/* * Copyright 2016 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ #include #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_pm.h" #include "amdgpu_vcn.h" #include "soc15d.h" /* Firmware Names */ #define FIRMWARE_RAVEN "amdgpu/raven_vcn.bin" #define FIRMWARE_PICASSO "amdgpu/picasso_vcn.bin" #define FIRMWARE_RAVEN2 "amdgpu/raven2_vcn.bin" #define FIRMWARE_ARCTURUS "amdgpu/arcturus_vcn.bin" #define FIRMWARE_RENOIR "amdgpu/renoir_vcn.bin" #define FIRMWARE_GREEN_SARDINE "amdgpu/green_sardine_vcn.bin" #define FIRMWARE_NAVI10 "amdgpu/navi10_vcn.bin" #define FIRMWARE_NAVI14 "amdgpu/navi14_vcn.bin" #define FIRMWARE_NAVI12 "amdgpu/navi12_vcn.bin" #define FIRMWARE_SIENNA_CICHLID "amdgpu/sienna_cichlid_vcn.bin" #define FIRMWARE_NAVY_FLOUNDER "amdgpu/navy_flounder_vcn.bin" #define FIRMWARE_VANGOGH "amdgpu/vangogh_vcn.bin" #define FIRMWARE_DIMGREY_CAVEFISH "amdgpu/dimgrey_cavefish_vcn.bin" #define FIRMWARE_ALDEBARAN "amdgpu/aldebaran_vcn.bin" #define FIRMWARE_BEIGE_GOBY "amdgpu/beige_goby_vcn.bin" #define FIRMWARE_YELLOW_CARP "amdgpu/yellow_carp_vcn.bin" #define FIRMWARE_VCN_3_1_2 "amdgpu/vcn_3_1_2.bin" #define FIRMWARE_VCN4_0_0 "amdgpu/vcn_4_0_0.bin" #define FIRMWARE_VCN4_0_2 "amdgpu/vcn_4_0_2.bin" #define FIRMWARE_VCN4_0_3 "amdgpu/vcn_4_0_3.bin" #define FIRMWARE_VCN4_0_4 "amdgpu/vcn_4_0_4.bin" #define FIRMWARE_VCN4_0_5 "amdgpu/vcn_4_0_5.bin" #define FIRMWARE_VCN4_0_6 "amdgpu/vcn_4_0_6.bin" #define FIRMWARE_VCN4_0_6_1 "amdgpu/vcn_4_0_6_1.bin" #define FIRMWARE_VCN5_0_0 "amdgpu/vcn_5_0_0.bin" MODULE_FIRMWARE(FIRMWARE_RAVEN); MODULE_FIRMWARE(FIRMWARE_PICASSO); MODULE_FIRMWARE(FIRMWARE_RAVEN2); MODULE_FIRMWARE(FIRMWARE_ARCTURUS); MODULE_FIRMWARE(FIRMWARE_RENOIR); MODULE_FIRMWARE(FIRMWARE_GREEN_SARDINE); MODULE_FIRMWARE(FIRMWARE_ALDEBARAN); MODULE_FIRMWARE(FIRMWARE_NAVI10); MODULE_FIRMWARE(FIRMWARE_NAVI14); MODULE_FIRMWARE(FIRMWARE_NAVI12); MODULE_FIRMWARE(FIRMWARE_SIENNA_CICHLID); MODULE_FIRMWARE(FIRMWARE_NAVY_FLOUNDER); MODULE_FIRMWARE(FIRMWARE_VANGOGH); MODULE_FIRMWARE(FIRMWARE_DIMGREY_CAVEFISH); MODULE_FIRMWARE(FIRMWARE_BEIGE_GOBY); MODULE_FIRMWARE(FIRMWARE_YELLOW_CARP); MODULE_FIRMWARE(FIRMWARE_VCN_3_1_2); MODULE_FIRMWARE(FIRMWARE_VCN4_0_0); MODULE_FIRMWARE(FIRMWARE_VCN4_0_2); MODULE_FIRMWARE(FIRMWARE_VCN4_0_3); MODULE_FIRMWARE(FIRMWARE_VCN4_0_4); MODULE_FIRMWARE(FIRMWARE_VCN4_0_5); MODULE_FIRMWARE(FIRMWARE_VCN4_0_6); MODULE_FIRMWARE(FIRMWARE_VCN4_0_6_1); MODULE_FIRMWARE(FIRMWARE_VCN5_0_0); static void amdgpu_vcn_idle_work_handler(struct work_struct *work); int amdgpu_vcn_early_init(struct amdgpu_device *adev) { char ucode_prefix[25]; int r, i; amdgpu_ucode_ip_version_decode(adev, UVD_HWIP, ucode_prefix, sizeof(ucode_prefix)); for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (i == 1 && amdgpu_ip_version(adev, UVD_HWIP, 0) == IP_VERSION(4, 0, 6)) r = amdgpu_ucode_request(adev, &adev->vcn.fw[i], "amdgpu/%s_%d.bin", ucode_prefix, i); else r = amdgpu_ucode_request(adev, &adev->vcn.fw[i], "amdgpu/%s.bin", ucode_prefix); if (r) { amdgpu_ucode_release(&adev->vcn.fw[i]); return r; } } return r; } int amdgpu_vcn_sw_init(struct amdgpu_device *adev) { unsigned long bo_size; const struct common_firmware_header *hdr; unsigned char fw_check; unsigned int fw_shared_size, log_offset; int i, r; INIT_DELAYED_WORK(&adev->vcn.idle_work, amdgpu_vcn_idle_work_handler); mutex_init(&adev->vcn.vcn_pg_lock); mutex_init(&adev->vcn.vcn1_jpeg1_workaround); atomic_set(&adev->vcn.total_submission_cnt, 0); for (i = 0; i < adev->vcn.num_vcn_inst; i++) atomic_set(&adev->vcn.inst[i].dpg_enc_submission_cnt, 0); if ((adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) && (adev->pg_flags & AMD_PG_SUPPORT_VCN_DPG)) adev->vcn.indirect_sram = true; /* * Some Steam Deck's BIOS versions are incompatible with the * indirect SRAM mode, leading to amdgpu being unable to get * properly probed (and even potentially crashing the kernel). * Hence, check for these versions here - notice this is * restricted to Vangogh (Deck's APU). */ if (amdgpu_ip_version(adev, UVD_HWIP, 0) == IP_VERSION(3, 0, 2)) { const