu_clk; unsigned int cur_frequency; unsigned int latency; struct cpufreq_frequency_table *freq_table; unsigned int freq_count; struct device *dev; bool dvfs_enabled; struct work_struct irq_work; }; static struct exynos_dvfs_data *dvfs_info; static DEFINE_MUTEX(cpufreq_lock); static struct cpufreq_freqs freqs; static int init_div_table(void) { struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table; unsigned int tmp, clk_div, ema_div, freq, volt_id; int i = 0; struct opp *opp; rcu_read_lock(); for (i = 0; freq_tbl[i].frequency != CPUFREQ_TABLE_END; i++) { opp = opp_find_freq_exact(dvfs_info->dev, freq_tbl[i].frequency * 1000, true); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(dvfs_info->dev, "failed to find valid OPP for %u KHZ\n", freq_tbl[i].frequency); return PTR_ERR(opp); } freq = freq_tbl[i].frequency / 1000; /* In MHZ */ clk_div = ((freq / CPU_DIV_FREQ_MAX) & P0_7_CPUCLKDEV_MASK) << P0_7_CPUCLKDEV_SHIFT; clk_div |= ((freq / CPU_ATB_FREQ_MAX) & P0_7_ATBCLKDEV_MASK) << P0_7_ATBCLKDEV_SHIFT; clk_div |= ((freq / CPU_DBG_FREQ_MAX) & P0_7_CSCLKDEV_MASK) << P0_7_CSCLKDEV_SHIFT; /* Calculate EMA */ volt_id = opp_get_voltage(opp); volt_id = (MAX_VOLTAGE - volt_id) / VOLTAGE_STEP; if (volt_id < PMIC_HIGH_VOLT) { ema_div = (CPUEMA_HIGH << P0_7_CPUEMA_SHIFT) | (L2EMA_HIGH << P0_7_L2EMA_SHIFT); } else if (volt_id > PMIC_LOW_VOLT) { ema_div = (CPUEMA_LOW << P0_7_CPUEMA_SHIFT) | (L2EMA_LOW << P0_7_L2EMA_SHIFT); } else { ema_div = (CPUEMA_MID << P0_7_CPUEMA_SHIFT) | (L2EMA_MID << P0_7_L2EMA_SHIFT); } tmp = (clk_div | ema_div | (volt_id << P0_7_VDD_SHIFT) | ((freq / FREQ_UNIT) << P0_7_FREQ_SHIFT)); __raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 * i); } rcu_read_unlock(); return 0; } static void exynos_enable_dvfs(void) { unsigned int tmp, i, cpu; struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table; /* Disable DVFS */ __raw_writel(0, dvfs_info->base + XMU_DVFS_CTRL); /* Enable PSTATE Change Event */ tmp = __raw_readl(dvfs_info->base + XMU_PMUEVTEN); tmp |= (1 << PSTATE_CHANGED_EVTEN_SHIFT); __raw_writel(tmp, dvfs_info->base + XMU_PMUEVTEN); /* Enable PSTATE Change IRQ */ tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQEN); tmp |= (1 << PSTATE_CHANGED_IRQEN_SHIFT); __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQEN); /* Set initial performance index */ for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) if (freq_table[i].frequency == dvfs_info->cur_frequency) break; if (freq_table[i].frequency == CPUFREQ_TABLE_END) { dev_crit(dvfs_info->dev, "Boot up frequency not supported\n"); /* Assign the highest frequency */ i = 0; dvfs_info->cur_frequency = freq_table[i].frequency; } dev_info(dvfs_info->dev, "Setting dvfs initial frequency = %uKHZ", dvfs_info->cur_frequency); for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) { tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4); tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT); tmp |= (i << C0_3_PSTATE_NEW_SHIFT); __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4); } /* Enable DVFS */ __raw_writel(1 << XMU_DVFS_CTRL_EN_SHIFT, dvfs_info->base + XMU_DVFS_CTRL); } static int exynos_verify_speed(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, dvfs_info->freq_table); } static unsigned int exynos_getspeed(unsigned int cpu) { return dvfs_info->cur_frequency; } static int exynos_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { unsigned int index, tmp; int ret = 0, i; struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table; mutex_lock(&cpufreq_lock); ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &index); if (ret) goto out; freqs.old = dvfs_info->cur_frequency; freqs.new = freq_table[index].frequency; if (freqs.old == freqs.new) goto out; cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); /* Set the target frequency in all C0_3_PSTATE register */ for_each_cpu(i, policy->cpus) { tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + i * 4); tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT); tmp |= (index << C0_3_PSTATE_NEW_SHIFT); __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + i * 4); } out: mutex_unlock(&cpufreq_lock); return ret; } static void exynos_cpufreq_work(struct work_struct *work) { unsigned int cur_pstate, index; struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */ struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table; /* Ensure we can access cpufreq structures */ if (unlikely(dvfs_info->dvfs_enabled == false)) goto skip_work; mutex_lock(&cpufreq_lock); freqs.old = dvfs_info->cur_frequency; cur_pstate = __raw_readl(dvfs_info->base + XMU_P_STATUS); if (cur_pstate >> C0_3_PSTATE_VALID_SHIFT & 0x1) index = (cur_pstate >> C0_3_PSTATE_CURR_SHIFT) & P_VALUE_MASK; else index = (cur_pstate >> C0_3_PSTATE_NEW_SHIFT) & P_VALUE_MASK; if (likely(index < dvfs_info->freq_count)) { freqs.new = freq_table[index].frequency; dvfs_info->cur_frequency = freqs.new; } else { dev_crit(dvfs_info->dev, "New frequency out of range\n"); freqs.new = dvfs_info->cur_frequency; } cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); cpufreq_cpu_put(policy); mutex_unlock(&cpufreq_lock); skip_work: enable_irq(dvfs_info->irq); } static irqreturn_t exynos_cpufreq_irq(int irq, void *id) { unsigned int tmp; tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQ); if (tmp >> PSTATE_CHANGED_SHIFT & 0x1) { __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQ); disable_irq_nosync(irq); schedule_work(&dvfs_info->irq_work); } return IRQ_HANDLED; } static void exynos_sort_descend_freq_table(void) { struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table; int i = 0, index; unsigned int tmp_freq; /* * Exynos5440 clock controller state logic expects the cpufreq table to * be in descending order. But the OPP library constructs the table in * ascending order. So to make the table descending we just need to * swap the i element with the N - i element. */ for (i = 0; i < dvfs_info->freq_count / 2; i++) { index = dvfs_info->freq_count - i - 1; tmp_freq = freq_tbl[i].frequency; freq_tbl[i].frequency = freq_tbl[index].frequency; freq_tbl[index].frequency = tmp_freq; } } static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy) { int ret; ret = cpufreq_table_validate_and_show(policy, dvfs_info->freq_table); if (ret) { dev_err(dvfs_info->dev, "Invalid frequency table: %d\n", ret); return ret; } policy->cur = dvfs_info->cur_frequency; policy->cpuinfo.transition_latency = dvfs_info->latency; cpumask_setall(policy->cpus); return 0; } static int exynos_cpufreq_cpu_exit(struct cpufreq_policy *policy) { cpufreq_frequency_table_put_attr(policy->cpu); return 0; } static struct cpufreq_driver exynos_driver = { .flags = CPUFREQ_STICKY, .verify = exynos_verify_speed, .target = exynos_target, .get = exynos_getspeed, .init = exynos_cpufreq_cpu_init, .exit = exynos_cpufreq_cpu_exit, .name = CPUFREQ_NAME, }; static const struct of_device_id exynos_cpufreq_match[] = { { .compatible = "samsung,exynos5440-cpufreq", }, {}, }; MODULE_DEVICE_TABLE(of, exynos_cpufreq_match); static int exynos_cpufreq_probe(struct platform_device *pdev) { int ret = -EINVAL; struct device_node *np; struct resource res; np = pdev->dev.of_node; if (!np) return -ENODEV; dvfs_info = devm_kzalloc(&pdev->dev, sizeof(*dvfs_info), GFP_KERNEL); if (!dvfs_info) { ret = -ENOMEM; goto err_put_node; } dvfs_info->dev = &pdev->dev; ret = of_address_to_resource(np, 0, &res); if (ret) goto err_put_node; dvfs_info->base = devm_ioremap_resource(dvfs_info->dev, &res); if (IS_ERR(dvfs_info->base)) { ret = PTR_ERR(dvfs_info->base); goto err_put_node; } dvfs_info->irq = irq_of_parse_and_map(np, 0); if (!dvfs_info->irq) { dev_err(dvfs_info->dev, "No cpufreq irq found\n"); ret = -ENODEV; goto err_put_node; } ret = of_init_opp_table(dvfs_info->dev); if (ret) { dev_err(dvfs_info->dev, "failed to init OPP table: %d\n", ret); goto err_put_node; } ret = opp_init_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table); if (ret) { dev_err(dvfs_info->dev, "failed to init cpufreq table: %d\n", ret); goto err_put_node; } dvfs_info->freq_count = opp_get_opp_count(dvfs_info->dev); exynos_sort_descend_freq_table(); if (of_property_read_u32(np, "clock-latency", &dvfs_info->latency)) dvfs_info->latency = DEF_TRANS_LATENCY; dvfs_info->cpu_clk = devm_clk_get(dvfs_info->dev, "armclk"); if (IS_ERR(dvfs_info->cpu_clk)) { dev_err(dvfs_info->dev, "Failed to get cpu clock\n"); ret = PTR_ERR(dvfs_info->cpu_clk); goto err_free_table; } dvfs_info->cur_frequency = clk_get_rate(dvfs_info->cpu_clk); if (!dvfs_info->cur_frequency) { dev_err(dvfs_info->dev, "Failed to get clock rate\n"); ret = -EINVAL; goto err_free_table; } dvfs_info->cur_frequency /= 1000; INIT_WORK(&dvfs_info->irq_work, exynos_cpufreq_work); ret = devm_request_irq(dvfs_info->dev, dvfs_info->irq, exynos_cpufreq_irq, IRQF_TRIGGER_NONE, CPUFREQ_NAME, dvfs_info); if (ret) { dev_err(dvfs_info->dev, "Failed to register IRQ\n"); goto err_free_table; } ret = init_div_table(); if (ret) { dev_err(dvfs_info->dev, "Failed to initialise div table\n"); goto err_free_table; } exynos_enable_dvfs(); ret = cpufreq_register_driver(&exynos_driver); if (ret) { dev_err(dvfs_info->dev, "%s: failed to register cpufreq driver\n", __func__); goto err_free_table; } of_node_put(np); dvfs_info->dvfs_enabled = true; return 0; err_free_table: opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table); err_put_node: of_node_put(np); dev_err(&pdev->dev, "%s: failed initialization\n", __func__); return ret; } static int exynos_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&exynos_driver); opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table); return 0; } static struct platform_driver exynos_cpufreq_platdrv = { .driver = { .name = "exynos5440-cpufreq", .owner = THIS_MODULE, .of_match_table = exynos_cpufreq_match, }, .probe = exynos_cpufreq_probe, .remove = exynos_cpufreq_remove, }; module_platform_driver(exynos_cpufreq_platdrv); MODULE_AUTHOR("Amit Daniel Kachhap "); MODULE_DESCRIPTION("Exynos5440 cpufreq driver"); MODULE_LICENSE("GPL");