// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2020 Intel Corporation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "cxlmem.h" #include "cxlpci.h" #include "cxl.h" /** * DOC: cxl pci * * This implements the PCI exclusive functionality for a CXL device as it is * defined by the Compute Express Link specification. CXL devices may surface * certain functionality even if it isn't CXL enabled. While this driver is * focused around the PCI specific aspects of a CXL device, it binds to the * specific CXL memory device class code, and therefore the implementation of * cxl_pci is focused around CXL memory devices. * * The driver has several responsibilities, mainly: * - Create the memX device and register on the CXL bus. * - Enumerate device's register interface and map them. * - Registers nvdimm bridge device with cxl_core. * - Registers a CXL mailbox with cxl_core. */ #define cxl_doorbell_busy(cxlds) \ (readl((cxlds)->regs.mbox + CXLDEV_MBOX_CTRL_OFFSET) & \ CXLDEV_MBOX_CTRL_DOORBELL) /* CXL 2.0 - 8.2.8.4 */ #define CXL_MAILBOX_TIMEOUT_MS (2 * HZ) /* * CXL 2.0 ECN "Add Mailbox Ready Time" defines a capability field to * dictate how long to wait for the mailbox to become ready. The new * field allows the device to tell software the amount of time to wait * before mailbox ready. This field per the spec theoretically allows * for up to 255 seconds. 255 seconds is unreasonably long, its longer * than the maximum SATA port link recovery wait. Default to 60 seconds * until someone builds a CXL device that needs more time in practice. */ static unsigned short mbox_ready_timeout = 60; module_param(mbox_ready_timeout, ushort, 0644); MODULE_PARM_DESC(mbox_ready_timeout, "seconds to wait for mailbox ready"); static int cxl_pci_mbox_wait_for_doorbell(struct cxl_dev_state *cxlds) { const unsigned long start = jiffies; unsigned long end = start; while (cxl_doorbell_busy(cxlds)) { end = jiffies; if (time_after(end, start + CXL_MAILBOX_TIMEOUT_MS)) { /* Check again in case preempted before timeout test */ if (!cxl_doorbell_busy(cxlds)) break; return -ETIMEDOUT; } cpu_relax(); } dev_dbg(cxlds->dev, "Doorbell wait took %dms", jiffies_to_msecs(end) - jiffies_to_msecs(start)); return 0; } #define cxl_err(dev, status, msg) \ dev_err_ratelimited(dev, msg ", device state %s%s\n", \ status & CXLMDEV_DEV_FATAL ? " fatal" : "", \ status & CXLMDEV_FW_HALT ? " firmware-halt" : "") #define cxl_cmd_err(dev, cmd, status, msg) \ dev_err_ratelimited(dev, msg " (opcode: %#x), device state %s%s\n", \ (cmd)->opcode, \ status & CXLMDEV_DEV_FATAL ? " fatal" : "", \ status & CXLMDEV_FW_HALT ? " firmware-halt" : "") /** * __cxl_pci_mbox_send_cmd() - Execute a mailbox command * @cxlds: The device state to communicate with. * @mbox_cmd: Command to send to the memory device. * * Context: Any context. Expects mbox_mutex to be held. * Return: -ETIMEDOUT if timeout occurred waiting for completion. 