char *bios_ver = dmi_get_system_info(DMI_BIOS_VERSION); if (bios_ver && (!strncmp("F7A0113", bios_ver, 7) || !strncmp("F7A0114", bios_ver, 7))) { adev->vcn.indirect_sram = false; dev_info(adev->dev, "Steam Deck quirk: indirect SRAM disabled on BIOS %s\n", bios_ver); } } /* from vcn4 and above, only unified queue is used */ adev->vcn.using_unified_queue = amdgpu_ip_version(adev, UVD_HWIP, 0) >= IP_VERSION(4, 0, 0); hdr = (const struct common_firmware_header *)adev->vcn.fw[0]->data; adev->vcn.fw_version = le32_to_cpu(hdr->ucode_version); /* Bit 20-23, it is encode major and non-zero for new naming convention. * This field is part of version minor and DRM_DISABLED_FLAG in old naming * convention. Since the l:wq!atest version minor is 0x5B and DRM_DISABLED_FLAG * is zero in old naming convention, this field is always zero so far. * These four bits are used to tell which naming convention is present. */ fw_check = (le32_to_cpu(hdr->ucode_version) >> 20) & 0xf; if (fw_check) { unsigned int dec_ver, enc_major, enc_minor, vep, fw_rev; fw_rev = le32_to_cpu(hdr->ucode_version) & 0xfff; enc_minor = (le32_to_cpu(hdr->ucode_version) >> 12) & 0xff; enc_major = fw_check; dec_ver = (le32_to_cpu(hdr->ucode_version) >> 24) & 0xf; vep = (le32_to_cpu(hdr->ucode_version) >> 28) & 0xf; DRM_INFO("Found VCN firmware Version ENC: %u.%u DEC: %u VEP: %u Revision: %u\n", enc_major, enc_minor, dec_ver, vep, fw_rev); } else { unsigned int version_major, version_minor, family_id; family_id = le32_to_cpu(hdr->ucode_version) & 0xff; version_major = (le32_to_cpu(hdr->ucode_version) >> 24) & 0xff; version_minor = (le32_to_cpu(hdr->ucode_version) >> 8) & 0xff; DRM_INFO("Found VCN firmware Version: %u.%u Family ID: %u\n", version_major, version_minor, family_id); } bo_size = AMDGPU_VCN_STACK_SIZE + AMDGPU_VCN_CONTEXT_SIZE; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) bo_size += AMDGPU_GPU_PAGE_ALIGN(le32_to_cpu(hdr->ucode_size_bytes) + 8); if (amdgpu_ip_version(adev, UVD_HWIP, 0) >= IP_VERSION(5, 0, 0)) { fw_shared_size = AMDGPU_GPU_PAGE_ALIGN(sizeof(struct amdgpu_vcn5_fw_shared)); log_offset = offsetof(struct amdgpu_vcn5_fw_shared, fw_log); } else if (amdgpu_ip_version(adev, UVD_HWIP, 0) >= IP_VERSION(4, 0, 0)) { fw_shared_size = AMDGPU_GPU_PAGE_ALIGN(sizeof(struct amdgpu_vcn4_fw_shared)); log_offset = offsetof(struct amdgpu_vcn4_fw_shared, fw_log); } else { fw_shared_size = AMDGPU_GPU_PAGE_ALIGN(sizeof(struct amdgpu_fw_shared)); log_offset = offsetof(struct amdgpu_fw_shared, fw_log); } bo_size += fw_shared_size; if (amdgpu_vcnfw_log) bo_size += AMDGPU_VCNFW_LOG_SIZE; for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; r = amdgpu_bo_create_kernel(adev, bo_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->vcn.inst[i].vcpu_bo, &adev->vcn.inst[i].gpu_addr, &adev->vcn.inst[i].cpu_addr); if (r) { dev_err(adev->dev, "(%d) failed to allocate vcn bo\n", r); return r; } adev->vcn.inst[i].fw_shared.cpu_addr = adev->vcn.inst[i].cpu_addr + bo_size - fw_shared_size; adev->vcn.inst[i].fw_shared.gpu_addr = adev->vcn.inst[i].gpu_addr + bo_size - fw_shared_size; adev->vcn.inst[i].fw_shared.mem_size = fw_shared_size; if (amdgpu_vcnfw_log) { adev->vcn.inst[i].fw_shared.cpu_addr -= AMDGPU_VCNFW_LOG_SIZE; adev->vcn.inst[i].fw_shared.gpu_addr -= AMDGPU_VCNFW_LOG_SIZE; adev->vcn.inst[i].fw_shared.log_offset = log_offset; } if (adev->vcn.indirect_sram) { r = amdgpu_bo_create_kernel(adev, 64 * 2 * 4, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->vcn.inst[i].dpg_sram_bo, &adev->vcn.inst[i].dpg_sram_gpu_addr, &adev->vcn.inst[i].dpg_sram_cpu_addr); if (r) { dev_err(adev->dev, "VCN %d (%d) failed to allocate DPG bo\n", i, r); return r; } } } return 0; } int amdgpu_vcn_sw_fini(struct amdgpu_device *adev) { int i, j; for (j = 0; j < adev->vcn.num_vcn_inst; ++j) { if (adev->vcn.harvest_config & (1 << j)) continue; amdgpu_bo_free_kernel( &adev->vcn.inst[j].dpg_sram_bo, &adev->vcn.inst[j].dpg_sram_gpu_addr, (void **)&adev->vcn.inst[j].dpg_sram_cpu_addr); kvfree(adev->vcn.inst[j].saved_bo); amdgpu_bo_free_kernel(&adev->vcn.inst[j].vcpu_bo, &adev->vcn.inst[j].gpu_addr, (void **)&adev->vcn.inst[j].cpu_addr); amdgpu_ring_fini(&adev->vcn.inst[j].ring_dec); for (i = 0; i < adev->vcn.num_enc_rings; ++i) amdgpu_ring_fini(&adev->vcn.inst[j].ring_enc[i]); amdgpu_ucode_release(&adev->vcn.fw[j]); } mutex_destroy(&adev->vcn.vcn1_jpeg1_workaround); mutex_destroy(&adev->vcn.vcn_pg_lock); return 0; } bool amdgpu_vcn_is_disabled_vcn(struct amdgpu_device *adev, enum vcn_ring_type type, uint32_t vcn_instance) { bool ret = false; int vcn_config = adev->vcn.vcn_config[vcn_instance]; if ((type == VCN_ENCODE_RING) && (vcn_config & VCN_BLOCK_ENCODE_DISABLE_MASK)) ret = true; else if ((type == VCN_DECODE_RING) && (vcn_config & VCN_BLOCK_DECODE_DISABLE_MASK)) ret = true; else if ((type == VCN_UNIFIED_RING) && (vcn_config & VCN_BLOCK_QUEUE_DISABLE_MASK)) ret = true; return ret; } int amdgpu_vcn_save_vcpu_bo(struct amdgpu_device *adev) { unsigned int size; void *ptr; int i, idx; for (i = 0; i < adev->vcn.num_vcn_inst; ++i) { if (adev->vcn.harvest_config & (1 << i)) continue; if (adev->vcn.inst[i].vcpu_bo == NULL) return 0; size = amdgpu_bo_size(adev->vcn.inst[i].vcpu_bo); ptr = adev->vcn.inst[i].cpu_addr; adev->vcn.inst[i].saved_bo = kvmalloc(size, GFP_KERNEL); if (!adev->vcn.inst[i].saved_bo) return -ENOMEM; if (drm_dev_enter(adev_to_drm(adev), &idx)) { memcpy_fromio(adev->vcn.inst[i].saved_bo, ptr, size); drm_dev_exit(idx); } } return 0; } int amdgpu_vcn_suspend(struct amdgpu_device *adev) { bool in_ras_intr = amdgpu_ras_intr_triggered(); cancel_delayed_work_sync(&adev->vcn.idle_work); /* err_event_athub will corrupt VCPU buffer, so we need to * restore fw data and clear buffer in amdgpu_vcn_resume() */ if (in_ras_intr) return 0; return amdgpu_vcn_save_vcpu_bo(adev); } int amdgpu_vcn_resume(struct amdgpu_device *adev) { unsigned int size; void *ptr; int i, idx; for (i = 0; i < adev->vcn.num_vcn_inst; ++i) { if (adev->vcn.harvest_config & (1 << i)) continue; if (adev->vcn.inst[i].vcpu_bo == NULL) return -EINVAL; size = amdgpu_bo_size(adev->vcn.inst[i].vcpu_bo); ptr = adev->vcn.inst[i].cpu_addr; if (adev->vcn.inst[i].saved_bo != NULL) { if (drm_dev_enter(adev_to_drm(adev), &idx)) { memcpy_toio(ptr, adev->vcn.inst[i].saved_bo, size); drm_dev_exit(idx); } kvfree(adev->vcn.inst[i].saved_bo); adev->vcn.inst[i].saved_bo = NULL; } else { const struct common_firmware_header *hdr; unsigned int offset; hdr = (const struct common_firmware_header *)adev->vcn.fw[i]->data; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { offset = le32_to_cpu(hdr->ucode_array_offset_bytes); if (drm_dev_enter(adev_to_drm(adev), &idx)) { memcpy_toio(adev->vcn.inst[i].cpu_addr, adev->vcn.fw[i]->data + offset, le32_to_cpu(hdr->ucode_size_bytes)); drm_dev_exit(idx); } size -= le32_to_cpu(hdr->ucode_size_bytes); ptr += le32_to_cpu(hdr->ucode_size_bytes); } memset_io(ptr, 0, size); } } return 0; } static void amdgpu_vcn_idle_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, vcn.idle_work.work); unsigned int fences = 0, fence[AMDGPU_MAX_VCN_INSTANCES] = {0}; unsigned int i, j; int r = 0; for (j = 0; j < adev->vcn.num_vcn_inst; ++j) { if (adev->vcn.harvest_config & (1 << j)) continue; for (i = 0; i < adev->vcn.num_enc_rings; ++i) fence[j] += amdgpu_fence_count_emitted(&adev->vcn.inst[j].ring_enc[i]); /* Only set DPG pause for VCN3 or below, VCN4 and above will be handled by FW */ if (adev->pg_flags & AMD_PG_SUPPORT_VCN_DPG && !adev->vcn.using_unified_queue) { struct dpg_pause_state new_state; if (fence[j] || unlikely(atomic_read(&adev->vcn.inst[j].dpg_enc_submission_cnt))) new_state.fw_based = VCN_DPG_STATE__PAUSE; else new_state.fw_based = VCN_DPG_STATE__UNPAUSE; adev->vcn.pause_dpg_mode(adev, j, &new_state); } fence[j] += amdgpu_fence_count_emitted(&adev->vcn.inst[j].ring_dec); fences += fence[j]; } if (!fences && !atomic_read(&adev->vcn.total_submission_cnt)) { amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCN, AMD_PG_STATE_GATE); r = amdgpu_dpm_switch_power_profile(adev, PP_SMC_POWER_PROFILE_VIDEO, false); if (r) dev_warn(adev->dev, "(%d) failed to disable video power profile mode\n", r); } else { schedule_delayed_work(&adev->vcn.idle_work, VCN_IDLE_TIMEOUT); } } void amdgpu_vcn_ring_begin_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; int r = 0; atomic_inc(&adev->vcn.total_submission_cnt); if (!cancel_delayed_work_sync(&adev->vcn.idle_work)) { r = amdgpu_dpm_switch_power_profile(adev, PP_SMC_POWER_PROFILE_VIDEO, true); if (r) dev_warn(adev->dev, "(%d) failed to switch to video power profile mode\n", r); } mutex_lock(&adev->vcn.vcn_pg_lock); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCN, AMD_PG_STATE_UNGATE); /* Only set DPG pause for VCN3 or below, VCN4 and above will be handled by FW */ if (adev->pg_flags & AMD_PG_SUPPORT_VCN_DPG && !adev->vcn.using_unified_queue) { struct dpg_pause_state new_state; if (ring->funcs->type == AMDGPU_RING_TYPE_VCN_ENC) { atomic_inc(&adev->vcn.inst[ring->me].dpg_enc_submission_cnt); new_state.fw_based = VCN_DPG_STATE__PAUSE; } else { unsigned int fences = 0; unsigned int i; for (i = 0; i < adev->vcn.num_enc_rings; ++i) fences += amdgpu_fence_count_emitted(&adev->vcn.inst[ring->me].ring_enc[i]); if (fences || atomic_read(&adev->vcn.inst[ring->me].dpg_enc_submission_cnt)) new_state.fw_based = VCN_DPG_STATE__PAUSE; else new_state.fw_based = VCN_DPG_STATE__UNPAUSE; } adev->vcn.pause_dpg_mode(adev, ring->me, &new_state); } mutex_unlock(&adev->vcn.vcn_pg_lock); } void amdgpu_vcn_ring_end_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* Only set DPG pause for VCN3 or below, VCN4 and above will be handled by FW */ if (ring->adev->pg_flags & AMD_PG_SUPPORT_VCN_DPG && ring->funcs->type == AMDGPU_RING_TYPE_VCN_ENC && !adev->vcn.using_unified_queue) atomic_dec(&ring->adev->vcn.inst[ring->me].dpg_enc_submission_cnt); atomic_dec(&ring->adev->vcn.total_submission_cnt); schedule_delayed_work(&ring->adev->vcn.idle_work, VCN_IDLE_TIMEOUT); } int amdgpu_vcn_dec_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t tmp = 0; unsigned int i; int r; /* VCN in SRIOV does not support direct register read/write */ if (amdgpu_sriov_vf(adev)) return 0; WREG32(adev->vcn.inst[ring->me].external.scratch9, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) return r; amdgpu_ring_write(ring, PACKET0(adev->vcn.internal.scratch9, 0)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(adev->vcn.inst[ring->me].external.scratch9); if (tmp == 0xDEADBEEF) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; return r; } int amdgpu_vcn_dec_sw_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t rptr; unsigned int i; int r; if (amdgpu_sriov_vf(adev)) return 0; r = amdgpu_ring_alloc(ring, 16); if (r) return r; rptr = amdgpu_ring_get_rptr(ring); amdgpu_ring_write(ring, VCN_DEC_SW_CMD_END); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { if (amdgpu_ring_get_rptr(ring) != rptr) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; return r; } static int amdgpu_vcn_dec_send_msg(struct amdgpu_ring *ring, struct amdgpu_ib *ib_msg, struct dma_fence **fence) { u64 addr = AMDGPU_GPU_PAGE_ALIGN(ib_msg->gpu_addr); struct amdgpu_device *adev = ring->adev; struct dma_fence *f = NULL; struct amdgpu_job *job; struct amdgpu_ib *ib; int i, r; r = amdgpu_job_alloc_with_ib(ring->adev, NULL, NULL, 64, AMDGPU_IB_POOL_DIRECT, &job); if (r) goto err; ib = &job->ibs[0]; ib->ptr[0] = PACKET0(adev->vcn.internal.data0, 0); ib->ptr[1] = addr; ib->ptr[2] = PACKET0(adev->vcn.internal.data1, 0); ib->ptr[3] = addr >> 32; ib->ptr[4] = PACKET0(adev->vcn.internal.cmd, 0); ib->ptr[5] = 0; for (i = 6; i < 16; i += 2) { ib->ptr[i] = PACKET0(adev->vcn.internal.nop, 0); ib->ptr[i+1] = 0; } ib->length_dw = 16; r = amdgpu_job_submit_direct(job, ring, &f); if (r) goto err_free; amdgpu_ib_free(adev, ib_msg, f); if (fence) *fence = dma_fence_get(f); dma_fence_put(f); return 0; err_free: amdgpu_job_free(job); err: amdgpu_ib_free(adev, ib_msg, f); return r; } static int amdgpu_vcn_dec_get_create_msg(struct amdgpu_ring *ring, uint32_t handle, struct amdgpu_ib *ib) { struct amdgpu_device *adev = ring->adev; uint32_t *msg; int r, i; memset(ib, 0, sizeof(*ib)); r = amdgpu_ib_get(adev, NULL, AMDGPU_GPU_PAGE_SIZE * 2, AMDGPU_IB_POOL_DIRECT, ib); if (r) return r; msg = (uint32_t *)AMDGPU_GPU_PAGE_ALIGN((unsigned long)ib->ptr); msg[0] = cpu_to_le32(0x00000028); msg[1] = cpu_to_le32(0x00000038); msg[2] = cpu_to_le32(0x00000001); msg[3] = cpu_to_le32(0x00000000); msg[4] = cpu_to_le32(handle); msg[5] = cpu_to_le32(0x00000000); msg[6] = cpu_to_le32(0x00000001); msg[7] = cpu_to_le32(0x00000028); msg[8] = cpu_to_le32(0x00000010); msg[9] = cpu_to_le32(0x00000000); msg[10] = cpu_to_le32(0x00000007); msg[11] = cpu_to_le32(0x00000000); msg[12] = cpu_to_le32(0x00000780); msg[13] = cpu_to_le32(0x00000440); for (i = 14; i < 1024; ++i) msg[i] = cpu_to_le32(0x0); return 0; } static int amdgpu_vcn_dec_get_destroy_msg(struct amdgpu_ring *ring, uint32_t handle, struct amdgpu_ib *ib) { struct amdgpu_device *adev = ring->adev; uint32_t *msg; int r, i; memset(ib, 0, sizeof(*ib)); r = amdgpu_ib_get(adev, NULL, AMDGPU_GPU_PAGE_SIZE * 2, AMDGPU_IB_POOL_DIRECT, ib); if (r) return r; msg = (uint32_t *)AMDGPU_GPU_PAGE_ALIGN((unsigned long)ib->ptr); msg[0] = cpu_to_le32(0x00000028); msg[1] = cpu_to_le32(0x00000018); msg[2] = cpu_to_le32(0x00000000); msg[3] = cpu_to_le32(0x00000002); msg[4] = cpu_to_le32(handle); msg[5] = cpu_to_le32(0x00000000); for (i = 6; i < 1024; ++i) msg[i] = cpu_to_le32(0x0); return 0; } int amdgpu_vcn_dec_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct dma_fence *fence = NULL; struct amdgpu_ib ib; long r; r = amdgpu_vcn_dec_get_create_msg(ring, 1, &ib); if (r) goto error; r = amdgpu_vcn_dec_send_msg(ring, &ib, NULL); if (r) goto error; r = amdgpu_vcn_dec_get_destroy_msg(ring, 1, &ib); if (r) goto error; r = amdgpu_vcn_dec_send_msg(ring, &ib, &fence); if (r) goto error; r = dma_fence_wait_timeout(fence, false, timeout); if (r == 0) r = -ETIMEDOUT; else if (r > 0) r = 0; dma_fence_put(fence); error: return r; } static uint32_t *amdgpu_vcn_unified_ring_ib_header(struct amdgpu_ib *ib, uint32_t ib_pack_in_dw, bool enc) { uint32_t *ib_checksum; ib->ptr[ib->length_dw++] = 0x00000010; /* single queue checksum */ ib->ptr[ib->length_dw++] = 0x30000002; ib_checksum = &ib->ptr[ib->length_dw++]; ib->ptr[ib->length_dw++] = ib_pack_in_dw; ib->ptr[ib->length_dw++] = 0x00000010; /* engine info */ ib->ptr[ib->length_dw++] = 0x30000001; ib->ptr[ib->length_dw++] = enc ? 0x2 : 0x3; ib->ptr[ib->length_dw++] = ib_pack_in_dw * sizeof(uint32_t); return ib_checksum; } static void amdgpu_vcn_unified_ring_ib_checksum(uint32_t **ib_checksum, uint32_t ib_pack_in_dw) { uint32_t i; uint32_t checksum = 0; for (i = 0; i < ib_pack_in_dw; i++) checksum += *(*ib_checksum + 2 + i); **ib_checksum = checksum; } static int amdgpu_vcn_dec_sw_send_msg(struct amdgpu_ring *ring, struct amdgpu_ib *ib_msg, struct dma_fence **fence) { struct amdgpu_vcn_decode_buffer *decode_buffer = NULL; unsigned int ib_size_dw = 64; struct amdgpu_device *adev = ring->adev; struct dma_fence *f = NULL; struct amdgpu_job *job; struct amdgpu_ib *ib; uint64_t addr = AMDGPU_GPU_PAGE_ALIGN(ib_msg->gpu_addr); uint32_t *ib_checksum; uint32_t ib_pack_in_dw; int i, r; if (adev->vcn.using_unified_queue) ib_size_dw += 8; r = amdgpu_job_alloc_with_ib(ring->adev, NULL, NULL, ib_size_dw * 4, AMDGPU_IB_POOL_DIRECT, &job); if (r) goto err; ib = &job->ibs[0]; ib->length_dw = 0; /* single queue headers */ if (adev->vcn.using_unified_queue) { ib_pack_in_dw = sizeof(struct amdgpu_vcn_decode_buffer) / sizeof(uint32_t) + 4 + 2; /* engine info + decoding ib in dw */ ib_checksum = amdgpu_vcn_unified_ring_ib_header(ib, ib_pack_in_dw, false); } ib->ptr[ib->length_dw++] = sizeof(struct amdgpu_vcn_decode_buffer) + 8; ib->ptr[ib->length_dw++] = cpu_to_le32(AMDGPU_VCN_IB_FLAG_DECODE_BUFFER); decode_buffer = (struct amdgpu_vcn_decode_buffer *)&(ib->ptr[ib->length_dw]); ib->length_dw += sizeof(struct amdgpu_vcn_decode_buffer) / 4; memset(decode_buffer, 0, sizeof(struct amdgpu_vcn_decode_buffer)); decode_buffer->valid_buf_flag |= cpu_to_le32(AMDGPU_VCN_CMD_FLAG_MSG_BUFFER); decode_buffer->msg_buffer_address_hi = cpu_to_le32(addr >> 32); decode_buffer->msg_buffer_address_lo = cpu_to_le32(addr); for (i = ib->length_dw; i < ib_size_dw; ++i) ib->ptr[i] = 0x0; if (adev->vcn.using_unified_queue) amdgpu_vcn_unified_ring_ib_checksum(&ib_checksum, ib_pack_in_dw); r = amdgpu_job_submit_direct(job, ring, &f); if (r) goto err_free; amdgpu_ib_free(adev, ib_msg, f); if (fence) *fence = dma_fence_get(f); dma_fence_put(f); return 0; err_free: amdgpu_job_free(job); err: amdgpu_ib_free(adev, ib_msg, f); return r; } int amdgpu_vcn_dec_sw_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct dma_fence *fence = NULL; struct amdgpu_ib ib; long r; r = amdgpu_vcn_dec_get_create_msg(ring, 1, &ib); if (r) goto error; r = amdgpu_vcn_dec_sw_send_msg(ring, &ib, NULL); if (r) goto error; r = amdgpu_vcn_dec_get_destroy_msg(ring, 1, &ib); if (r) goto error; r = amdgpu_vcn_dec_sw_send_msg(ring, &ib, &fence); if (r) goto error; r = dma_fence_wait_timeout(fence, false, timeout); if (r == 0) r = -ETIMEDOUT; else if (r > 0) r = 0; dma_fence_put(fence); error: return r; } int amdgpu_vcn_enc_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t rptr; unsigned int i; int r; if (amdgpu_sriov_vf(adev)) return 0; r = amdgpu_ring_alloc(ring, 16); if (r) return r; rptr = amdgpu_ring_get_rptr(ring); amdgpu_ring_write(ring, VCN_ENC_CMD_END); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { if (amdgpu_ring_get_rptr(ring) != rptr) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; return r; } static int amdgpu_vcn_enc_get_create_msg(struct amdgpu_ring *ring, uint32_t handle, struct amdgpu_ib *ib_msg, struct dma_fence **fence) { unsigned int ib_size_dw = 16; struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job; struct amdgpu_ib *ib; struct dma_fence *f = NULL; uint32_t *ib_checksum = NULL; uint64_t addr; int i, r; if (adev->vcn.using_unified_queue) ib_size_dw += 8; r = amdgpu_job_alloc_with_ib(ring->adev, NULL, NULL, ib_size_dw * 4, AMDGPU_IB_POOL_DIRECT, &job); if (r) return r; ib = &job->ibs[0]; addr = AMDGPU_GPU_PAGE_ALIGN(ib_msg->gpu_addr); ib->length_dw = 0; if (adev->vcn.using_unified_queue) ib_checksum = amdgpu_vcn_unified_ring_ib_header(ib, 0x11, true); ib->ptr[ib->length_dw++] = 0x00000018; ib->ptr[ib->length_dw++] = 0x00000001; /* session info */ ib->ptr[ib->length_dw++] = handle; ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = addr; ib->ptr[ib->length_dw++] = 0x00000000; ib->ptr[ib->length_dw++] = 0x00000014; ib->ptr[ib->length_dw++] = 0x00000002; /* task info */ ib->ptr[ib->length_dw++] = 0x0000001c; ib->ptr[ib->length_dw++] = 0x00000000; ib->ptr[ib->length_dw++] = 0x00000000; ib->ptr[ib->length_dw++] = 0x00000008; ib->ptr[ib->length_dw++] = 0x08000001; /* op initialize */ for (i = ib->length_dw; i < ib_size_dw; ++i) ib->ptr[i] = 0x0; if (adev->vcn.using_unified_queue) amdgpu_vcn_unified_ring_ib_checksum(&ib_checksum, 0x11); r = amdgpu_job_submit_direct(job, ring, &f); if (r) goto err; if (fence) *fence = dma_fence_get(f); dma_fence_put(f); return 0; err: amdgpu_job_free(job); return r; } static int amdgpu_vcn_enc_get_destroy_msg(struct amdgpu_ring *ring, uint32_t handle, struct amdgpu_ib *ib_msg, struct dma_fence **fence) { unsigned int ib_size_dw = 16; struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job; struct amdgpu_ib *ib; struct dma_fence *f = NULL; uint32_t *ib_checksum = NULL; uint64_t addr; int i, r; if (adev->vcn.using_unified_queue) ib_size_dw += 8; r = amdgpu_job_alloc_with_ib(ring->adev, NULL, NULL, ib_size_dw * 4, AMDGPU_IB_POOL_DIRECT, &job); if (r) return r; ib = &job->ibs[0]; addr = AMDGPU_GPU_PAGE_ALIGN(ib_msg->gpu_addr); ib->length_dw = 0; if (adev->vcn.using_unified_queue) ib_checksum = amdgpu_vcn_unified_ring_ib_header(ib, 0x11, true); ib->ptr[ib->length_dw++] = 0x00000018; ib->ptr[ib->length_dw++] = 0x00000001; ib->ptr[ib->length_dw++] = handle; ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = addr; ib->ptr[ib->length_dw++] = 0x00000000; ib->ptr[ib->length_dw++] = 0x00000014; ib->ptr[ib->length_dw++] = 