// SPDX-License-Identifier: GPL-2.0 /* * System Control and Management Interface (SCMI) Sensor Protocol * * Copyright (C) 2018-2022 ARM Ltd. */ #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt #include #include #include #include "protocols.h" #include "notify.h" /* Updated only after ALL the mandatory features for that version are merged */ #define SCMI_PROTOCOL_SUPPORTED_VERSION 0x30001 #define SCMI_MAX_NUM_SENSOR_AXIS 63 #define SCMIv2_SENSOR_PROTOCOL 0x10000 enum scmi_sensor_protocol_cmd { SENSOR_DESCRIPTION_GET = 0x3, SENSOR_TRIP_POINT_NOTIFY = 0x4, SENSOR_TRIP_POINT_CONFIG = 0x5, SENSOR_READING_GET = 0x6, SENSOR_AXIS_DESCRIPTION_GET = 0x7, SENSOR_LIST_UPDATE_INTERVALS = 0x8, SENSOR_CONFIG_GET = 0x9, SENSOR_CONFIG_SET = 0xA, SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB, SENSOR_NAME_GET = 0xC, SENSOR_AXIS_NAME_GET = 0xD, }; struct scmi_msg_resp_sensor_attributes { __le16 num_sensors; u8 max_requests; u8 reserved; __le32 reg_addr_low; __le32 reg_addr_high; __le32 reg_size; }; /* v3 attributes_low macros */ #define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x)) #define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x)) #define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x)) #define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x)) /* v2 attributes_high macros */ #define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x)) #define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x)) /* v3 attributes_high macros */ #define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x)) #define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x)) /* v3 resolution macros */ #define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x)) #define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x)) struct scmi_msg_resp_attrs { __le32 min_range_low; __le32 min_range_high; __le32 max_range_low; __le32 max_range_high; }; struct scmi_msg_sensor_description { __le32 desc_index; }; struct scmi_msg_resp_sensor_description { __le16 num_returned; __le16 num_remaining; struct scmi_sensor_descriptor { __le32 id; __le32 attributes_low; /* Common attributes_low macros */ #define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x)) #define SUPPORTS_EXTENDED_NAMES(x) FIELD_GET(BIT(29), (x)) #define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x)) __le32 attributes_high; /* Common attributes_high macros */ #define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x)) #define SENSOR_SCALE_SIGN BIT(4) #define SENSOR_SCALE_EXTEND GENMASK(31, 5) #define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x)) u8 name[SCMI_SHORT_NAME_MAX_SIZE]; /* only for version > 2.0 */ __le32 power; __le32 resolution; struct scmi_msg_resp_attrs scalar_attrs; } desc[]; }; /* Base scmi_sensor_descriptor size excluding extended attrs after name */ #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28 /* Sign extend to a full s32 */ #define S32_EXT(v) \ ({ \ int __v = (v); \ \ if (__v & SENSOR_SCALE_SIGN) \ __v |= SENSOR_SCALE_EXTEND; \ __v; \ }) struct scmi_msg_sensor_axis_description_get { __le32 id; __le32 axis_desc_index; }; struct scmi_msg_resp_sensor_axis_description { __le32 num_axis_flags; #define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x)) #define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x)) struct scmi_axis_descriptor { __le32 id; __le32 attributes_low; #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x)) __le32 attributes_high; u8 name[SCMI_SHORT_NAME_MAX_SIZE]; __le32 resolution; struct scmi_msg_resp_attrs attrs; } desc[]; }; struct scmi_msg_resp_sensor_axis_names_description { __le32 num_axis_flags; struct scmi_sensor_axis_name_descriptor { __le32 axis_id; u8 name[SCMI_MAX_STR_SIZE]; } desc[]; }; /* Base