0 on success. * Caller should check the return code in @mbox_cmd to make sure it * succeeded. * * This is a generic form of the CXL mailbox send command thus only using the * registers defined by the mailbox capability ID - CXL 2.0 8.2.8.4. Memory * devices, and perhaps other types of CXL devices may have further information * available upon error conditions. Driver facilities wishing to send mailbox * commands should use the wrapper command. * * The CXL spec allows for up to two mailboxes. The intention is for the primary * mailbox to be OS controlled and the secondary mailbox to be used by system * firmware. This allows the OS and firmware to communicate with the device and * not need to coordinate with each other. The driver only uses the primary * mailbox. */ static int __cxl_pci_mbox_send_cmd(struct cxl_dev_state *cxlds, struct cxl_mbox_cmd *mbox_cmd) { void __iomem *payload = cxlds->regs.mbox + CXLDEV_MBOX_PAYLOAD_OFFSET; struct device *dev = cxlds->dev; u64 cmd_reg, status_reg; size_t out_len; int rc; lockdep_assert_held(&cxlds->mbox_mutex); /* * Here are the steps from 8.2.8.4 of the CXL 2.0 spec. * 1. Caller reads MB Control Register to verify doorbell is clear * 2. Caller writes Command Register * 3. Caller writes Command Payload Registers if input payload is non-empty * 4. Caller writes MB Control Register to set doorbell * 5. Caller either polls for doorbell to be clear or waits for interrupt if configured * 6. Caller reads MB Status Register to fetch Return code * 7. If command successful, Caller reads Command Register to get Payload Length * 8. If output payload is non-empty, host reads Command Payload Registers * * Hardware is free to do whatever it wants before the doorbell is rung, * and isn't allowed to change anything after it clears the doorbell. As * such, steps 2 and 3 can happen in any order, and steps 6, 7, 8 can * also happen in any order (though some orders might not make sense). */ /* #1 */ if (cxl_doorbell_busy(cxlds)) { u64 md_status = readq(cxlds->regs.memdev + CXLMDEV_STATUS_OFFSET); cxl_cmd_err(cxlds->dev, mbox_cmd, md_status, "mailbox queue busy"); return -EBUSY; } cmd_reg = FIELD_PREP(CXLDEV_MBOX_CMD_COMMAND_OPCODE_MASK, mbox_cmd->opcode); if (mbox_cmd->size_in) { if (WARN_ON(!mbox_cmd->payload_in)) return -EINVAL; cmd_reg |= FIELD_PREP(CXLDEV_MBOX_CMD_PAYLOAD_LENGTH_MASK, mbox_cmd->size_in); memcpy_toio(payload, mbox_cmd->payload_in, mbox_cmd->size_in); } /* #2, #3 */ writeq(cmd_reg, cxlds->regs.mbox + CXLDEV_MBOX_CMD_OFFSET); /* #4 */ dev_dbg(dev, "Sending command: 0x%04x\n", mbox_cmd->opcode); writel(CXLDEV_MBOX_CTRL_DOORBELL, cxlds->regs.mbox + CXLDEV_MBOX_CTRL_OFFSET); /* #5 */ rc = cxl_pci_mbox_wait_for_doorbell(cxlds); if (rc == -ETIMEDOUT) { u64 md_status = readq(cxlds->regs.memdev + CXLMDEV_STATUS_OFFSET); cxl_cmd_err(cxlds->dev, mbox_cmd, md_status, "mailbox timeout"); return rc; } /* #6 */ status_reg = readq(cxlds->regs.mbox + CXLDEV_MBOX_STATUS_OFFSET); mbox_cmd->return_code = FIELD_GET(CXLDEV_MBOX_STATUS_RET_CODE_MASK, status_reg); if (mbox_cmd->return_code != CXL_MBOX_CMD_RC_SUCCESS) { dev_dbg(dev, "Mailbox operation had an error: %s\n", cxl_mbox_cmd_rc2str(mbox_cmd)); return 0; /* completed but caller must check return_code */ } /* #7 */ cmd_reg = readq(cxlds->regs.mbox + CXLDEV_MBOX_CMD_OFFSET); out_len = FIELD_GET(CXLDEV_MBOX_CMD_PAYLOAD_LENGTH_MASK, cmd_reg); /* #8 */ if (out_len && mbox_cmd->payload_out) { /* * Sanitize