/* * pcc-cpufreq.c - Processor Clocking Control firmware cpufreq interface * * Copyright (C) 2009 Red Hat, Matthew Garrett * Copyright (C) 2009 Hewlett-Packard Development Company, L.P. * Nagananda Chumbalkar * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON * INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define PCC_VERSION "1.10.00" #define POLL_LOOPS 300 #define CMD_COMPLETE 0x1 #define CMD_GET_FREQ 0x0 #define CMD_SET_FREQ 0x1 #define BUF_SZ 4 struct pcc_register_resource { u8 descriptor; u16 length; u8 space_id; u8 bit_width; u8 bit_offset; u8 access_size; u64 address; } __attribute__ ((packed)); struct pcc_memory_resource { u8 descriptor; u16 length; u8 space_id; u8 resource_usage; u8 type_specific; u64 granularity; u64 minimum; u64 maximum; u64 translation_offset; u64 address_length; } __attribute__ ((packed)); static struct cpufreq_driver pcc_cpufreq_driver; struct pcc_header { u32 signature; u16 length; u8 major; u8 minor; u32 features; u16 command; u16 status; u32 latency; u32 minimum_time; u32 maximum_time; u32 nominal; u32 throttled_frequency; u32 minimum_frequency; }; static void __iomem *pcch_virt_addr; static struct pcc_header __iomem *pcch_hdr; static DEFINE_SPINLOCK(pcc_lock); static struct acpi_generic_address doorbell; static u64 doorbell_preserve; static u64 doorbell_write; static u8 OSC_UUID[16] = {0x9F, 0x2C, 0x9B, 0x63, 0x91, 0x70, 0x1f, 0x49, 0xBB, 0x4F, 0xA5, 0x98, 0x2F, 0xA1, 0xB5, 0x46}; struct pcc_cpu { u32 input_offset; u32 output_offset; }; static struct pcc_cpu __percpu *pcc_cpu_info; static int pcc_cpufreq_verify(struct cpufreq_policy *policy) { cpufreq_verify_within_cpu_limits(policy); return 0; } static inline void pcc_cmd(void) { u64 doorbell_value; int i; acpi_read(&doorbell_value, &doorbell); acpi_write((doorbell_value & doorbell_preserve) | doorbell_write, &doorbell); for (i = 0; i < POLL_LOOPS; i++) { if (ioread16(&pcch_hdr->status) & CMD_COMPLETE) break; } } static inline void pcc_clear_mapping(void) { if (pcch_virt_addr) iounmap(pcch_virt_addr); pcch_virt_addr = NULL; } static unsigned int pcc_get_freq(unsigned int cpu) { struct pcc_cpu *pcc_cpu_data; unsigned int curr_freq; unsigned int freq_limit; u16 status; u32 input_buffer; u32 output_buffer; spin_lock(&pcc_lock); pr_debug("get: get_freq for CPU %d\n", cpu); pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu); input_buffer = 0x1; iowrite32(input_buffer, (pcch_virt_addr + pcc_cpu_data->input_offset)); iowrite16(CMD_GET_FREQ, &pcch_hdr->command); pcc_cmd(); output_buffer = ioread32(pcch_virt_addr + pcc_cpu_data->output_offset); /* Clear the input buffer - we are done with the current command */ memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ); status = ioread16(&pcch_hdr->status); if (status != CMD_COMPLETE) { pr_debug("get: FAILED: for CPU %d, status is %d\n", cpu, status); goto cmd_incomplete; } iowrite16(0, &pcch_hdr->status); curr_freq = (((ioread32(&pcch_hdr->nominal) * (output_buffer & 0xff)) / 100) * 1000); pr_debug("get: SUCCESS: (virtual) output_offset for cpu %d is " "0x%p, contains a value of: 0x%x. Speed is: %d MHz\n", cpu, (pcch_virt_addr + pcc_cpu_data->output_offset), output_buffer, curr_freq); freq_limit = (output_buffer >> 8) & 0xff; if (freq_limit != 0xff) { pr_debug("get: frequency for cpu %d is being temporarily" " capped at %d\n", cpu, curr_freq); } spin_unlock(&pcc_lock); return curr_freq; cmd_incomplete: iowrite16(0, &pcch_hdr->status); spin_unlock(&pcc_lock); return 