scmi_axis_descriptor size excluding extended attrs after name */ #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28 struct scmi_msg_sensor_list_update_intervals { __le32 id; __le32 index; }; struct scmi_msg_resp_sensor_list_update_intervals { __le32 num_intervals_flags; #define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x)) #define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x)) #define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x)) __le32 intervals[]; }; struct scmi_msg_sensor_request_notify { __le32 id; __le32 event_control; #define SENSOR_NOTIFY_ALL BIT(0) }; struct scmi_msg_set_sensor_trip_point { __le32 id; __le32 event_control; #define SENSOR_TP_EVENT_MASK (0x3) #define SENSOR_TP_DISABLED 0x0 #define SENSOR_TP_POSITIVE 0x1 #define SENSOR_TP_NEGATIVE 0x2 #define SENSOR_TP_BOTH 0x3 #define SENSOR_TP_ID(x) (((x) & 0xff) << 4) __le32 value_low; __le32 value_high; }; struct scmi_msg_sensor_config_set { __le32 id; __le32 sensor_config; }; struct scmi_msg_sensor_reading_get { __le32 id; __le32 flags; #define SENSOR_READ_ASYNC BIT(0) }; struct scmi_resp_sensor_reading_complete { __le32 id; __le32 readings_low; __le32 readings_high; }; struct scmi_sensor_reading_resp { __le32 sensor_value_low; __le32 sensor_value_high; __le32 timestamp_low; __le32 timestamp_high; }; struct scmi_resp_sensor_reading_complete_v3 { __le32 id; struct scmi_sensor_reading_resp readings[]; }; struct scmi_sensor_trip_notify_payld { __le32 agent_id; __le32 sensor_id; __le32 trip_point_desc; }; struct scmi_sensor_update_notify_payld { __le32 agent_id; __le32 sensor_id; struct scmi_sensor_reading_resp readings[]; }; struct sensors_info { u32 version; bool notify_trip_point_cmd; bool notify_continuos_update_cmd; int num_sensors; int max_requests; u64 reg_addr; u32 reg_size; struct scmi_sensor_info *sensors; }; static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph, struct sensors_info *si) { int ret; struct scmi_xfer *t; struct scmi_msg_resp_sensor_attributes *attr; ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES, 0, sizeof(*attr), &t); if (ret) return ret; attr = t->rx.buf; ret = ph->xops->do_xfer(ph, t); if (!ret) { si->num_sensors = le16_to_cpu(attr->num_sensors); si->max_requests = attr->max_requests; si->reg_addr = le32_to_cpu(attr->reg_addr_low) | (u64)le32_to_cpu(attr->reg_addr_high) << 32; si->reg_size = le32_to_cpu(attr->reg_size); } ph->xops->xfer_put(ph, t); if (!ret) { if (!ph->hops->protocol_msg_check(ph, SENSOR_TRIP_POINT_NOTIFY, NULL)) si->notify_trip_point_cmd = true; if (!ph->hops->protocol_msg_check(ph, SENSOR_CONTINUOUS_UPDATE_NOTIFY, NULL)) si->notify_continuos_update_cmd = true; } return ret; } static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out, const struct scmi_msg_resp_attrs *in) { out->min_range = get_unaligned_le64((void *)&in->min_range_low); out->max_range = get_unaligned_le64((void *)&in->max_range_low); } struct scmi_sens_ipriv { void *priv; struct device *dev; }; static void iter_intervals_prepare_message(void *message, unsigned int desc_index, const void *p) { struct scmi_msg_sensor_list_update_intervals *msg = message; const struct scmi_sensor_info *s; s = ((const struct scmi_sens_ipriv *)p)->priv; /* Set the number of sensors to be skipped/already read */ msg->id = cpu_to_le32(s->id); msg->index = cpu_to_le32(desc_index); } static int iter_intervals_update_state(struct scmi_iterator_state *st, const void *response, void *p) { u32 flags; struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv; struct device *dev = ((struct scmi_sens_ipriv *)p)->dev; const struct scmi_msg_resp_sensor_list_update_intervals *r = response; flags = le32_to_cpu(r->num_intervals_flags); st->num_returned = NUM_INTERVALS_RETURNED(flags); st->num_remaining = NUM_INTERVALS_REMAINING(flags); /* * Max intervals is not declared previously anywhere so we * assume it's returned+remaining on first call. */ if (!st->max_resources) { s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags); s->intervals.count = st->num_returned + st->num_remaining; /* segmented intervals are reported in one triplet */ if (s->intervals.segmented && (st->num_remaining || st->num_returned != 3)) { dev_err(dev, "Sensor ID:%d advertises an invalid segmented interval (%d)\n", s->id, s->intervals.count); s->intervals.segmented = false; s->intervals.count = 0; return -EINVAL; } /* Direct allocation when exceeding pre-allocated */ if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) { s->intervals.desc = devm_kcalloc(dev, s->intervals.count, sizeof(*s->intervals.desc), GFP_KERNEL); if (!s->intervals.desc) { s->intervals.segmented = false; s->intervals.count = 0; return -ENOMEM; } } st->max_resources = s->intervals.count; } return 0; } static int iter_intervals_process_response(const struct scmi_protocol_handle *ph, const void *response, struct scmi_iterator_state *st, void *p) { const struct scmi_msg_resp_sensor_list_update_intervals *r = response; struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv; s->intervals.desc[st->desc_index + st->loop_idx] = le32_to_cpu(r->intervals[st->loop_idx]); return 0; } static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph, struct scmi_sensor_info *s) { void *iter; struct scmi_iterator_ops ops = { .prepare_message = iter_intervals_prepare_message, .update_state = iter_intervals_update_state, .process_response = iter_intervals_process_response, }; struct scmi_sens_ipriv upriv = { .priv = s, .dev = ph->dev, }; iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count, SENSOR_LIST_UPDATE_INTERVALS, sizeof(struct scmi_msg_sensor_list_update_intervals), &upriv); if (IS_ERR(iter)) return PTR_ERR(iter); return ph->hops->iter_response_run(iter); } struct scmi_apriv { bool any_axes_support_extended_names; struct scmi_sensor_info *s; }; static void iter_axes_desc_prepare_message(void *message, const unsigned int desc_index, const void *priv) { struct scmi_msg_sensor_axis_description_get *msg = message; const struct scmi_apriv *apriv = priv; /* Set the number of sensors to be skipped/already read */ msg->id = cpu_to_le32(apriv->s->id); msg->axis_desc_index = cpu_to_le32(desc_index); } static int iter_axes_desc_update_state(struct scmi_iterator_state *st, const void *response, void *priv) { u32 flags; const struct scmi_msg_resp_sensor_axis_description *r = response; flags = le32_to_cpu(r->num_axis_flags); st->num_returned = NUM_AXIS_RETURNED(flags); st->num_remaining = NUM_AXIS_REMAINING(flags); st->priv = (void *)&r->desc[0]; return 0; } static int iter_axes_desc_process_response(const struct scmi_protocol_handle *ph, const void *response, struct scmi_iterator_state *st, void *priv) { u32 attrh, attrl; struct scmi_sensor_axis_info *a; size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ; struct scmi_apriv *apriv = priv; const struct scmi_axis_descriptor *adesc = st->priv; attrl = le32_to_cpu(adesc->attributes_low); if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl)) apriv->any_axes_support_extended_names = true; a = &apriv->s->axis[st->desc_index + st->loop_idx]; a->id = le32_to_cpu(adesc->id); a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl); attrh = le32_to_cpu(adesc->attributes_high); a->scale = S32_EXT(SENSOR_SCALE(attrh)); a->type = SENSOR_TYPE(attrh); strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE); if (a->extended_attrs) { unsigned int ares = le32_to_cpu(adesc->resolution); a->resolution = SENSOR_RES(ares); a->exponent = S32_EXT(SENSOR_RES_EXP(ares)); dsize += sizeof(adesc->resolution); scmi_parse_range_attrs(&a->attrs, &adesc->attrs); dsize += sizeof(adesc->attrs); } st->priv = ((u8 *)adesc + dsize); return 0; } static int iter_axes_extended_name_update_state(struct scmi_iterator_state *st, const void *response, void *priv) { u32 flags; const struct scmi_msg_resp_sensor_axis_names_description *r = response; flags = le32_to_cpu(r->num_axis_flags); st->num_returned = NUM_AXIS_RETURNED(flags); st->num_remaining = NUM_AXIS_REMAINING(flags); st->priv = (void *)&r->desc[0]; return 0; } static int iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph, const void *response, struct scmi_iterator_state *st, void *priv) { struct scmi_sensor_axis_info *a; const struct scmi_apriv *apriv = priv; struct scmi_sensor_axis_name_descriptor *adesc = st->priv; u32 axis_id = le32_to_cpu(adesc->axis_id); if (axis_id >= st->max_resources) return -EPROTO; /* * Pick the corresponding descriptor based on the axis_id embedded * in the reply since the list of axes supporting extended names * can be a subset of all the axes. */ a = &apriv->s->axis[axis_id]; strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE); st->priv = ++adesc; return 0; } static int scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph, struct scmi_sensor_info *s) { int ret; void *iter; struct scmi_iterator_ops ops = { .prepare_message = iter_axes_desc_prepare_message, .update_state = iter_axes_extended_name_update_state, .process_response = iter_axes_extended_name_process_response, }; struct scmi_apriv apriv = { .any_axes_support_extended_names = false, .s = s, }; iter = ph->hops->iter_response_init(ph, &ops, s->num_axis, SENSOR_AXIS_NAME_GET, sizeof(struct scmi_msg_sensor_axis_description_get), &apriv); if (IS_ERR(iter)) return PTR_ERR(iter); /* * Do not cause whole protocol initialization failure when failing to * get extended names for axes. */ ret = ph->hops->iter_response_run(iter); if (ret) dev_warn(ph->dev, "Failed to get axes extended names for %s (ret:%d).\n", s->name, ret); return 0; } static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph, struct scmi_sensor_info *s, u32 version) { int ret; void *iter; struct scmi_iterator_ops ops = { .prepare_message = iter_axes_desc_prepare_message, .update_state = iter_axes_desc_update_state, .process_response = iter_axes_desc_process_response, }; struct scmi_apriv apriv = { .any_axes_support_extended_names = false, .s = s, }; s->axis = devm_kcalloc(ph->dev, s->num_axis, sizeof(*s->axis), GFP_KERNEL); if (!s->axis) return -ENOMEM; iter = ph->hops->iter_response_init(ph, &ops, s->num_axis, SENSOR_AXIS_DESCRIPTION_GET, sizeof(struct scmi_msg_sensor_axis_description_get), &apriv); if (IS_ERR(iter)) return PTR_ERR(iter); ret = ph->hops->iter_response_run(iter); if (ret) return ret; if (PROTOCOL_REV_MAJOR(version) >= 0x3 && apriv.any_axes_support_extended_names) ret = scmi_sensor_axis_extended_names_get(ph, s); return ret; } static void iter_sens_descr_prepare_message(void *message, unsigned int desc_index, const void *priv) { struct scmi_msg_sensor_description *msg = message; msg->desc_index = cpu_to_le32(desc_index); } static int iter_sens_descr_update_state(struct scmi_iterator_state *st, const void *response, void *priv) { const struct scmi_msg_resp_sensor_description *r = response; st->num_returned = le16_to_cpu(r->num_returned); st->num_remaining = le16_to_cpu(r->num_remaining); st->priv = (void *)&r->desc[0]; return 0; } static int iter_sens_descr_process_response(const struct scmi_protocol_handle *ph, const void *response, struct scmi_iterator_state *st, void *priv) { int ret = 0; u32 attrh, attrl; size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ; struct scmi_sensor_info *s; struct sensors_info *si = priv; const