// SPDX-License-Identifier: GPL-2.0-only /* * GHES/EDAC Linux driver * * Copyright (c) 2013 by Mauro Carvalho Chehab * * Red Hat Inc. https://www.redhat.com */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include "edac_module.h" #include struct ghes_pvt { struct mem_ctl_info *mci; /* Buffers for the error handling routine */ char other_detail[400]; char msg[80]; }; static refcount_t ghes_refcount = REFCOUNT_INIT(0); /* * Access to ghes_pvt must be protected by ghes_lock. The spinlock * also provides the necessary (implicit) memory barrier for the SMP * case to make the pointer visible on another CPU. */ static struct ghes_pvt *ghes_pvt; /* * This driver's representation of the system hardware, as collected * from DMI. */ struct ghes_hw_desc { int num_dimms; struct dimm_info *dimms; } ghes_hw; /* GHES registration mutex */ static DEFINE_MUTEX(ghes_reg_mutex); /* * Sync with other, potentially concurrent callers of * ghes_edac_report_mem_error(). We don't know what the * "inventive" firmware would do. */ static DEFINE_SPINLOCK(ghes_lock); /* "ghes_edac.force_load=1" skips the platform check */ static bool __read_mostly force_load; module_param(force_load, bool, 0); /* Memory Device - Type 17 of SMBIOS spec */ struct memdev_dmi_entry { u8 type; u8 length; u16 handle; u16 phys_mem_array_handle; u16 mem_err_info_handle; u16 total_width; u16 data_width; u16 size; u8 form_factor; u8 device_set; u8 device_locator; u8 bank_locator; u8 memory_type; u16 type_detail; u16 speed; u8 manufacturer; u8 serial_number; u8 asset_tag; u8 part_number; u8 attributes; u32 extended_size; u16 conf_mem_clk_speed; } __attribute__((__packed__)); static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle) { struct dimm_info *dimm; mci_for_each_dimm(mci, dimm) { if (dimm->smbios_handle == handle) return dimm; } return NULL; } static void dimm_setup_label(struct dimm_info *dimm, u16 handle) { const char *bank = NULL, *device = NULL; dmi_memdev_name(handle, &bank, &device); /* both strings must be non-zero */ if (bank && *bank && device && *device) snprintf(dimm->label, sizeof(dimm->label), "%s %s", bank, device); } static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry) { u16 rdr_mask = BIT(7) | BIT(13); if (entry->size == 0xffff) { pr_info("Can't get DIMM%i size\n", dimm->idx); dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */ } else if (entry->size == 0x7fff) { dimm->nr_pages = MiB_TO_PAGES(entry->extended_size); } else { if (entry->size & BIT(15)) dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10); else dimm->nr_pages = MiB_TO_PAGES(entry->size); } switch (entry->memory_type) { case 0x12: if (entry->type_detail & BIT(13)) dimm->mtype = MEM_RDDR; else dimm->mtype = MEM_DDR; break; case 0x13: if (entry->type_detail & BIT(13)) dimm->mtype = MEM_RDDR2; else dimm->mtype = MEM_DDR2; break; case 0x14: dimm->mtype = MEM_FB_DDR2; break; case 0x18: if (entry->type_detail & BIT(12)) dimm->mtype = MEM_NVDIMM; else if (entry->type_detail & BIT(13)) dimm->mtype = MEM_RDDR3; else dimm->mtype = MEM_DDR3; break; case 0x1a: if (entry->type_detail & BIT(12)) dimm->mtype = MEM_NVDIMM; else if (entry->type_detail & BIT(13)) dimm->mtype = MEM_RDDR4; else dimm->mtype = MEM_DDR4; break; default: if (entry->type_detail & BIT(6)) dimm->mtype = MEM_RMBS; else if ((entry->type_detail & rdr_mask) == rdr_mask) dimm->mtype = MEM_RDR; else if (entry->type_detail & BIT(7)) dimm->mtype = MEM_SDR; else if (entry->type_detail & BIT(9)) dimm->mtype = MEM_EDO; else dimm->mtype = MEM_UNKNOWN; } /* * Actually, we can only detect if the memory has bits for * checksum or not */ if (entry->total_width == entry->data_width) dimm->edac_mode = EDAC_NONE; else dimm->edac_mode = EDAC_SECDED; dimm->dtype = DEV_UNKNOWN; dimm->grain = 128; /* Likely, worse case */ dimm_setup_label(dimm, entry->handle); if (dimm->nr_pages) { edac_dbg(1, "DIMM%i: %s size = %d MB%s\n", dimm->idx, edac_mem_types[dimm->mtype], PAGES_TO_MiB(dimm->nr_pages), (dimm->edac_mode != EDAC_NONE) ? "(ECC)" : ""); edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n", entry->memory_type, entry->type_detail, entry->total_width, entry->data_width); } dimm->smbios_handle = entry->handle; } static void enumerate_dimms(const struct dmi_header *dh, void *arg) { struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh; struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg; struct dimm_info *d; if (dh->type != DMI_ENTRY_MEM_DEVICE) return; /* Enlarge the array with additional 16 */ if (!hw->num_dimms || !(hw->num_dimms % 16)) { struct dimm_info *new; new = krealloc(hw->dimms, (hw->num_dimms + 16) * sizeof(struct dimm_info), GFP_KERNEL); if (!new) { WARN_ON_ONCE(1); return; } hw->dimms = new; } d = &hw->dimms[hw->num_dimms]; d->idx = hw->num_dimms; assign_dmi_dimm_info(d, entry); hw->num_dimms++; } static void ghes_scan_system(void) { static bool scanned; if (scanned) return; dmi_walk(enumerate_dimms, &ghes_hw); scanned = true; } void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err) { struct edac_raw_error_desc *e; struct mem_ctl_info *mci; struct ghes_pvt *pvt; unsigned long flags; char *p; /* * We can do the locking below because GHES defers error processing * from NMI to IRQ context. Whenever that changes, we'd at least * know. */ if (WARN_ON_ONCE(in_nmi())) return; spin_lock_irqsave(&ghes_lock, flags); pvt = ghes_pvt; if (!pvt) goto unlock; mci = pvt->mci; e = &mci->error_desc; /* Cleans the error report buffer */ memset(e, 0, sizeof (*e)); e->error_count = 1; e->grain = 1; e->msg = pvt->msg; e->other_detail = pvt->other_detail; e->top_layer = -1; e->mid_layer = -1; e->low_layer = -1; *pvt->other_detail = '\0'; *pvt->msg = '\0'; switch (sev) { case GHES_SEV_CORRECTED: e->type = HW_EVENT_ERR_CORRECTED; break; case GHES_SEV_RECOVERABLE: e->type = HW_EVENT_ERR_UNCORRECTED; break; case GHES_SEV_PANIC: e->type = HW_EVENT_ERR_FATAL; break; default: case GHES_SEV_NO: e->type = HW_EVENT_ERR_INFO; } edac_dbg(1, "error validation_bits: 0x%08llx\n", (long long)mem_err->validation_bits); /* Error type, mapped on e->msg */ if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) { p = pvt->msg; switch (mem_err->error_type) { case 0: p += sprintf(p, "Unknown"); break; case 1: p += sprintf(p, "No error"); break; case 2: p += sprintf(p, "Single-bit ECC"); break; case 3: p += sprintf(p, "Multi-bit ECC"); break; case 4: p += sprintf(p, "Single-symbol ChipKill ECC"); break; case 5: p += sprintf(p, "Multi-symbol ChipKill ECC"); break; case 6: p += sprintf(p, "Master abort"); break; case 7: p += sprintf(p, "Target abort"); break; case 8: p += sprintf(p, "Parity Error"); break; case 9: p += sprintf(p, "Watchdog timeout"); break; case 10: p += sprintf(p, "Invalid address"); break; case 11: p += sprintf(p, "Mirror Broken"); break; case 12: p += sprintf(p, "Memory Sparing"); break; case 13: p += sprintf(p, "Scrub corrected error"); break; case 14: p += sprintf(p, "Scrub uncorrected error"); break; case 15: p += sprintf(p, "Physical Memory Map-out event"); break; default: p += sprintf(p, "reserved error (%d)", mem_err->error_type); } } else { strcpy(pvt->msg, "unknown error"); } /* Error address */ if (mem_err->validation_bits & CPER_MEM_VALID_PA) { e->page_frame_number = PHYS_PFN(mem_err->physical_addr); e->offset_in_page = offset_in_page(mem_err->physical_addr); } /* Error grain */ if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK) e->grain = ~mem_err->physical_addr_mask + 1; /* Memory error location, mapped on e->location */ p = e->location; if (mem_err->validation_bits & CPER_MEM_VALID_NODE) p += sprintf(p, "node:%d ", mem_err->node); if (mem_err->validation_bits & CPER_MEM_VALID_CARD) p += sprintf(p, "card:%d ", mem_err->card); if (mem_err->validation_bits & CPER_MEM_VALID_MODULE) p += sprintf(p, "module:%d ", mem_err->module); if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER) p += sprintf(p, "rank:%d ", mem_err->rank); if (mem_err->validation_bits & CPER_MEM_VALID_BANK) p += sprintf(p, "bank:%d ", mem_err->bank); if (mem_err->validation_bits & CPER_MEM_VALID_ROW) p += sprintf(p, "row:%d ", mem_err->row); if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN) p += sprintf(p, "col:%d ", mem_err->column); if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION) p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos); if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) { const char *bank = NULL, *device = NULL; struct dimm_info *dimm; dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device); if (bank != NULL && device != NULL) p += sprintf(p, "DIMM location:%s %s ", bank, device); else p += sprintf(p, "DIMM DMI handle: 0x%.4x ", mem_err->mem_dev_handle); dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle); if (dimm) { e->top_layer = dimm->idx; strcpy(e->label, dimm->label); } } if (p > e->location) *(p - 1) = '\0'; if (!*e->label) strcpy(e->label, "unknown memory"); /* All other fields are mapped on e->other_detail */ p = pvt->other_detail; p += snprintf(p, sizeof(pvt->other_detail), "APEI location: %s ", e->location); if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) { u64 status = mem_err->error_status; p += sprintf(p, "status(0x%016llx): ", (long long)status); switch ((status >> 8) & 0xff) { case 1: p += sprintf(p, "Error detected internal to the component "); break; case 16: p += sprintf(p, "Error detected in the bus "); break; case 4: p += sprintf(p, "Storage error in DRAM memory "); break; case 5: p += sprintf(p, "Storage error in TLB "); break; case 6: p += sprintf(p, "Storage error in cache "); break; case 7: p += sprintf(p, "Error in one or more functional units "); break; case 8: p += sprintf(p, "component failed self test "); break; case 9: p += sprintf(p, "Overflow or undervalue of internal queue "); break; case 17: p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR "); break; case 18: p += sprintf(p, "Improper access error "); break; case 19: p += sprintf(p, "Access to a memory address which is not mapped to any component "); break; case 20: p += sprintf(p, "Loss of Lockstep "); break; case 21: p += sprintf(p, "Response not associated with a request "); break; case 22: p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits "); break; case 23: p += sprintf(p, "Detection of a PATH_ERROR "); break; case 25: p += sprintf(p, "Bus operation timeout "); break; case 26: p += sprintf(p, "A read was issued to data that has been poisoned "); break; default: p += sprintf(p, "reserved "); break; } } if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID) p += sprintf(p, "requestorID: 0x%016llx ", (long long)mem_err->requestor_id); if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID) p += sprintf(p, "responderID: 0x%016llx ", (long long)mem_err->responder_id); if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID) p += sprintf(p, "targetID: 0x%016llx ", (long long)mem_err->responder_id); if (p > pvt->other_detail) *(p - 