0; } static int pcc_cpufreq_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct pcc_cpu *pcc_cpu_data; struct cpufreq_freqs freqs; u16 status; u32 input_buffer; int cpu; spin_lock(&pcc_lock); cpu = policy->cpu; pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu); pr_debug("target: CPU %d should go to target freq: %d " "(virtual) input_offset is 0x%p\n", cpu, target_freq, (pcch_virt_addr + pcc_cpu_data->input_offset)); freqs.new = target_freq; cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); input_buffer = 0x1 | (((target_freq * 100) / (ioread32(&pcch_hdr->nominal) * 1000)) << 8); iowrite32(input_buffer, (pcch_virt_addr + pcc_cpu_data->input_offset)); iowrite16(CMD_SET_FREQ, &pcch_hdr->command); pcc_cmd(); /* Clear the input buffer - we are done with the current command */ memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ); status = ioread16(&pcch_hdr->status); if (status != CMD_COMPLETE) { pr_debug("target: FAILED for cpu %d, with status: 0x%x\n", cpu, status); goto cmd_incomplete; } iowrite16(0, &pcch_hdr->status); cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); pr_debug("target: was SUCCESSFUL for cpu %d\n", cpu); spin_unlock(&pcc_lock); return 0; cmd_incomplete: freqs.new = freqs.old; cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); iowrite16(0, &pcch_hdr->status); spin_unlock(&pcc_lock); return -EINVAL; } static int pcc_get_offset(int cpu) { acpi_status status; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *pccp, *offset; struct pcc_cpu *pcc_cpu_data; struct acpi_processor *pr; int ret = 0; pr = per_cpu(processors, cpu); pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu); if (!pr) return -ENODEV; status = acpi_evaluate_object(pr->handle, "PCCP", NULL, &buffer); if (ACPI_FAILURE(status)) return -ENODEV; pccp = buffer.pointer; if (!pccp || pccp->type != ACPI_TYPE_PACKAGE) { ret = -ENODEV; goto out_free; }; offset = &(pccp->package.elements[0]); if (!offset || offset->type != ACPI_TYPE_INTEGER) { ret = -ENODEV; goto out_free; } pcc_cpu_data->input_offset = offset->integer.value; offset = &(pccp->package.elements[1]); if (!offset || offset->type != ACPI_TYPE_INTEGER) { ret = -ENODEV; goto out_free; } pcc_cpu_data->output_offset = offset->integer.value; memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ); memset_io((pcch_virt_addr + pcc_cpu_data->output_offset), 0, BUF_SZ); pr_debug("pcc_get_offset: for CPU %d: pcc_cpu_data " "input_offset: 0x%x, pcc_cpu_data output_offset: 0x%x\n", cpu, pcc_cpu_data->input_offset, pcc_cpu_data->output_offset); out_free: kfree(buffer.pointer); return ret; } static int __init pcc_cpufreq_do_osc(acpi_handle *handle) { acpi_status status; struct acpi_object_list input; struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object in_params[4]; union acpi_object *out_obj; u32 capabilities[2]; u32 errors; u32 supported; int ret = 0; input.count = 4; input.pointer = in_params; in_params[0].type = ACPI_TYPE_BUFFER; in_params[0].buffer.length = 16; in_params[0].buffer.pointer = OSC_UUID; in_params[1].type = ACPI_TYPE_INTEGER; in_params[1].integer.value = 1; in_params[2].type = ACPI_TYPE_INTEGER; in_params[2].integer.value = 2; in_params[3].type = ACPI_TYPE_BUFFER; in_params[3].buffer.length = 8; in_params[3].buffer.pointer = (u8 *)&capabilities; capabilities[0] = OSC_QUERY_ENABLE; capabilities[1] = 0x1; status = acpi_evaluate_object(*handle, "_OSC", &input, &output); if (ACPI_FAILURE(status)) return -ENODEV; if (!output.length) return -ENODEV; out_obj = output.pointer; if (out_obj->type != ACPI_TYPE_BUFFER) { ret = -ENODEV; goto out_free; } errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); if (errors) { ret = -ENODEV; goto out_free; } supported = *((u32 *)(out_obj->buffer.pointer + 4)); if (!