/* * caam - Freescale FSL CAAM support for crypto API * * Copyright 2008-2011 Freescale Semiconductor, Inc. * * Based on talitos crypto API driver. * * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008): * * --------------- --------------- * | JobDesc #1 |-------------------->| ShareDesc | * | *(packet 1) | | (PDB) | * --------------- |------------->| (hashKey) | * . | | (cipherKey) | * . | |-------->| (operation) | * --------------- | | --------------- * | JobDesc #2 |------| | * | *(packet 2) | | * --------------- | * . | * . | * --------------- | * | JobDesc #3 |------------ * | *(packet 3) | * --------------- * * The SharedDesc never changes for a connection unless rekeyed, but * each packet will likely be in a different place. So all we need * to know to process the packet is where the input is, where the * output goes, and what context we want to process with. Context is * in the SharedDesc, packet references in the JobDesc. * * So, a job desc looks like: * * --------------------- * | Header | * | ShareDesc Pointer | * | SEQ_OUT_PTR | * | (output buffer) | * | SEQ_IN_PTR | * | (input buffer) | * | LOAD (to DECO) | * --------------------- */ #include "compat.h" #include "regs.h" #include "intern.h" #include "desc_constr.h" #include "jr.h" #include "error.h" /* * crypto alg */ #define CAAM_CRA_PRIORITY 3000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \ SHA512_DIGEST_SIZE * 2) /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define CAAM_MAX_IV_LENGTH 16 #ifdef DEBUG /* for print_hex_dumps with line references */ #define xstr(s) str(s) #define str(s) #s #define debug(format, arg...) printk(format, arg) #else #define debug(format, arg...) #endif /* * per-session context */ struct caam_ctx { struct device *jrdev; u32 *sh_desc; dma_addr_t shared_desc_phys; u32 class1_alg_type; u32 class2_alg_type; u32 alg_op; u8 *key; dma_addr_t key_phys; unsigned int keylen; unsigned int enckeylen; unsigned int authkeylen; unsigned int split_key_len; unsigned int split_key_pad_len; unsigned int authsize; }; static int aead_authenc_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; return 0; } struct split_key_result { struct completion completion; int err; }; static void split_key_done(struct device *dev, u32 *desc, u32 err, void *context) { struct split_key_result *res = context; #ifdef DEBUG dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif if (err) { char tmp[256]; dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } res->err = err; complete(&res->completion); } /* get a split ipad/opad key Split key generation----------------------------------------------- [00] 0xb0810008 jobdesc: stidx=1 share=never len=8 [01] 0x04000014 key: class2->keyreg len=20 @0xffe01000 [03] 0x84410014 operation: cls2-op sha1 hmac init dec [04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm [05] 0xa4000001 jump: class2 local all ->1 [06] [06] 0x64260028 fifostr: class2 mdsplit-jdk len=40 @0xffe04000 */ static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen) { struct device *jrdev = ctx->jrdev; u32 *desc; struct split_key_result result; dma_addr_t dma_addr_in, dma_addr_out; int ret = 0; desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA); init_job_desc(desc, 0); dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, dma_addr_in)) { dev_err(jrdev, "unable to map key input memory\n"); kfree(desc); return -ENOMEM; } append_key(desc, dma_addr_in, authkeylen, CLASS_2 | KEY_DEST_CLASS_REG); /* Sets MDHA up into an HMAC-INIT */ append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT | OP_ALG_AS_INIT); /* * do a FIFO_LOAD of zero, this will trigger the internal key expansion into both pads inside MDHA */ append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2); /* * FIFO_STORE with the explicit split-key content store * (0x26 output type) */ dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len, DMA_FROM_DEVICE); if (dma_mapping_error(jrdev, dma_addr_out)) { dev_err(jrdev, "unable to map key output memory\n"); kfree(desc); return -ENOMEM; } append_fifo_store(desc, dma_addr_out, ctx->split_key_len, LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK); #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1); print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif result.err = 0; init_completion(&result.completion); ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result); if (!ret) { /* in progress */ wait_for_completion_interruptible(&result.completion); ret = result.err; #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->split_key_pad_len, 1); #endif } dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len, DMA_FROM_DEVICE); dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE); kfree(desc); return ret; } static int build_sh_desc_ipsec(struct caam_ctx *ctx) { struct device *jrdev = ctx->jrdev; u32 *sh_desc; u32 *jump_cmd; /* build shared descriptor for this session */ sh_desc = kmalloc(CAAM_CMD_SZ * 4 + ctx->split_key_pad_len + ctx->enckeylen, GFP_DMA | GFP_KERNEL); if (!sh_desc) { dev_err(jrdev, "could not allocate shared descriptor\n"); return -ENOMEM; } init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL); jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL | JUMP_COND_SHRD | JUMP_COND_SELF); /* process keys, starting with class 2/authentication */ append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key_as_imm(sh_desc, (void *)ctx->key + ctx->split_key_pad_len, ctx->enckeylen, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); /* update jump cmd now that we are at the jump target */ set_jump_tgt_here(sh_desc, jump_cmd); ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc, desc_bytes(sh_desc), DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) { dev_err(jrdev, "unable to map shared descriptor\n"); kfree(sh_desc); return -ENOMEM; } ctx->sh_desc = sh_desc; return 0; } static int aead_authenc_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */ static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 }; struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; struct rtattr *rta = (void *)key; struct crypto_authenc_key_param *param; unsigned int authkeylen; unsigned int enckeylen; int ret = 0; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; authkeylen = keylen - enckeylen; if (keylen > CAAM_MAX_KEY_SIZE) goto badkey; /* Pick class 2 key length from algorithm submask */ ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT] * 2; ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16); #ifdef DEBUG printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n", keylen, enckeylen, authkeylen); printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n", ctx->split_key_len, ctx->split_key_pad_len); print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen, GFP_KERNEL | GFP_DMA); if (!ctx->key) { dev_err(jrdev, "could not allocate key output memory\n"); return -ENOMEM; } ret = gen_split_key(ctx, key, authkeylen); if (ret) { kfree(ctx->key); goto badkey; } /* postpend encryption key to auth split key */ memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen); ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->key_phys)) { dev_err(jrdev, "unable to map key i/o memory\n"); kfree(ctx->key); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->split_key_pad_len + enckeylen, 1); #endif ctx->keylen = keylen; ctx->enckeylen = enckeylen; ctx->authkeylen = authkeylen; ret = build_sh_desc_ipsec(ctx); if (ret) { dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); kfree(ctx->key); } return ret; badkey: crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } struct link_tbl_entry { u64 ptr; u32 len; u8 reserved; u8 buf_pool_id; u16 offset; }; /* * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor * @src_nents: number of segments in input scatterlist * @dst_nents: number of segments in output scatterlist * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE) * @link_tbl_bytes: length of dma mapped link_tbl space * @link_tbl_dma: bus physical mapped address of h/w link table * @hw_desc: the h/w job descriptor followed by any referenced link tables */ struct ipsec_esp_edesc { int assoc_nents; int src_nents; int dst_nents; int link_tbl_bytes; dma_addr_t link_tbl_dma; struct link_tbl_entry *link_tbl; u32 hw_desc[0]; }; static void ipsec_esp_unmap(struct device *dev, struct ipsec_esp_edesc *edesc, struct aead_request *areq) { dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE); if (unlikely(areq->dst != areq->src)) { dma_unmap_sg(dev, areq->src, edesc->src_nents, DMA_TO_DEVICE); dma_unmap_sg(dev, areq->dst, edesc->dst_nents, DMA_FROM_DEVICE); } else { dma_unmap_sg(dev, areq->src, edesc->src_nents, DMA_BIDIRECTIONAL); } if (edesc->link_tbl_bytes) dma_unmap_single(dev, edesc->link_tbl_dma, edesc->link_tbl_bytes, DMA_TO_DEVICE); } /* * ipsec_esp descriptor callbacks */ static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct aead_request *areq = context; struct ipsec_esp_edesc *edesc; #ifdef DEBUG struct crypto_aead *aead = crypto_aead_reqtfm(areq); int ivsize = crypto_aead_ivsize(aead); struct caam_ctx *ctx = crypto_aead_ctx(aead); dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif edesc = (struct ipsec_esp_edesc *)((char *)desc - offsetof(struct ipsec_esp_edesc, hw_desc)); if (err) { char tmp[256]; dev_err(jrdev, "%s\n", caam_jr_strstatus(tmp, err)); dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } ipsec_esp_unmap(jrdev, edesc, areq); #ifdef DEBUG print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc), areq->assoclen , 1); print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize, edesc->src_nents ? 100 : ivsize, 1); print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src), edesc->src_nents ? 100 : areq->cryptlen + ctx->authsize + 4, 1); #endif kfree(edesc); aead_request_complete(areq, err); } static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct aead_request *areq = context; struct ipsec_esp_edesc *edesc; #ifdef DEBUG struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct caam_ctx *ctx = crypto_aead_ctx(aead); dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); #endif edesc = (struct ipsec_esp_edesc *)((char *)desc - offsetof(struct ipsec_esp_edesc, hw_desc)); if (err) { char tmp[256]; dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err)); } ipsec_esp_unmap(jrdev, edesc, areq); /* * verify hw auth check passed else return -EBADMSG */ if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK) err = -EBADMSG; #ifdef DEBUG print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)), sizeof(struct iphdr) + areq->assoclen + ((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) + ctx->authsize + 36, 1); if (!err && edesc->link_tbl_bytes) { struct scatterlist *sg = sg_last(areq->src, edesc->src_nents); print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg), sg->length + ctx->authsize + 16, 1); } #endif kfree(edesc); aead_request_complete(areq, err); } /* * convert scatterlist to h/w link table format * scatterlist must have been previously dma mapped */ static void sg_to_link_tbl(struct scatterlist *sg, int sg_count, struct link_tbl_entry *link_tbl_ptr, u32 offset) { while (sg_count) { link_tbl_ptr->ptr = sg_dma_address(sg); link_tbl_ptr->len = sg_dma_len(sg); link_tbl_ptr->reserved = 0; link_tbl_ptr->buf_pool_id = 0; link_tbl_ptr->offset = offset; link_tbl_ptr++; sg = sg_next(sg); sg_count--; } /* set Final bit (marks end of link table) */ link_tbl_ptr--; link_tbl_ptr->len |= 0x40000000; } /* * fill in and submit ipsec_esp job descriptor */ static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq, u32 encrypt, void (*callback) (struct device *dev, u32 *desc, u32 err, void *context)) { struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; u32 *desc = edesc->hw_desc, options; int ret, sg_count, assoc_sg_count; int ivsize = crypto_aead_ivsize(aead); int authsize = ctx->authsize; dma_addr_t ptr, dst_dma, src_dma; #ifdef DEBUG u32 *sh_desc = ctx->sh_desc; debug("assoclen %d cryptlen %d authsize %d\n", areq->assoclen, areq->cryptlen, authsize); print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc), areq->assoclen , 1); print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize, edesc->src_nents ? 100 : ivsize, 1); print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src), edesc->src_nents ? 100 : areq->cryptlen + authsize, 1); print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, sh_desc, desc_bytes(sh_desc), 1); #endif assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1, DMA_TO_DEVICE); if (areq->src == areq->dst) sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1, DMA_BIDIRECTIONAL); else sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1, DMA_TO_DEVICE); /* start auth operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | (encrypt ? : OP_ALG_ICV_ON)); /* Load FIFO with data for Class 2 CHA */ options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG; if (!edesc->assoc_nents) { ptr = sg_dma_address(areq->assoc); } else { sg_to_link_tbl(areq->assoc, edesc->assoc_nents, edesc->link_tbl, 0); ptr = edesc->link_tbl_dma; options |= LDST_SGF; } append_fifo_load(desc, ptr, areq->assoclen, options); /* copy iv from cipher/class1 input context to class2 infifo */ append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize); /* start class 1 (cipher) operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | encrypt); /* load payload & instruct to class2 to snoop class 1 if encrypting */ options = 0; if (!edesc->src_nents) { src_dma = sg_dma_address(areq->src); } else { sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl + edesc->assoc_nents, 0); src_dma = edesc->link_tbl_dma + edesc->assoc_nents * sizeof(struct link_tbl_entry); options |= LDST_SGF; } append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options); append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH | FIFOLD_TYPE_LASTBOTH | (encrypt ? FIFOLD_TYPE_MSG1OUT2 : FIFOLD_TYPE_MSG)); /* specify destination */ if (areq->src == areq->dst) { dst_dma = src_dma; } else { sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1, DMA_FROM_DEVICE); if (!edesc->dst_nents) { dst_dma = sg_dma_address(areq->dst); options = 0; } else { sg_to_link_tbl(areq->dst, edesc->dst_nents, edesc->link_tbl + edesc->assoc_nents + edesc->src_nents, 0); dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents + edesc->src_nents) * sizeof(struct link_tbl_entry); options = LDST_SGF; } } append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options); append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA); /* ICV */ if (encrypt) append_seq_store(desc, authsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); else append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV); #ifdef DEBUG debug("job_desc_len %d\n", desc_len(desc)); print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1); print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl, edesc->link_tbl_bytes, 1); #endif ret = caam_jr_enqueue(jrdev, desc, callback, areq); if (!ret) ret = -EINPROGRESS; else { ipsec_esp_unmap(jrdev, edesc, areq); kfree(edesc); } return ret; } /* * derive number of elements in scatterlist */ static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained) { struct scatterlist *sg = sg_list; int sg_nents = 0; *chained = 0; while (nbytes > 0) { sg_nents++; nbytes -= sg->length; if (!sg_is_last(sg) && (sg + 1)->length == 0) *chained = 1; sg = scatterwalk_sg_next(sg); } return sg_nents; } /* * allocate and map the ipsec_esp extended descriptor */ static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq, int desc_bytes) { struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes; struct ipsec_esp_edesc *edesc; assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained); BUG_ON(chained); if (likely(assoc_nents == 1)) assoc_nents = 0; src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize, &chained); BUG_ON(chained); if (src_nents == 1) src_nents = 0; if (unlikely(areq->dst != areq->src)) { dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize, &chained); BUG_ON(chained); if (dst_nents == 1) dst_nents = 0; } link_tbl_bytes = (assoc_nents + src_nents + dst_nents) * sizeof(struct link_tbl_entry); debug("link_tbl_bytes %d\n", link_tbl_bytes); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes + link_tbl_bytes, GFP_DMA | flags); if (!edesc) { dev_err(jrdev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } edesc->assoc_nents = assoc_nents; edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) + desc_bytes; edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl, link_tbl_bytes, DMA_TO_DEVICE); edesc->link_tbl_bytes = link_tbl_bytes; return edesc; } static int aead_authenc_encrypt(struct aead_request *areq) { struct ipsec_esp_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; int ivsize = crypto_aead_ivsize(aead); u32 *desc; dma_addr_t iv_dma; /* allocate extended descriptor */ edesc = ipsec_esp_edesc_alloc(areq, 21 * sizeof(u32)); if (IS_ERR(edesc)) return PTR_ERR(edesc); desc = edesc->hw_desc; /* insert shared descriptor pointer */ init_job_desc_shared(desc, ctx->shared_desc_phys, desc_len(ctx->sh_desc), HDR_SHARE_DEFER); iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE); /* check dma error */ append_load(desc, iv_dma, ivsize, LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT); return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done); } static int aead_authenc_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); int ivsize = crypto_aead_ivsize(aead); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; struct ipsec_esp_edesc *edesc; u32 *desc; dma_addr_t iv_dma; req->cryptlen -= ctx->authsize; /* allocate