struct scmi_sensor_descriptor *sdesc = st->priv; s = &si->sensors[st->desc_index + st->loop_idx]; s->id = le32_to_cpu(sdesc->id); attrl = le32_to_cpu(sdesc->attributes_low); /* common bitfields parsing */ s->async = SUPPORTS_ASYNC_READ(attrl); s->num_trip_points = NUM_TRIP_POINTS(attrl); /** * only SCMIv3.0 specific bitfield below. * Such bitfields are assumed to be zeroed on non * relevant fw versions...assuming fw not buggy ! */ if (si->notify_continuos_update_cmd) s->update = SUPPORTS_UPDATE_NOTIFY(attrl); s->timestamped = SUPPORTS_TIMESTAMP(attrl); if (s->timestamped) s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl)); s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl); attrh = le32_to_cpu(sdesc->attributes_high); /* common bitfields parsing */ s->scale = S32_EXT(SENSOR_SCALE(attrh)); s->type = SENSOR_TYPE(attrh); /* Use pre-allocated pool wherever possible */ s->intervals.desc = s->intervals.prealloc_pool; if (si->version == SCMIv2_SENSOR_PROTOCOL) { s->intervals.segmented = false; s->intervals.count = 1; /* * Convert SCMIv2.0 update interval format to * SCMIv3.0 to be used as the common exposed * descriptor, accessible via common macros. */ s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) | SENSOR_UPDATE_SCALE(attrh); } else { /* * From SCMIv3.0 update intervals are retrieved * via a dedicated (optional) command. * Since the command is optional, on error carry * on without any update interval. */ if (scmi_sensor_update_intervals(ph, s)) dev_dbg(ph->dev, "Update Intervals not available for sensor ID:%d\n", s->id); } /** * only > SCMIv2.0 specific bitfield below. * Such bitfields are assumed to be zeroed on non * relevant fw versions...assuming fw not buggy ! */ s->num_axis = min_t(unsigned int, SUPPORTS_AXIS(attrh) ? SENSOR_AXIS_NUMBER(attrh) : 0, SCMI_MAX_NUM_SENSOR_AXIS); strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE); /* * If supported overwrite short name with the extended * one; on error just carry on and use already provided * short name. */ if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 && SUPPORTS_EXTENDED_NAMES(attrl)) ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id, NULL, s->name, SCMI_MAX_STR_SIZE); if (s->extended_scalar_attrs) { s->sensor_power = le32_to_cpu(sdesc->power); dsize += sizeof(sdesc->power); /* Only for sensors reporting scalar values */ if (s->num_axis == 0) { unsigned int sres = le32_to_cpu(sdesc->resolution); s->resolution = SENSOR_RES(sres); s->exponent = S32_EXT(SENSOR_RES_EXP(sres)); dsize += sizeof(sdesc->resolution); scmi_parse_range_attrs(&s->scalar_attrs, &sdesc->scalar_attrs); dsize += sizeof(sdesc->scalar_attrs); } } if (s->num_axis > 0) ret = scmi_sensor_axis_description(ph, s, si->version); st->priv = ((u8 *)sdesc + dsize); return ret; } static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph, struct sensors_info *si) { void *iter; struct scmi_iterator_ops ops = { .prepare_message = iter_sens_descr_prepare_message, .update_state = iter_sens_descr_update_state, .process_response = iter_sens_descr_process_response, }; iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors, SENSOR_DESCRIPTION_GET, sizeof(__le32), si); if (IS_ERR(iter)) return PTR_ERR(iter); return ph->hops->iter_response_run(iter); } static inline int scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id, u8 message_id, bool enable) { int ret; u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0; struct scmi_xfer *t; struct scmi_msg_sensor_request_notify *cfg; ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t); if (ret) return ret; cfg = t->tx.buf; cfg->id = cpu_to_le32(sensor_id); cfg->event_control = cpu_to_le32(evt_cntl); ret = ph->xops->do_xfer(ph, t); ph->xops->xfer_put(ph, t); return