(supported & 0x1)) { ret = -ENODEV; goto out_free; } kfree(output.pointer); capabilities[0] = 0x0; capabilities[1] = 0x1; status = acpi_evaluate_object(*handle, "_OSC", &input, &output); if (ACPI_FAILURE(status)) return -ENODEV; if (!output.length) return -ENODEV; out_obj = output.pointer; if (out_obj->type != ACPI_TYPE_BUFFER) { ret = -ENODEV; goto out_free; } errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); if (errors) { ret = -ENODEV; goto out_free; } supported = *((u32 *)(out_obj->buffer.pointer + 4)); if (!(supported & 0x1)) { ret = -ENODEV; goto out_free; } out_free: kfree(output.pointer); return ret; } static int __init pcc_cpufreq_probe(void) { acpi_status status; struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; struct pcc_memory_resource *mem_resource; struct pcc_register_resource *reg_resource; union acpi_object *out_obj, *member; acpi_handle handle, osc_handle, pcch_handle; int ret = 0; status = acpi_get_handle(NULL, "\\_SB", &handle); if (ACPI_FAILURE(status)) return -ENODEV; status = acpi_get_handle(handle, "PCCH", &pcch_handle); if (ACPI_FAILURE(status)) return -ENODEV; status = acpi_get_handle(handle, "_OSC", &osc_handle); if (ACPI_SUCCESS(status)) { ret = pcc_cpufreq_do_osc(&osc_handle); if (ret) pr_debug("probe: _OSC evaluation did not succeed\n"); /* Firmware's use of _OSC is optional */ ret = 0; } status = acpi_evaluate_object(handle, "PCCH", NULL, &output); if (ACPI_FAILURE(status)) return -ENODEV; out_obj = output.pointer; if (out_obj->type != ACPI_TYPE_PACKAGE) { ret = -ENODEV; goto out_free; } member = &out_obj->package.elements[0]; if (member->type != ACPI_TYPE_BUFFER) { ret = -ENODEV; goto out_free; } mem_resource = (struct pcc_memory_resource *)member->buffer.pointer; pr_debug("probe: mem_resource descriptor: 0x%x," " length: %d, space_id: %d, resource_usage: %d," " type_specific: %d, granularity: 0x%llx," " minimum: 0x%llx, maximum: 0x%llx," " translation_offset: 0x%llx, address_length: 0x%llx\n", mem_resource->descriptor, mem_resource->length, mem_resource->space_id, mem_resource->resource_usage, mem_resource->type_specific, mem_resource->granularity, mem_resource->minimum, mem_resource->maximum, mem_resource->translation_offset, mem_resource->address_length); if (mem_resource->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) { ret = -ENODEV; goto out_free; } pcch_virt_addr = ioremap_nocache(mem_resource->minimum, mem_resource->address_length); if (pcch_virt_addr == NULL) { pr_debug("probe: could not map shared mem region\n"); ret = -ENOMEM; goto out_free; } pcch_hdr = pcch_virt_addr; pr_debug("probe: PCCH header (virtual) addr: 0x%p\n", pcch_hdr); pr_debug("probe: PCCH header is at physical address: 0x%llx," " signature: 0x%x, length: %d bytes, major: %d, minor: %d," " supported features: 0x%x, command field: 0x%x," " status field: 0x%x, nominal latency: %d us\n", mem_resource->minimum, ioread32(&pcch_hdr->signature), ioread16(&pcch_hdr->length), ioread8(&pcch_hdr->major), ioread8(&pcch_hdr->minor), ioread32(&pcch_hdr->features), ioread16(&pcch_hdr->command), ioread16(&pcch_hdr->status), ioread32(&pcch_hdr->latency)); pr_debug("probe: min time between commands: %d us," " max time between commands: %d us," " nominal CPU frequency: %d MHz," " minimum CPU frequency: %d MHz," " minimum CPU frequency without throttling: %d MHz\n", ioread32(&pcch_hdr->minimum_time), ioread32(&pcch_hdr->maximum_time), ioread32(&pcch_hdr->nominal), ioread32(&pcch_hdr->throttled_frequency), ioread32(&pcch_hdr->minimum_frequency)); member = &out_obj->package.elements[1]; if (member->type != ACPI_TYPE_BUFFER) { ret = -ENODEV; goto pcch_free; } reg_resource = (struct pcc_register_resource *)member->buffer.pointer; doorbell.space_id = reg_resource->space_id; doorbell.bit_width = reg_resource->bit_width; doorbell.bit_offset = reg_resource->bit_offset; doorbell.access_width = 64; doorbell.address = reg_resource->address; pr_debug("probe: doorbell: space_id is %d, bit_width is %d, " "bit_offset is %d, access_width is %d, address is 0x%llx\n", doorbell.space_id, doorbell.bit_width, doorbell.bit_offset, doorbell.access_width, reg_resource->address); member = &out_obj->package.elements[2]; if (member->type != ACPI_TYPE_INTEGER) { ret = -ENODEV; goto pcch_free; } doorbell_preserve = member->integer.value; member = &out_obj->package.elements[3]; if (member->type != ACPI_TYPE_INTEGER) { ret = -ENODEV; goto pcch_free; } doorbell_write = member->integer.value; pr_debug("probe: doorbell_preserve: 0x%llx," " doorbell_write: 0x%llx\n", doorbell_preserve, doorbell_write); pcc_cpu_info = alloc_percpu(struct pcc_cpu); if (!pcc_cpu_info) { ret = -ENOMEM; goto pcch_free; } printk(KERN_DEBUG "pcc-cpufreq: (v%s) driver loaded with frequency" " limits: %d MHz, %d MHz\n", PCC_VERSION, ioread32(&pcch_hdr->minimum_frequency), ioread32(&pcch_hdr->nominal)); kfree(output.pointer); return ret; pcch_free: pcc_clear_mapping(); out_free: kfree(output.pointer); return ret; } static int pcc_cpufreq_cpu_init(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; unsigned int result = 0; if (!pcch_virt_addr) { result = -1; goto out; } result = pcc_get_offset(cpu); if (result) { pr_debug("init: PCCP evaluation failed\n"); goto out; } policy->max = policy->cpuinfo.max_freq = ioread32(&pcch_hdr->nominal) * 1000; policy->min = policy->cpuinfo.min_freq = ioread32(&pcch_hdr->minimum_frequency) * 1000; policy->cur = pcc_get_freq(cpu); if (!policy->cur) { pr_debug("init: Unable to get current CPU frequency\n"); result = -EINVAL; goto out; } pr_debug("init: policy->max is %d, policy->min is %d\n", policy->max, policy->min); out: return result; } static int pcc_cpufreq_cpu_exit(struct cpufreq_policy *policy) { return 0; } static struct cpufreq_driver pcc_cpufreq_driver = { .flags = CPUFREQ_CONST_LOOPS, .get = pcc_get_freq, .verify = pcc_cpufreq_verify, .target = pcc_cpufreq_target, .init = pcc_cpufreq_cpu_init, .exit = pcc_cpufreq_cpu_exit, .name = "pcc-cpufreq", }; static int __init pcc_cpufreq_init(void) { int ret; if (acpi_disabled) return 0; ret = pcc_cpufreq_probe(); if (ret) { pr_debug("pcc_cpufreq_init: PCCH evaluation failed\n"); return ret; } ret = cpufreq_register_driver(&pcc_cpufreq_driver); return ret; } static void __exit pcc_cpufreq_exit(void) { cpufreq_unregister_driver(&pcc_cpufreq_driver); pcc_clear_mapping(); free_percpu(pcc_cpu_info); } MODULE_AUTHOR("Matthew Garrett, Naga Chumbalkar"); MODULE_VERSION(PCC_VERSION); MODULE_DESCRIPTION("Processor Clocking Control interface driver"); MODULE_LICENSE("GPL"); late_initcall(pcc_cpufreq_init); module_exit(pcc_cpufreq_exit);