0x00000002; ib->ptr[ib->length_dw++] = 0x0000001c; ib->ptr[ib->length_dw++] = 0x00000000; ib->ptr[ib->length_dw++] = 0x00000000; ib->ptr[ib->length_dw++] = 0x00000008; ib->ptr[ib->length_dw++] = 0x08000002; /* op close session */ for (i = ib->length_dw; i < ib_size_dw; ++i) ib->ptr[i] = 0x0; if (adev->vcn.using_unified_queue) amdgpu_vcn_unified_ring_ib_checksum(&ib_checksum, 0x11); r = amdgpu_job_submit_direct(job, ring, &f); if (r) goto err; if (fence) *fence = dma_fence_get(f); dma_fence_put(f); return 0; err: amdgpu_job_free(job); return r; } int amdgpu_vcn_enc_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct dma_fence *fence = NULL; struct amdgpu_ib ib; long r; memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, (128 << 10) + AMDGPU_GPU_PAGE_SIZE, AMDGPU_IB_POOL_DIRECT, &ib); if (r) return r; r = amdgpu_vcn_enc_get_create_msg(ring, 1, &ib, NULL); if (r) goto error; r = amdgpu_vcn_enc_get_destroy_msg(ring, 1, &ib, &fence); if (r) goto error; r = dma_fence_wait_timeout(fence, false, timeout); if (r == 0) r = -ETIMEDOUT; else if (r > 0) r = 0; error: amdgpu_ib_free(adev, &ib, fence); dma_fence_put(fence); return r; } int amdgpu_vcn_unified_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; long r; if (amdgpu_ip_version(adev, UVD_HWIP, 0) != IP_VERSION(4, 0, 3)) { r = amdgpu_vcn_enc_ring_test_ib(ring, timeout); if (r) goto error; } r = amdgpu_vcn_dec_sw_ring_test_ib(ring, timeout); error: return r; } enum amdgpu_ring_priority_level amdgpu_vcn_get_enc_ring_prio(int ring) { switch (ring) { case 0: return AMDGPU_RING_PRIO_0; case 1: return AMDGPU_RING_PRIO_1; case 2: return AMDGPU_RING_PRIO_2; default: return AMDGPU_RING_PRIO_0; } } void amdgpu_vcn_setup_ucode(struct amdgpu_device *adev) { int i; unsigned int idx; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { const struct common_firmware_header *hdr; for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; hdr = (const struct common_firmware_header *)adev->vcn.fw[i]->data; /* currently only support 2 FW instances */ if (i >= 2) { dev_info(adev->dev, "More then 2 VCN FW instances!\n"); break; } idx = AMDGPU_UCODE_ID_VCN + i; adev->firmware.ucode[idx].ucode_id = idx; adev->firmware.ucode[idx].fw = adev->vcn.fw[i]; adev->firmware.fw_size += ALIGN(le32_to_cpu(hdr->ucode_size_bytes), PAGE_SIZE); if (amdgpu_ip_version(adev, UVD_HWIP, 0) == IP_VERSION(4, 0, 3)) break; } } } /* * debugfs for mapping vcn firmware log buffer. */ #if defined(CONFIG_DEBUG_FS) static ssize_t amdgpu_debugfs_vcn_fwlog_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_vcn_inst *vcn; void *log_buf; volatile struct amdgpu_vcn_fwlog *plog; unsigned int read_pos, write_pos, available, i, read_bytes = 0; unsigned int read_num[2] = {0}; vcn = file_inode(f)->i_private; if (!vcn) return -ENODEV; if (!vcn->fw_shared.cpu_addr || !amdgpu_vcnfw_log) return -EFAULT; log_buf = vcn->fw_shared.cpu_addr + vcn->fw_shared.mem_size; plog = (volatile struct amdgpu_vcn_fwlog *)log_buf; read_pos = plog->rptr; write_pos = plog->wptr; if (read_pos > AMDGPU_VCNFW_LOG_SIZE || write_pos > AMDGPU_VCNFW_LOG_SIZE) return -EFAULT; if (!size || (read_pos == write_pos)) return 0; if (write_pos > read_pos) { available = write_pos - read_pos; read_num[0] = min_t(size_t, size, available); } else { read_num[0] = AMDGPU_VCNFW_LOG_SIZE - read_pos; available = read_num[0] + write_pos - plog->header_size; if (size > available) read_num[1] = write_pos - plog->header_size; else if (size > read_num[0]) read_num[1] = size - read_num[0]; else read_num[0] = size; } for (i = 0; i < 2; i++) { if (read_num[i]) { if (read_pos == AMDGPU_VCNFW_LOG_SIZE) read_pos = plog->header_size; if (read_num[i] == copy_to_user((buf + read_bytes), (log_buf + read_pos), read_num[i])) return -EFAULT; read_bytes += read_num[i]; read_pos += read_num[i]; } } plog->rptr = read_pos; *pos += read_bytes; return read_bytes; } static const struct file_operations amdgpu_debugfs_vcnfwlog_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_vcn_fwlog_read, .llseek = default_llseek }; #endif void