/* * Copyright(c) 2016 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "dax.h" static dev_t dax_devt; static struct class *dax_class; static DEFINE_IDA(dax_minor_ida); static int nr_dax = CONFIG_NR_DEV_DAX; module_param(nr_dax, int, S_IRUGO); static struct vfsmount *dax_mnt; static struct kmem_cache *dax_cache __read_mostly; static struct super_block *dax_superblock __read_mostly; MODULE_PARM_DESC(nr_dax, "max number of device-dax instances"); /** * struct dax_region - mapping infrastructure for dax devices * @id: kernel-wide unique region for a memory range * @base: linear address corresponding to @res * @kref: to pin while other agents have a need to do lookups * @dev: parent device backing this region * @align: allocation and mapping alignment for child dax devices * @res: physical address range of the region * @pfn_flags: identify whether the pfns are paged back or not */ struct dax_region { int id; struct ida ida; void *base; struct kref kref; struct device *dev; unsigned int align; struct resource res; unsigned long pfn_flags; }; /** * struct dax_dev - subdivision of a dax region * @region - parent region * @dev - device backing the character device * @cdev - core chardev data * @alive - !alive + rcu grace period == no new mappings can be established * @id - child id in the region * @num_resources - number of physical address extents in this device * @res - array of physical address ranges */ struct dax_dev { struct dax_region *region; struct inode *inode; struct device dev; struct cdev cdev; bool alive; int id; int num_resources; struct resource res[0]; }; static ssize_t id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dax_region *dax_region; ssize_t rc = -ENXIO; device_lock(dev); dax_region = dev_get_drvdata(dev); if (dax_region) rc = sprintf(buf, "%d\n", dax_region->id); device_unlock(dev); return rc; } static DEVICE_ATTR_RO(id); static ssize_t region_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dax_region *dax_region; ssize_t rc = -ENXIO; device_lock(dev); dax_region = dev_get_drvdata(dev); if (dax_region) rc = sprintf(buf, "%llu\n", (unsigned long long) resource_size(&dax_region->res)); device_unlock(dev); return rc; } static struct device_attribute dev_attr_region_size = __ATTR(size, 0444, region_size_show, NULL); static ssize_t align_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dax_region *dax_region; ssize_t rc = -ENXIO; device_lock(dev); dax_region = dev_get_drvdata(dev); if (dax_region) rc = sprintf(buf, "%u\n", dax_region->align); device_unlock(dev); return rc; } static DEVICE_ATTR_RO(align); static struct attribute *dax_region_attributes[] = { &dev_attr_region_size.attr, &dev_attr_align.attr, &dev_attr_id.attr, NULL, }; static const struct attribute_group dax_region_attribute_group = { .name = "dax_region", .attrs = dax_region_attributes, }; static const struct attribute_group *dax_region_attribute_groups[] = { &dax_region_attribute_group, NULL, }; static struct inode *dax_alloc_inode(struct super_block *sb) { return kmem_cache_alloc(dax_cache, GFP_KERNEL); } static void dax_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(dax_cache, inode); } static void dax_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, dax_i_callback); } static const struct super_operations dax_sops = { .statfs = simple_statfs, .alloc_inode = dax_alloc_inode, .destroy_inode = dax_destroy_inode, .drop_inode = generic_delete_inode, }; static struct dentry *dax_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_pseudo(fs_type, "dax:", &dax_sops, NULL, DAXFS_MAGIC); } static struct file_system_type dax_type = { .name = "dax", .mount = dax_mount, .kill_sb = kill_anon_super, }; static int dax_test(struct inode *inode, void *data) { return inode->i_cdev == data; } static int dax_set(struct inode *inode, void *data) { inode->i_cdev = data; return 0; } static struct inode *dax_inode_get(struct cdev *cdev, dev_t devt) { struct inode *inode; inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), dax_test, dax_set, cdev); if (!inode) return NULL; if (inode->i_state & I_NEW) { inode->i_mode = S_IFCHR; inode->i_flags = S_DAX; inode->i_rdev = devt; mapping_set_gfp_mask(&inode->i_data, GFP_USER); unlock_new_inode(inode); } return inode; } static void init_once(void *inode) { inode_init_once(inode); } static int dax_inode_init(void) { int rc; dax_cache = kmem_cache_create("dax_cache", sizeof(struct inode), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_ACCOUNT), init_once); if (!dax_cache) return -ENOMEM; rc = register_filesystem(&dax_type); if (rc) goto err_register_fs; dax_mnt = kern_mount(&dax_type); if (IS_ERR(dax_mnt)) { rc = PTR_ERR(dax_mnt); goto err_mount; } dax_superblock = dax_mnt->mnt_sb; return 0; err_mount: unregister_filesystem(&dax_type); err_register_fs: kmem_cache_destroy(dax_cache); return rc; } static void dax_inode_exit(void) { kern_unmount(dax_mnt); unregister_filesystem(&dax_type); kmem_cache_destroy(dax_cache); } static void dax_region_free(struct kref *kref) { struct dax_region *dax_region; dax_region = container_of(kref, struct dax_region, kref); kfree(dax_region); } void dax_region_put(struct dax_region *dax_region) { kref_put(&dax_region->kref, dax_region_free); } EXPORT_SYMBOL_GPL(dax_region_put); static void dax_region_unregister(void *region) { struct dax_region *dax_region = region; sysfs_remove_groups(&dax_region->dev->kobj, dax_region_attribute_groups); dax_region_put(dax_region); } struct dax_region *alloc_dax_region(struct device *parent, int region_id, struct resource *res, unsigned int align, void *addr, unsigned long pfn_flags) { struct dax_region *dax_region; /* * The DAX core assumes that it can store its private data in * parent->driver_data. This WARN is a reminder / safeguard for * developers of device-dax drivers. */ if (dev_get_drvdata(parent)) { dev_WARN(parent, "dax core failed to setup private data\n"); return NULL; } if (!IS_ALIGNED(res->start, align) || !IS_ALIGNED(resource_size(res), align)) return NULL; dax_region = kzalloc(sizeof(*dax_region), GFP_KERNEL); if (!dax_region) return NULL; dev_set_drvdata(parent, dax_region); memcpy(&dax_region->res, res, sizeof(*res)); dax_region->pfn_flags = pfn_flags; kref_init(&dax_region->kref); dax_region->id = region_id; ida_init(&dax_region->ida); dax_region->align = align; dax_region->dev = parent; dax_region->base = addr; if (sysfs_create_groups(&parent->kobj, dax_region_attribute_groups)) { kfree(dax_region); return NULL;; } kref_get(&dax_region->kref); if (devm_add_action_or_reset(parent, dax_region_unregister, dax_region)) return NULL; return dax_region; } EXPORT_SYMBOL_GPL(alloc_dax_region); static struct dax_dev *to_dax_dev(struct device *dev) { return container_of(dev, struct dax_dev, dev); } static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dax_dev *dax_dev = to_dax_dev(dev); unsigned long long size = 0; int i; for (i = 0; i < dax_dev->num_resources; i++) size += resource_size(&dax_dev->res[i]); return sprintf(buf, "%llu\n", size); } static DEVICE_ATTR_RO(size); static struct attribute *dax_device_attributes[] = { &dev_attr_size.attr, NULL, }; static const struct attribute_group dax_device_attribute_group = { .attrs = dax_device_attributes, }; static const struct attribute_group *dax_attribute_groups[] = { &dax_device_attribute_group, NULL, }; static int check_vma(struct dax_dev *dax_dev, struct vm_area_struct *vma, const char *func) { struct dax_region *dax_region = dax_dev->region; struct device *dev = &dax_dev->dev; unsigned long mask; if (!dax_dev->alive) return -ENXIO; /* prevent private mappings from being established */ if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) { dev_info(dev, "%s: %s: fail, attempted private mapping\n", current->comm, func); return -EINVAL; } mask = dax_region->align - 1; if (vma->vm_start & mask || vma->vm_end & mask) { dev_info(dev, "%s: %s: fail, unaligned vma (%#lx - %#lx, %#lx)\n", current->comm, func, vma->vm_start, vma->vm_end, mask); return -EINVAL; } if ((dax_region->pfn_flags & (PFN_DEV|PFN_MAP)) == PFN_DEV && (vma->vm_flags & VM_DONTCOPY) == 0) { dev_info(dev, "%s: %s: fail, dax range requires MADV_DONTFORK\n", current->comm, func); return -EINVAL; } if (!vma_is_dax(vma)) { dev_info(dev, "%s: %s: fail, vma is not DAX capable\n", current->comm, func); return -EINVAL; } return 0; } static phys_addr_t pgoff_to_phys(struct dax_dev *dax_dev, pgoff_t pgoff, unsigned long size) { struct resource *res; phys_addr_t phys; int i; for (i = 0; i < dax_dev->num_resources; i++) { res = &dax_dev->res[i]; phys = pgoff * PAGE_SIZE + res->start; if (phys >= res->start && phys <= res->end) break; pgoff -= PHYS_PFN(resource_size(res)); } if (i < dax_dev->num_resources) { res = &dax_dev->res[i]; if (phys + size - 1 <= res->end) return phys; } return -1; } static int __dax_dev_pte_fault(struct dax_dev *dax_dev, struct vm_fault *vmf) { struct device *dev = &dax_dev->dev; struct dax_region *dax_region; int rc = VM_FAULT_SIGBUS; phys_addr_t phys; pfn_t pfn; unsigned int fault_size = PAGE_SIZE; if (check_vma(dax_dev, vmf->vma, __func__)) return VM_FAULT_SIGBUS; dax_region = dax_dev->region; if (dax_region->align > PAGE_SIZE) { dev_dbg(dev, "%s: alignment > fault size\n", __func__); return VM_FAULT_SIGBUS; } if (fault_size != dax_region->align) return VM_FAULT_SIGBUS; phys = pgoff_to_phys(dax_dev, vmf->pgoff, PAGE_SIZE); if (phys == -1) { dev_dbg(dev, "%s: phys_to_pgoff(%#lx) failed\n", __func__, vmf->pgoff); return VM_FAULT_SIGBUS; } pfn = phys_to_pfn_t(phys, dax_region->pfn_flags); rc = vm_insert_mixed(vmf->vma, vmf->address, pfn); if (rc == -ENOMEM) return VM_FAULT_OOM; if (rc < 0 && rc != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } static int __dax_dev_pmd_fault(struct dax_dev *dax_dev, struct vm_fault *vmf) { unsigned long pmd_addr = vmf->address & PMD_MASK; struct device *dev = &dax_dev->dev; struct dax_region *dax_region; phys_addr_t phys; pgoff_t pgoff; pfn_t pfn; unsigned int fault_size = PMD_SIZE; if (check_vma(dax_dev, vmf->vma, __func__)) return VM_FAULT_SIGBUS; dax_region = dax_dev->region; if (dax_region->align > PMD_SIZE) { dev_dbg(dev, "%s: alignment > fault size\n", __func__); return VM_FAULT_SIGBUS; } /* dax pmd mappings require pfn_t_devmap() */ if ((dax_region->pfn_flags & (PFN_DEV|PFN_MAP)) != (PFN_DEV|PFN_MAP)) { dev_dbg(dev, "%s: alignment > fault size\n", __func__); return VM_FAULT_SIGBUS; } if (fault_size < dax_region->align) return VM_FAULT_SIGBUS; else if (fault_size > dax_region->align) return VM_FAULT_FALLBACK; /* if we are outside of the VMA */ if (pmd_addr < vmf->vma->vm_start || (pmd_addr + PMD_SIZE) > vmf->vma->vm_end) return VM_FAULT_SIGBUS; pgoff = linear_page_index(vmf->vma, pmd_addr); phys = pgoff_to_phys(dax_dev, pgoff, PMD_SIZE); if (phys == -1) { dev_dbg(dev, "%s: phys_to_pgoff(%#lx) failed\n", __func__, pgoff); return VM_FAULT_SIGBUS; } pfn = phys_to_pfn_t(phys, dax_region->pfn_flags); return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, pfn, vmf->flags & FAULT_FLAG_WRITE); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static int __dax_dev_pud_fault(struct dax_dev *dax_dev, struct vm_fault *vmf) { unsigned long pud_addr = vmf->address & PUD_MASK; struct device *dev = &dax_dev->dev; struct dax_region *dax_region; phys_addr_t phys; pgoff_t pgoff; pfn_t pfn; unsigned int fault_size = PUD_SIZE; if (check_vma(dax_dev, vmf->vma, __func__)) return VM_FAULT_SIGBUS; dax_region = dax_dev->region; if (dax_region->align > PUD_SIZE) { dev_dbg(dev, "%s: alignment > fault size\n", __func__); return VM_FAULT_SIGBUS; } /* dax pud mappings require pfn_t_devmap() */ if ((dax_region->pfn_flags & (PFN_DEV|PFN_MAP)) != (PFN_DEV|PFN_MAP)) { dev_dbg(dev, "%s: alignment > fault size\n", __func__); return VM_FAULT_SIGBUS; } if (fault_size < dax_region->align) return VM_FAULT_SIGBUS; else if (fault_size > dax_region->align) return VM_FAULT_FALLBACK; /* if we are outside of the VMA */ if (pud_addr < vmf->vma->vm_start || (pud_addr + PUD_SIZE) > vmf->vma->vm_end) return VM_FAULT_SIGBUS; pgoff = linear_page_index(vmf->vma, pud_addr); phys = pgoff_to_phys(dax_dev, pgoff, PUD_SIZE); if (phys == -1) { dev_dbg(dev, "%s: phys_to_pgoff(%#lx) failed\n", __func__, pgoff); return VM_FAULT_SIGBUS; } pfn = phys_to_pfn_t(phys, dax_region->pfn_flags); return vmf_insert_pfn_pud(vmf->vma, vmf->address, vmf->pud, pfn, vmf->flags & FAULT_FLAG_WRITE); } #else static int __dax_dev_pud_fault(struct dax_dev *dax_dev, struct vm_fault *vmf) { return VM_FAULT_FALLBACK; } #endif /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ static int dax_dev_huge_fault(struct vm_fault *vmf, enum page_entry_size pe_size) { int rc; struct file *filp = vmf->vma->vm_file; struct dax_dev *dax_dev = filp->private_data; dev_dbg(&dax_dev->dev, "%s: %s: %s (%#lx - %#lx)\n", __func__, current->comm, (vmf->flags & FAULT_FLAG_WRITE) ? "write" : "read", vmf->vma->vm_start, vmf->vma->vm_end); rcu_read_lock(); switch (pe_size) { case PE_SIZE_PTE: rc = __dax_dev_pte_fault(dax_dev, vmf); break; case PE_SIZE_PMD: rc = __dax_dev_pmd_fault(dax_dev, vmf); break; case PE_SIZE_PUD: rc = __dax_dev_pud_fault(dax_dev, vmf); break; default: return VM_FAULT_FALLBACK; } rcu_read_unlock(); return rc; } static int dax_dev_fault(struct vm_fault *vmf) { return dax_dev_huge_fault(vmf, PE_SIZE_PTE); } static const struct vm_operations_struct dax_dev_vm_ops = { .fault = dax_dev_fault, .huge_fault = dax_dev_huge_fault, }; static int dax_mmap(struct file *filp, struct vm_area_struct *vma) { struct dax_dev *dax_dev = filp->private_data; int rc; dev_dbg(&dax_dev->dev, "%s\n", __func__); rc = check_vma(dax_dev, vma, __func__); if (rc) return rc; vma->vm_ops = &dax_dev_vm_ops; vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; return 0; } /* return an unmapped area aligned to the dax region specified alignment */ static unsigned long dax_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long off, off_end, off_align, len_align, addr_align, align; struct dax_dev *dax_dev = filp ? filp->private_data : NULL; struct dax_region *dax_region; if (!dax_dev || addr) goto out; dax_region = dax_dev->region; align = dax_region->align; off = pgoff << PAGE_SHIFT; off_end = off + len; off_align = round_up(off, align); if ((off_end <= off_align) || ((off_end - off_align) < align)) goto out; len_align = len + align; if ((off + len_align) < off) goto out; addr_align = current->mm->get_unmapped_area(filp, addr, len_align, pgoff, flags); if (!IS_ERR_VALUE(addr_align)) { addr_align += (off - addr_align) & (align - 1); return addr_align; } out: return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); } static int dax_open(struct inode *inode, struct file *filp) { struct dax_dev *dax_dev; dax_dev = container_of(inode->i_cdev, struct dax_dev, cdev); dev_dbg(&dax_dev->dev, "%s\n", __func__); inode->i_mapping = dax_dev->inode->i_mapping; inode->i_mapping->host = dax_dev->inode; filp->f_mapping = inode->i_mapping; filp->private_data = dax_dev; inode->i_flags = S_DAX; return 0; } static int dax_release(struct inode *inode, struct file *filp) { struct dax_dev *dax_dev = filp->private_data; dev_dbg(&dax_dev->dev, "%s\n", __func__); return 0; } static const struct file_operations dax_fops = { .llseek = noop_llseek, .owner = THIS_MODULE, .open = dax_open, .release = dax_release, .get_unmapped_area = dax_get_unmapped_area, .mmap = dax_mmap, }; static void dax_dev_release(struct device *dev) { struct dax_dev *dax_dev = to_dax_dev(dev); struct dax_region *dax_region = dax_dev->region; ida_simple_remove(&dax_region->ida, dax_dev->id); ida_simple_remove(&dax_minor_ida, MINOR(dev->devt)); dax_region_put(dax_region); iput(dax_dev->inode); kfree(dax_dev); } static void unregister_dax_dev(void *dev) { struct dax_dev *dax_dev = to_dax_dev(dev); struct cdev *cdev = &dax_dev->cdev; dev_dbg(dev, "%s\n", __func__); /* * Note, rcu is not protecting the liveness of dax_dev, rcu is * ensuring that any fault handlers that might have seen * dax_dev->alive == true, have completed. Any fault handlers * that start after synchronize_rcu() has started will abort * upon seeing dax_dev->alive == false. */ dax_dev->alive = false; synchronize_rcu(); unmap_mapping_range(dax_dev->inode->i_mapping, 0, 0, 1); cdev_del(cdev); device_unregister(dev); } struct dax_dev *devm_create_dax_dev(struct dax_region *dax_region, struct resource *res, int count) { struct device *parent = dax_region->dev; struct dax_dev *dax_dev; int rc = 0, minor, i; struct device *dev; struct cdev *cdev; dev_t dev_t; dax_dev = kzalloc(sizeof(*dax_dev) + sizeof(*res) * count, GFP_KERNEL); if (!dax_dev) return ERR_PTR(-ENOMEM); for (i = 0; i < count; i++) { if (!IS_ALIGNED(res[i].start, dax_region->align) || !IS_ALIGNED(resource_size(&res[i]), dax_region->align)) { rc = -EINVAL; break; } dax_dev->res[i].start = res[i].start; dax_dev->res[i].end = res[i].end; } if (i < count) goto err_id; dax_dev->id = ida_simple_get(&dax_region->ida, 0, 0, GFP_KERNEL); if (dax_dev->id < 0) { rc = dax_dev->id; goto err_id; } minor = ida_simple_get(&dax_minor_ida, 0, 0, GFP_KERNEL); if (minor < 0) { rc = minor; goto err_minor; } dev_t = MKDEV(MAJOR(dax_devt), minor); dev = &dax_dev->dev; dax_dev->inode = dax_inode_get(&dax_dev->cdev, dev_t); if (!dax_dev->inode) { rc = -ENOMEM; goto err_inode; } /* device_initialize() so cdev can reference kobj parent */ device_initialize(dev); cdev = &dax_dev->cdev; cdev_init(cdev, &dax_fops); cdev->owner = parent->driver->owner; cdev->kobj.parent = &dev->kobj; rc = cdev_add(&dax_dev->cdev, dev_t, 1); if (rc) goto err_cdev; /* from here on we're committed to teardown via dax_dev_release() */ dax_dev->num_resources = count; dax_dev->alive = true; dax_dev->region = dax_region; kref_get(&dax_region->kref); dev->devt = dev_t; dev->class = dax_class; dev->parent = parent; dev->groups = dax_attribute_groups; dev->release = dax_dev_release; dev_set_name(dev, "dax%d.%d", dax_region->id, dax_dev->id); rc = device_add(dev); if (rc) { put_device(dev); return ERR_PTR(rc); } rc = devm_add_action_or_reset(dax_region->dev, unregister_dax_dev, dev); if (rc) return ERR_PTR(rc); return dax_dev; err_cdev: iput(dax_dev->inode); err_inode: ida_simple_remove(&dax_minor_ida, minor); err_minor: ida_simple_remove(&dax_region->ida, dax_dev->id); err_id: kfree(dax_dev); return ERR_PTR(rc); } EXPORT_SYMBOL_GPL(devm_create_dax_dev); static int __init dax_init(void) { int rc; rc = dax_inode_init(); if (rc) return rc; nr_dax = max(nr_dax, 256); rc = alloc_chrdev_region(&dax_devt, 0, nr_dax, "dax"); if (rc) goto err_chrdev; dax_class = class_create(THIS_MODULE, "dax"); if (IS_ERR(dax_class)) { rc = PTR_ERR(dax_class); goto err_class; } return 0; err_class: unregister_chrdev_region(dax_devt, nr_dax); err_chrdev: dax_inode_exit(); return rc; } static void __exit dax_exit(void) { class_destroy(dax_class); unregister_chrdev_region(dax_devt, nr_dax); ida_destroy(&dax_minor_ida); dax_inode_exit(); } MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL v2"); subsys_initcall(dax_init); module_exit(dax_exit);