ret; } static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph, u32 sensor_id, bool enable) { return scmi_sensor_request_notify(ph, sensor_id, SENSOR_TRIP_POINT_NOTIFY, enable); } static int scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph, u32 sensor_id, bool enable) { return scmi_sensor_request_notify(ph, sensor_id, SENSOR_CONTINUOUS_UPDATE_NOTIFY, enable); } static int scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph, u32 sensor_id, u8 trip_id, u64 trip_value) { int ret; u32 evt_cntl = SENSOR_TP_BOTH; struct scmi_xfer *t; struct scmi_msg_set_sensor_trip_point *trip; ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG, sizeof(*trip), 0, &t); if (ret) return ret; trip = t->tx.buf; trip->id = cpu_to_le32(sensor_id); trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id)); trip->value_low = cpu_to_le32(trip_value & 0xffffffff); trip->value_high = cpu_to_le32(trip_value >> 32); ret = ph->xops->do_xfer(ph, t); ph->xops->xfer_put(ph, t); return ret; } static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph, u32 sensor_id, u32 *sensor_config) { int ret; struct scmi_xfer *t; struct sensors_info *si = ph->get_priv(ph); if (sensor_id >= si->num_sensors) return -EINVAL; ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET, sizeof(__le32), sizeof(__le32), &t); if (ret) return ret; put_unaligned_le32(sensor_id, t->tx.buf); ret = ph->xops->do_xfer(ph, t); if (!ret) { struct scmi_sensor_info *s = si->sensors + sensor_id; *sensor_config = get_unaligned_le64(t->rx.buf); s->sensor_config = *sensor_config; } ph->xops->xfer_put(ph, t); return ret; } static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph, u32 sensor_id, u32 sensor_config) { int ret; struct scmi_xfer *t; struct scmi_msg_sensor_config_set *msg; struct sensors_info *si = ph->get_priv(ph); if (sensor_id >= si->num_sensors) return -EINVAL; ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET, sizeof(*msg), 0, &t); if (ret) return ret; msg = t->tx.buf; msg->id = cpu_to_le32(sensor_id); msg->sensor_config = cpu_to_le32(sensor_config); ret = ph->xops->do_xfer(ph, t); if (!ret) { struct scmi_sensor_info *s = si->sensors + sensor_id; s->sensor_config = sensor_config; } ph->xops->xfer_put(ph, t); return ret; } /** * scmi_sensor_reading_get - Read scalar sensor value * @ph: Protocol handle * @sensor_id: Sensor ID * @value: The 64bit value sensor reading * * This function returns a single 64 bit reading value representing the sensor * value; if the platform SCMI Protocol implementation and the sensor support * multiple axis and timestamped-reads, this just returns the first axis while * dropping the timestamp value. * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of * timestamped multi-axis values. * * Return: 0 on Success */ static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph, u32 sensor_id, u64 *value) { int ret; struct scmi_xfer *t; struct scmi_msg_sensor_reading_get *sensor; struct scmi_sensor_info *s; struct sensors_info *si = ph->get_priv(ph); if (sensor_id >= si->num_sensors) return -EINVAL; ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET, sizeof(*sensor), 0, &t); if (ret) return ret; sensor = t->tx.buf; sensor->id = cpu_to_le32(sensor_id); s = si->sensors + sensor_id; if (s->async) { sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC); ret = ph->xops->do_xfer_with_response(ph, t); if (!ret) { struct scmi_resp_sensor_reading_complete *resp; resp = t->rx.buf; if (le32_to_cpu(resp->id) == sensor_id) *value = get_unaligned_le64(&resp->readings_low); else ret = -EPROTO; } } else { sensor->flags = cpu_to_le32(0); ret = ph->xops->do_xfer(ph, t); if (!ret) *value = get_unaligned_le64(t->rx.buf); } ph->xops->xfer_put(ph, t); return ret; } static inline void