amdgpu_debugfs_vcn_fwlog_init(struct amdgpu_device *adev, uint8_t i, struct amdgpu_vcn_inst *vcn) { #if defined(CONFIG_DEBUG_FS) struct drm_minor *minor = adev_to_drm(adev)->primary; struct dentry *root = minor->debugfs_root; char name[32]; sprintf(name, "amdgpu_vcn_%d_fwlog", i); debugfs_create_file_size(name, S_IFREG | 0444, root, vcn, &amdgpu_debugfs_vcnfwlog_fops, AMDGPU_VCNFW_LOG_SIZE); #endif } void amdgpu_vcn_fwlog_init(struct amdgpu_vcn_inst *vcn) { #if defined(CONFIG_DEBUG_FS) volatile uint32_t *flag = vcn->fw_shared.cpu_addr; void *fw_log_cpu_addr = vcn->fw_shared.cpu_addr + vcn->fw_shared.mem_size; uint64_t fw_log_gpu_addr = vcn->fw_shared.gpu_addr + vcn->fw_shared.mem_size; volatile struct amdgpu_vcn_fwlog *log_buf = fw_log_cpu_addr; volatile struct amdgpu_fw_shared_fw_logging *fw_log = vcn->fw_shared.cpu_addr + vcn->fw_shared.log_offset; *flag |= cpu_to_le32(AMDGPU_VCN_FW_LOGGING_FLAG); fw_log->is_enabled = 1; fw_log->addr_lo = cpu_to_le32(fw_log_gpu_addr & 0xFFFFFFFF); fw_log->addr_hi = cpu_to_le32(fw_log_gpu_addr >> 32); fw_log->size = cpu_to_le32(AMDGPU_VCNFW_LOG_SIZE); log_buf->header_size = sizeof(struct amdgpu_vcn_fwlog); log_buf->buffer_size = AMDGPU_VCNFW_LOG_SIZE; log_buf->rptr = log_buf->header_size; log_buf->wptr = log_buf->header_size; log_buf->wrapped = 0; #endif } int amdgpu_vcn_process_poison_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct ras_common_if *ras_if = adev->vcn.ras_if; struct ras_dispatch_if ih_data = { .entry = entry, }; if (!ras_if) return 0; if (!amdgpu_sriov_vf(adev)) { ih_data.head = *ras_if; amdgpu_ras_interrupt_dispatch(adev, &ih_data); } else { if (adev->virt.ops && adev->virt.ops->ras_poison_handler) adev->virt.ops->ras_poison_handler(adev, ras_if->block); else dev_warn(adev->dev, "No ras_poison_handler interface in SRIOV for VCN!\n"); } return 0; } int amdgpu_vcn_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) { int r, i; r = amdgpu_ras_block_late_init(adev, ras_block); if (r) return r; if (amdgpu_ras_is_supported(adev, ras_block->block)) { for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i) || !adev->vcn.inst[i].ras_poison_irq.funcs) continue; r = amdgpu_irq_get(adev, &adev->vcn.inst[i].ras_poison_irq, 0); if (r) goto late_fini; } } return 0; late_fini: amdgpu_ras_block_late_fini(adev, ras_block); return r; } int amdgpu_vcn_ras_sw_init(struct amdgpu_device *adev) { int err; struct amdgpu_vcn_ras *ras; if (!adev->vcn.ras) return 0; ras = adev->vcn.ras; err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); if (err) { dev_err(adev->dev, "Failed to register vcn ras block!\n"); return err; } strcpy(ras->ras_block.ras_comm.name, "vcn"); ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__VCN; ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__POISON; adev->vcn.ras_if = &ras->ras_block.ras_comm; if (!ras->ras_block.ras_late_init) ras->ras_block.ras_late_init = amdgpu_vcn_ras_late_init; return 0; } int amdgpu_vcn_psp_update_sram(struct amdgpu_device *adev, int inst_idx, enum AMDGPU_UCODE_ID ucode_id) { struct amdgpu_firmware_info ucode = { .ucode_id = (ucode_id ? ucode_id : (inst_idx ? AMDGPU_UCODE_ID_VCN1_RAM : AMDGPU_UCODE_ID_VCN0_RAM)), .mc_addr = adev->vcn.inst[inst_idx].dpg_sram_gpu_addr, .ucode_size = ((uintptr_t)adev->vcn.inst[inst_idx].dpg_sram_curr_addr - (uintptr_t)adev->vcn.inst[inst_idx].dpg_sram_cpu_addr), }; return psp_execute_ip_fw_load(&adev->psp, &ucode); } static ssize_t amdgpu_get_vcn_reset_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (!adev) return -ENODEV; return amdgpu_show_reset_mask(buf, adev->vcn.supported_reset); } static DEVICE_ATTR(vcn_reset_mask, 0444, amdgpu_get_vcn_reset_mask, NULL); int amdgpu_vcn_sysfs_reset_mask_init(struct amdgpu_device *adev) { int r = 0; if (adev->vcn.num_vcn_inst) { r = device_create_file(adev->dev, &dev_attr_vcn_reset_mask); if (r) return r; } return r; } void amdgpu_vcn_sysfs_reset_mask_fini(struct amdgpu_device *adev) { if (adev->dev->kobj.sd) { if (adev->vcn.num_vcn_inst) device_remove_file(adev->dev, &dev_attr_vcn_reset_mask); } }