1) = '\0'; edac_raw_mc_handle_error(e); unlock: spin_unlock_irqrestore(&ghes_lock, flags); } /* * Known systems that are safe to enable this module. */ static struct acpi_platform_list plat_list[] = { {"HPE ", "Server ", 0, ACPI_SIG_FADT, all_versions}, { } /* End */ }; int ghes_edac_register(struct ghes *ghes, struct device *dev) { bool fake = false; struct mem_ctl_info *mci; struct ghes_pvt *pvt; struct edac_mc_layer layers[1]; unsigned long flags; int idx = -1; int rc = 0; if (IS_ENABLED(CONFIG_X86)) { /* Check if safe to enable on this system */ idx = acpi_match_platform_list(plat_list); if (!force_load && idx < 0) return -ENODEV; } else { idx = 0; } /* finish another registration/unregistration instance first */ mutex_lock(&ghes_reg_mutex); /* * We have only one logical memory controller to which all DIMMs belong. */ if (refcount_inc_not_zero(&ghes_refcount)) goto unlock; ghes_scan_system(); /* Check if we've got a bogus BIOS */ if (!ghes_hw.num_dimms) { fake = true; ghes_hw.num_dimms = 1; } layers[0].type = EDAC_MC_LAYER_ALL_MEM; layers[0].size = ghes_hw.num_dimms; layers[0].is_virt_csrow = true; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt)); if (!mci) { pr_info("Can't allocate memory for EDAC data\n"); rc = -ENOMEM; goto unlock; } pvt = mci->pvt_info; pvt->mci = mci; mci->pdev = dev; mci->mtype_cap = MEM_FLAG_EMPTY; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = "ghes_edac.c"; mci->ctl_name = "ghes_edac"; mci->dev_name = "ghes"; if (fake) { pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n"); pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n"); pr_info("work on such system. Use this driver with caution\n"); } else if (idx < 0) { pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n"); pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n"); pr_info("So, the end result of using this driver varies from vendor to vendor.\n"); pr_info("If you find incorrect reports, please contact your hardware vendor\n"); pr_info("to correct its BIOS.\n"); pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms); } if (!fake) { struct dimm_info *src, *dst; int i = 0; mci_for_each_dimm(mci, dst) { src = &ghes_hw.dimms[i]; dst->idx = src->idx; dst->smbios_handle = src->smbios_handle; dst->nr_pages = src->nr_pages; dst->mtype = src->mtype; dst->edac_mode = src->edac_mode; dst->dtype = src->dtype; dst->grain = src->grain; /* * If no src->label, preserve default label assigned * from EDAC core. */ if (strlen(src->label)) memcpy(dst->label, src->label, sizeof(src->label)); i++; } } else { struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0); dimm->nr_pages = 1; dimm->grain = 128; dimm->mtype = MEM_UNKNOWN; dimm->dtype = DEV_UNKNOWN; dimm->edac_mode = EDAC_SECDED; } rc = edac_mc_add_mc(mci); if (rc < 0) { pr_info("Can't register with the EDAC core\n"); edac_mc_free(mci); rc = -ENODEV; goto unlock; } spin_lock_irqsave(&ghes_lock, flags); ghes_pvt = pvt; spin_unlock_irqrestore(&ghes_lock, flags); /* only set on success */ refcount_set(&ghes_refcount, 1); unlock: /* Not needed anymore */ kfree(ghes_hw.dimms); ghes_hw.dimms = NULL; mutex_unlock(&ghes_reg_mutex); return rc; } void ghes_edac_unregister(struct ghes *ghes) { struct mem_ctl_info *mci; unsigned long flags; mutex_lock(&ghes_reg_mutex); if (!refcount_dec_and_test(&ghes_refcount)) goto unlock; /* * Wait for the irq handler being finished. */ spin_lock_irqsave(&ghes_lock, flags); mci = ghes_pvt ? ghes_pvt->mci : NULL; ghes_pvt = NULL; spin_unlock_irqrestore(&ghes_lock, flags); if (!mci) goto unlock; mci = edac_mc_del_mc(mci->pdev); if (mci) edac_mc_free(mci); unlock: mutex_unlock(&ghes_reg_mutex); }