extended descriptor */ edesc = ipsec_esp_edesc_alloc(req, 21 * sizeof(u32)); if (IS_ERR(edesc)) return PTR_ERR(edesc); desc = edesc->hw_desc; /* insert shared descriptor pointer */ init_job_desc_shared(desc, ctx->shared_desc_phys, desc_len(ctx->sh_desc), HDR_SHARE_DEFER); iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE); /* check dma error */ append_load(desc, iv_dma, ivsize, LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT); return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done); } static int aead_authenc_givencrypt(struct aead_givcrypt_request *req) { struct aead_request *areq = &req->areq; struct ipsec_esp_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(areq); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; int ivsize = crypto_aead_ivsize(aead); dma_addr_t iv_dma; u32 *desc; iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE); debug("%s: giv %p\n", __func__, req->giv); /* allocate extended descriptor */ edesc = ipsec_esp_edesc_alloc(areq, 27 * sizeof(u32)); if (IS_ERR(edesc)) return PTR_ERR(edesc); desc = edesc->hw_desc; /* insert shared descriptor pointer */ init_job_desc_shared(desc, ctx->shared_desc_phys, desc_len(ctx->sh_desc), HDR_SHARE_DEFER); /* * LOAD IMM Info FIFO * to DECO, Last, Padding, Random, Message, 16 bytes */ append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 | NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_PTYPE_RND | ivsize, LDST_SRCDST_WORD_INFO_FIFO); /* * disable info fifo entries since the above serves as the entry * this way, the MOVE command won't generate an entry. * Note that this isn't required in more recent versions of * SEC as a MOVE that doesn't do info FIFO entries is available. */ append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); /* MOVE DECO Alignment -> C1 Context 16 bytes */ append_move(desc, MOVE_WAITCOMP | MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize); /* re-enable info fifo entries */ append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); /* MOVE C1 Context -> OFIFO 16 bytes */ append_move(desc, MOVE_WAITCOMP | MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize); append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA); return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done); } struct caam_alg_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; struct aead_alg aead; u32 class1_alg_type; u32 class2_alg_type; u32 alg_op; }; static struct caam_alg_template driver_algs[] = { /* single-pass ipsec_esp descriptor */ { .name = "authenc(hmac(sha1),cbc(aes))", .driver_name = "authenc-hmac-sha1-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .aead = { .setkey = aead_authenc_setkey, .setauthsize = aead_authenc_setauthsize, .encrypt = aead_authenc_encrypt, .decrypt = aead_authenc_decrypt, .givencrypt = aead_authenc_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha256),cbc(aes))", .driver_name = "authenc-hmac-sha256-cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .aead = { .setkey = aead_authenc_setkey, .setauthsize = aead_authenc_setauthsize, .encrypt = aead_authenc_encrypt, .decrypt = aead_authenc_decrypt, .givencrypt = aead_authenc_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha1),cbc(des3_ede))", .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .aead = { .setkey = aead_authenc_setkey, .setauthsize = aead_authenc_setauthsize, .encrypt = aead_authenc_encrypt, .decrypt = aead_authenc_decrypt, .givencrypt = aead_authenc_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha256),cbc(des3_ede))", .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam", .blocksize = DES3_EDE_BLOCK_SIZE, .aead = { .setkey = aead_authenc_setkey, .setauthsize = aead_authenc_setauthsize, .encrypt = aead_authenc_encrypt, .decrypt = aead_authenc_decrypt, .givencrypt = aead_authenc_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha1),cbc(des))", .driver_name = "authenc-hmac-sha1-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .aead = { .setkey = aead_authenc_setkey, .setauthsize = aead_authenc_setauthsize, .encrypt = aead_authenc_encrypt, .decrypt = aead_authenc_decrypt, .givencrypt = aead_authenc_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, }, { .name = "authenc(hmac(sha256),cbc(des))", .driver_name = "authenc-hmac-sha256-cbc-des-caam", .blocksize = DES_BLOCK_SIZE, .aead = { .setkey = aead_authenc_setkey, .setauthsize = aead_authenc_setauthsize, .encrypt = aead_authenc_encrypt, .decrypt = aead_authenc_decrypt, .givencrypt = aead_authenc_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, }, }; struct caam_crypto_alg { struct list_head entry; struct device *ctrldev; int class1_alg_type; int class2_alg_type; int alg_op; struct crypto_alg crypto_alg; }; static int caam_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct caam_crypto_alg *caam_alg = container_of(alg, struct caam_crypto_alg, crypto_alg); struct caam_ctx *ctx = crypto_tfm_ctx(tfm); struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev); int tgt_jr = atomic_inc_return(&priv->tfm_count); /* * distribute tfms across job rings to ensure in-order * crypto request processing per tfm */ ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi]; /* copy descriptor header template value */ ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type; ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type; ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op; return 0; } static void caam_cra_exit(struct crypto_tfm *tfm) { struct caam_ctx *ctx = crypto_tfm_ctx(tfm); if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys)) dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys, desc_bytes(ctx->sh_desc), DMA_TO_DEVICE); kfree(ctx->sh_desc); } static void __exit caam_algapi_exit(void) { struct device_node *dev_node; struct platform_device *pdev; struct device *ctrldev; struct caam_drv_private *priv; struct caam_crypto_alg *t_alg, *n; int i, err; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return; pdev = of_find_device_by_node(dev_node); if (!pdev) return; ctrldev = &pdev->dev; of_node_put(dev_node); priv = dev_get_drvdata(ctrldev); if (!priv->alg_list.next) return; list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) { crypto_unregister_alg(&t_alg->crypto_alg); list_del(&t_alg->entry); kfree(t_alg); } for (i = 0; i < priv->total_jobrs; i++) { err = caam_jr_deregister(priv->algapi_jr[i]); if (err < 0) break; } kfree(priv->algapi_jr); } static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev, struct caam_alg_template *template) { struct caam_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL); if (!t_alg) { dev_err(ctrldev, "failed to allocate t_alg\n"); return ERR_PTR(-ENOMEM); } alg = &t_alg->crypto_alg; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); alg->cra_module = THIS_MODULE; alg->cra_init = caam_cra_init; alg->cra_exit = caam_cra_exit; alg->cra_priority = CAAM_CRA_PRIORITY; alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_type = &crypto_aead_type; alg->cra_ctxsize = sizeof(struct caam_ctx); alg->cra_u.aead = template->aead; t_alg->class1_alg_type = template->class1_alg_type; t_alg->class2_alg_type = template->class2_alg_type; t_alg->alg_op = template->alg_op; t_alg->ctrldev = ctrldev; return t_alg; } static int __init caam_algapi_init(void) { struct device_node *dev_node; struct platform_device *pdev; struct device *ctrldev, **jrdev; struct caam_drv_private *priv; int i = 0, err = 0; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return -ENODEV; pdev = of_find_device_by_node(dev_node); if (!pdev) return -ENODEV; ctrldev = &pdev->dev; priv = dev_get_drvdata(ctrldev); of_node_put(dev_node); INIT_LIST_HEAD(&priv->alg_list); jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL); if (!jrdev) return -ENOMEM; for (i = 0; i < priv->total_jobrs; i++) { err = caam_jr_register(ctrldev, &jrdev[i]); if (err < 0) break; } if (err < 0 && i == 0) { dev_err(ctrldev, "algapi error in job ring registration: %d\n", err); return err; } priv->num_jrs_for_algapi = i; priv->algapi_jr = jrdev; atomic_set(&priv->tfm_count, -1); /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { /* TODO: check if h/w supports alg */ struct caam_crypto_alg *t_alg; t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); dev_warn(ctrldev, "%s alg allocation failed\n", t_alg->crypto_alg.cra_driver_name); continue; } err = crypto_register_alg(&t_alg->crypto_alg); if (err) { dev_warn(ctrldev, "%s alg registration failed\n", t_alg->crypto_alg.cra_driver_name); kfree(t_alg); } else { list_add_tail(&t_alg->entry, &priv->alg_list); dev_info(ctrldev, "%s\n", t_alg->crypto_alg.cra_driver_name); } } return err; } module_init(caam_algapi_init); module_exit(caam_algapi_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("FSL CAAM support for crypto API"); MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");