the copy. If hardware misbehaves, out_len per the * spec can actually be greater than the max allowed size (21 * bits available but spec defined 1M max). The caller also may * have requested less data than the hardware supplied even * within spec. */ size_t n = min3(mbox_cmd->size_out, cxlds->payload_size, out_len); memcpy_fromio(mbox_cmd->payload_out, payload, n); mbox_cmd->size_out = n; } else { mbox_cmd->size_out = 0; } return 0; } static int cxl_pci_mbox_send(struct cxl_dev_state *cxlds, struct cxl_mbox_cmd *cmd) { int rc; mutex_lock_io(&cxlds->mbox_mutex); rc = __cxl_pci_mbox_send_cmd(cxlds, cmd); mutex_unlock(&cxlds->mbox_mutex); return rc; } static int cxl_pci_setup_mailbox(struct cxl_dev_state *cxlds) { const int cap = readl(cxlds->regs.mbox + CXLDEV_MBOX_CAPS_OFFSET); unsigned long timeout; u64 md_status; timeout = jiffies + mbox_ready_timeout * HZ; do { md_status = readq(cxlds->regs.memdev + CXLMDEV_STATUS_OFFSET); if (md_status & CXLMDEV_MBOX_IF_READY) break; if (msleep_interruptible(100)) break; } while (!time_after(jiffies, timeout)); if (!(md_status & CXLMDEV_MBOX_IF_READY)) { cxl_err(cxlds->dev, md_status, "timeout awaiting mailbox ready"); return -ETIMEDOUT; } /* * A command may be in flight from a previous driver instance, * think kexec, do one doorbell wait so that * __cxl_pci_mbox_send_cmd() can assume that it is the only * source for future doorbell busy events. */ if (cxl_pci_mbox_wait_for_doorbell(cxlds) != 0) { cxl_err(cxlds->dev, md_status, "timeout awaiting mailbox idle"); return -ETIMEDOUT; } cxlds->mbox_send = cxl_pci_mbox_send; cxlds->payload_size = 1 << FIELD_GET(CXLDEV_MBOX_CAP_PAYLOAD_SIZE_MASK, cap); /* * CXL 2.0 8.2.8.4.3 Mailbox Capabilities Register * * If the size is too small, mandatory commands will not work and so * there's no point in going forward. If the size is too large, there's * no harm is soft limiting it. */ cxlds->payload_size = min_t(size_t, cxlds->payload_size, SZ_1M); if (cxlds->payload_size < 256) { dev_err(cxlds->dev, "Mailbox is too small (%zub)", cxlds->payload_size); return -ENXIO; } dev_dbg(cxlds->dev, "Mailbox payload sized %zu", cxlds->payload_size); return 0; } static int cxl_map_regblock(struct pci_dev *pdev, struct cxl_register_map *map) { struct device *dev = &pdev->dev; map->base = ioremap(map->resource, map->max_size); if (!map->base) { dev_err(dev, "failed to map registers\n"); return -ENOMEM; } dev_dbg(dev, "Mapped CXL Memory Device resource %pa\n", &map->resource); return 0; } static void cxl_unmap_regblock(struct pci_dev *pdev, struct cxl_register_map *map) { iounmap(map->base); map->base = NULL; } static int cxl_probe_regs(struct pci_dev *pdev, struct cxl_register_map *map) { struct cxl_component_reg_map *comp_map; struct cxl_device_reg_map *dev_map; struct device *dev = &pdev->dev; void __iomem *base = map->base; switch (map->reg_type) { case CXL_REGLOC_RBI_COMPONENT: comp_map = &map->component_map; cxl_probe_component_regs(dev, base, comp_map); if (!comp_map->hdm_decoder.valid) { dev_err(dev, "HDM decoder registers not found\n"); return -ENXIO; } if (!comp_map->ras.valid) dev_dbg(dev, "RAS registers not found\n"); dev_dbg(dev, "Set up component registers\n"); break; case CXL_REGLOC_RBI_MEMDEV: dev_map = &map->device_map; cxl_probe_device_regs(dev, base, dev_map); if (!dev_map->status.valid || !dev_map->mbox.valid || !dev_map->memdev.valid) { dev_err(dev, "registers not found: %s%s%s\n", !dev_map->status.valid ? "status " : "", !dev_map->mbox.valid ? "mbox " : "", !dev_map->memdev.valid ? "memdev " : ""); return -ENXIO; } dev_dbg(dev, "Probing device registers...