scmi_parse_sensor_readings(struct scmi_sensor_reading *out, const struct scmi_sensor_reading_resp *in) { out->value = get_unaligned_le64((void *)&in->sensor_value_low); out->timestamp = get_unaligned_le64((void *)&in->timestamp_low); } /** * scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values * @ph: Protocol handle * @sensor_id: Sensor ID * @count: The length of the provided @readings array * @readings: An array of elements each representing a timestamped per-axis * reading of type @struct scmi_sensor_reading. * Returned readings are ordered as the @axis descriptors array * included in @struct scmi_sensor_info and the max number of * returned elements is min(@count, @num_axis); ideally the provided * array should be of length @count equal to @num_axis. * * Return: 0 on Success */ static int scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph, u32 sensor_id, u8 count, struct scmi_sensor_reading *readings) { int ret; struct scmi_xfer *t; struct scmi_msg_sensor_reading_get *sensor; struct scmi_sensor_info *s; struct sensors_info *si = ph->get_priv(ph); if (sensor_id >= si->num_sensors) return -EINVAL; s = si->sensors + sensor_id; if (!count || !readings || (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis)) return -EINVAL; ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET, sizeof(*sensor), 0, &t); if (ret) return ret; sensor = t->tx.buf; sensor->id = cpu_to_le32(sensor_id); if (s->async) { sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC); ret = ph->xops->do_xfer_with_response(ph, t); if (!ret) { int i; struct scmi_resp_sensor_reading_complete_v3 *resp; resp = t->rx.buf; /* Retrieve only the number of requested axis anyway */ if (le32_to_cpu(resp->id) == sensor_id) for (i = 0; i < count; i++) scmi_parse_sensor_readings(&readings[i], &resp->readings[i]); else ret = -EPROTO; } } else { sensor->flags = cpu_to_le32(0); ret = ph->xops->do_xfer(ph, t); if (!ret) { int i; struct scmi_sensor_reading_resp *resp_readings; resp_readings = t->rx.buf; for (i = 0; i < count; i++) scmi_parse_sensor_readings(&readings[i], &resp_readings[i]); } } ph->xops->xfer_put(ph, t); return ret; } static const struct scmi_sensor_info * scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id) { struct sensors_info *si = ph->get_priv(ph); if (sensor_id >= si->num_sensors) return NULL; return si->sensors + sensor_id; } static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph) { struct sensors_info *si = ph->get_priv(ph); return si->num_sensors; } static const struct scmi_sensor_proto_ops sensor_proto_ops = { .count_get = scmi_sensor_count_get, .info_get = scmi_sensor_info_get, .trip_point_config = scmi_sensor_trip_point_config, .reading_get = scmi_sensor_reading_get, .reading_get_timestamped = scmi_sensor_reading_get_timestamped, .config_get = scmi_sensor_config_get, .config_set = scmi_sensor_config_set, }; static bool scmi_sensor_notify_supported(const struct scmi_protocol_handle *ph, u8 evt_id, u32 src_id) { bool supported = false; const struct scmi_sensor_info *s; struct sensors_info *sinfo = ph->get_priv(ph); s = scmi_sensor_info_get(ph, src_id); if (!s) return false; if (evt_id == SCMI_EVENT_SENSOR_TRIP_POINT_EVENT) supported = sinfo->notify_trip_point_cmd; else if (evt_id == SCMI_EVENT_SENSOR_UPDATE) supported = s->update; return supported; } static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph, u8 evt_id, u32 src_id, bool enable) { int ret; switch (evt_id) { case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT: ret = scmi_sensor_trip_point_notify(ph, src_id, enable); break; case SCMI_EVENT_SENSOR_UPDATE: ret = scmi_sensor_continuous_update_notify(ph, src_id, enable); break; default: ret = -EINVAL; break; } if (ret) pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n", evt_id, src_id, ret); return ret; } static void * scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph, u8 evt_id, ktime_t timestamp, const void *payld, size_t payld_sz, void *report, u32 *src_id) { void *rep = NULL; switch (evt_id) { case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT: { const struct scmi_sensor_trip_notify_payld *p = payld; struct scmi_sensor_trip_point_report *r = report; if (sizeof(*p) != payld_sz) break; r->timestamp = timestamp; r->agent_id = le32_to_cpu(p->agent_id); r->sensor_id = le32_to_cpu(p->sensor_id); r->trip_point_desc = le32_to_cpu(p->trip_point_desc); *src_id = r->sensor_id; rep = r; break; } case SCMI_EVENT_SENSOR_UPDATE: { int i; struct scmi_sensor_info *s; const struct scmi_sensor_update_notify_payld *p = payld; struct scmi_sensor_update_report *r = report; struct sensors_info *sinfo = ph->get_priv(ph); /* payld_sz is variable for this event */ r->sensor_id = le32_to_cpu(p->sensor_id); if (r->sensor_id >= sinfo->num_sensors) break; r->timestamp = timestamp; r->agent_id = le32_to_cpu(p->agent_id); s = &sinfo->sensors[r->sensor_id]; /* * The generated report r (@struct scmi_sensor_update_report) * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS * readings: here it is filled with the effective @num_axis * readings defined for this sensor or 1 for scalar sensors. */ r->readings_count = s->num_axis ?: 1; for (i = 0; i < r->readings_count; i++) scmi_parse_sensor_readings(&r->readings[i], &p->readings[i]); *src_id = r->sensor_id; rep = r; break; } default: break; } return rep; } static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph) { struct sensors_info *si = ph->get_priv(ph); return si->num_sensors; } static const struct scmi_event sensor_events[] = { { .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT, .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld), .max_report_sz = sizeof(struct scmi_sensor_trip_point_report), }, { .id = SCMI_EVENT_SENSOR_UPDATE, .max_payld_sz = sizeof(struct scmi_sensor_update_notify_payld) + SCMI_MAX_NUM_SENSOR_AXIS * sizeof(struct scmi_sensor_reading_resp), .max_report_sz = sizeof(struct scmi_sensor_update_report) + SCMI_MAX_NUM_SENSOR_AXIS * sizeof(struct scmi_sensor_reading), }, }; static const struct scmi_event_ops sensor_event_ops = { .is_notify_supported = scmi_sensor_notify_supported, .get_num_sources = scmi_sensor_get_num_sources, .set_notify_enabled = scmi_sensor_set_notify_enabled, .fill_custom_report = scmi_sensor_fill_custom_report, }; static const struct scmi_protocol_events sensor_protocol_events = { .queue_sz = SCMI_PROTO_QUEUE_SZ, .ops = &sensor_event_ops, .evts = sensor_events, .num_events = ARRAY_SIZE(sensor_events), }; static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph) { u32 version; int ret; struct sensors_info *sinfo; ret = ph->xops->version_get(ph, &version); if (ret) return ret; dev_dbg(ph->dev, "Sensor Version %d.%d\n", PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version)); sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL); if (!sinfo) return -ENOMEM; sinfo->version = version; ret = scmi_sensor_attributes_get(ph, sinfo); if (ret) return ret; sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors, sizeof(*sinfo->sensors), GFP_KERNEL); if (!sinfo->sensors) return -ENOMEM; ret = scmi_sensor_description_get(ph, sinfo); if (ret) return ret; return ph->set_priv(ph, sinfo, version); } static const struct scmi_protocol scmi_sensors = { .id = SCMI_PROTOCOL_SENSOR, .owner = THIS_MODULE, .instance_init = &scmi_sensors_protocol_init, .ops = &sensor_proto_ops, .events = &sensor_protocol_events, .supported_version = SCMI_PROTOCOL_SUPPORTED_VERSION, }; DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)