\n"); break; default: break; } return 0; } static int cxl_setup_regs(struct pci_dev *pdev, enum cxl_regloc_type type, struct cxl_register_map *map) { int rc; rc = cxl_find_regblock(pdev, type, map); if (rc) return rc; rc = cxl_map_regblock(pdev, map); if (rc) return rc; rc = cxl_probe_regs(pdev, map); cxl_unmap_regblock(pdev, map); return rc; } static void cxl_pci_destroy_doe(void *mbs) { xa_destroy(mbs); } static void devm_cxl_pci_create_doe(struct cxl_dev_state *cxlds) { struct device *dev = cxlds->dev; struct pci_dev *pdev = to_pci_dev(dev); u16 off = 0; xa_init(&cxlds->doe_mbs); if (devm_add_action(&pdev->dev, cxl_pci_destroy_doe, &cxlds->doe_mbs)) { dev_err(dev, "Failed to create XArray for DOE's\n"); return; } /* * Mailbox creation is best effort. Higher layers must determine if * the lack of a mailbox for their protocol is a device failure or not. */ pci_doe_for_each_off(pdev, off) { struct pci_doe_mb *doe_mb; doe_mb = pcim_doe_create_mb(pdev, off); if (IS_ERR(doe_mb)) { dev_err(dev, "Failed to create MB object for MB @ %x\n", off); continue; } if (!pci_request_config_region_exclusive(pdev, off, PCI_DOE_CAP_SIZEOF, dev_name(dev))) pci_err(pdev, "Failed to exclude DOE registers\n"); if (xa_insert(&cxlds->doe_mbs, off, doe_mb, GFP_KERNEL)) { dev_err(dev, "xa_insert failed to insert MB @ %x\n", off); continue; } dev_dbg(dev, "Created DOE mailbox @%x\n", off); } } /* * Assume that any RCIEP that emits the CXL memory expander class code * is an RCD */ static bool is_cxl_restricted(struct pci_dev *pdev) { return pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END; } static void disable_aer(void *pdev) { pci_disable_pcie_error_reporting(pdev); } static void free_event_buf(void *buf) { kvfree(buf); } /* * There is a single buffer for reading event logs from the mailbox. All logs * share this buffer protected by the cxlds->event_log_lock. */ static int cxl_mem_alloc_event_buf(struct cxl_dev_state *cxlds) { struct cxl_get_event_payload *buf; buf = kvmalloc(cxlds->payload_size, GFP_KERNEL); if (!buf) return -ENOMEM; cxlds->event.buf = buf; return devm_add_action_or_reset(cxlds->dev, free_event_buf, buf); } static int cxl_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct pci_host_bridge *host_bridge = pci_find_host_bridge(pdev->bus); struct cxl_register_map map; struct cxl_memdev *cxlmd; struct cxl_dev_state *cxlds; int rc; /* * Double check the anonymous union trickery in struct cxl_regs * FIXME switch to struct_group() */ BUILD_BUG_ON(offsetof(struct cxl_regs, memdev) != offsetof(struct cxl_regs, device_regs.memdev)); rc = pcim_enable_device(pdev); if (rc) return rc; cxlds = cxl_dev_state_create(&pdev->dev); if (IS_ERR(cxlds)) return PTR_ERR(cxlds); pci_set_drvdata(pdev, cxlds); cxlds->rcd = is_cxl_restricted(pdev); cxlds->serial = pci_get_dsn(pdev); cxlds->cxl_dvsec = pci_find_dvsec_capability( pdev, PCI_DVSEC_VENDOR_ID_CXL, CXL_DVSEC_PCIE_DEVICE); if (!cxlds->cxl_dvsec) dev_warn(&pdev->dev, "Device DVSEC not present, skip CXL.mem init\n"); rc = cxl_setup_regs(pdev, CXL_REGLOC_RBI_MEMDEV, &map); if (rc) return rc; rc = cxl_map_device_regs(&pdev->dev, &cxlds->regs.device_regs, &map); if (rc) return rc; /* * If the component registers can't be found, the cxl_pci driver may * still be useful for management functions so don't return an error. */ cxlds->component_reg_phys = CXL_RESOURCE_NONE; rc = cxl_setup_regs(pdev, CXL_REGLOC_RBI_COMPONENT, &map); if (rc) dev_warn(&pdev->dev, "No component registers (%d)\n", rc); cxlds->component_reg_phys = map.resource; devm_cxl_pci_create_doe(cxlds); rc = cxl_map_component_regs(&pdev->dev, &cxlds->regs.component, &map, BIT(CXL_CM_CAP_CAP_ID_RAS)); if (rc) dev_dbg(&pdev->dev, "Failed to map RAS capability.\n"); rc = cxl_pci_setup_mailbox(cxlds); if (rc) return rc; rc = cxl_enumerate_cmds(cxlds); if (rc) return rc; rc = cxl_dev_state_identify(cxlds); if (rc) return rc; rc = cxl_mem_create_range_info(cxlds); if (rc) return rc; cxlmd = devm_cxl_add_memdev(cxlds); if (IS_ERR(cxlmd)) return PTR_ERR(cxlmd); /* * When BIOS maintains CXL error reporting control, it will process * event records. Only one agent can do so. */ if (host_bridge->native_cxl_error) { rc = cxl_mem_alloc_event_buf(cxlds); if (rc) return rc; cxl_mem_get_event_records(cxlds, CXLDEV_EVENT_STATUS_ALL); } if (cxlds->regs.ras) { pci_enable_pcie_error_reporting(pdev); rc = devm_add_action_or_reset(&pdev->dev, disable_aer, pdev); if (rc) return rc; } pci_save_state(pdev); return rc; } static const struct pci_device_id cxl_mem_pci_tbl[] = { /* PCI class code for CXL.mem Type-3 Devices */ { PCI_DEVICE_CLASS((PCI_CLASS_MEMORY_CXL << 8 | CXL_MEMORY_PROGIF), ~0)}, { /* terminate list */ }, }; MODULE_DEVICE_TABLE(pci, cxl_mem_pci_tbl); static pci_ers_result_t cxl_slot_reset(struct pci_dev *pdev) { struct cxl_dev_state *cxlds = pci_get_drvdata(pdev); struct cxl_memdev *cxlmd = cxlds->cxlmd; struct device *dev = &cxlmd->dev; dev_info(&pdev->dev, "%s: restart CXL.mem after slot reset\n", dev_name(dev)); pci_restore_state(pdev); if (device_attach(dev) <= 0) return PCI_ERS_RESULT_DISCONNECT; return PCI_ERS_RESULT_RECOVERED; } static void cxl_error_resume(struct pci_dev *pdev) { struct cxl_dev_state *cxlds = pci_get_drvdata(pdev); struct cxl_memdev *cxlmd = cxlds->cxlmd; struct device *dev = &cxlmd->dev; dev_info(&pdev->dev, "%s: error resume %s\n", dev_name(dev), dev->driver ? "successful" : "failed"); } static const struct pci_error_handlers cxl_error_handlers = { .error_detected = cxl_error_detected, .slot_reset = cxl_slot_reset, .resume = cxl_error_resume, .cor_error_detected = cxl_cor_error_detected, }; static struct pci_driver cxl_pci_driver = { .name = KBUILD_MODNAME, .id_table = cxl_mem_pci_tbl, .probe = cxl_pci_probe, .err_handler = &cxl_error_handlers, .driver = { .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; MODULE_LICENSE("GPL v2"); module_pci_driver(cxl_pci_driver); MODULE_IMPORT_NS(CXL);