/* * KVMGT - the implementation of Intel mediated pass-through framework for KVM * * Copyright(c) 2014-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Kevin Tian * Jike Song * Xiaoguang Chen */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i915_drv.h" #include "gvt.h" static const struct intel_gvt_ops *intel_gvt_ops; /* helper macros copied from vfio-pci */ #define VFIO_PCI_OFFSET_SHIFT 40 #define VFIO_PCI_OFFSET_TO_INDEX(off) (off >> VFIO_PCI_OFFSET_SHIFT) #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT) #define VFIO_PCI_OFFSET_MASK (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1) #define OPREGION_SIGNATURE "IntelGraphicsMem" struct vfio_region; struct intel_vgpu_regops { size_t (*rw)(struct intel_vgpu *vgpu, char *buf, size_t count, loff_t *ppos, bool iswrite); void (*release)(struct intel_vgpu *vgpu, struct vfio_region *region); }; struct vfio_region { u32 type; u32 subtype; size_t size; u32 flags; const struct intel_vgpu_regops *ops; void *data; }; struct kvmgt_pgfn { gfn_t gfn; struct hlist_node hnode; }; struct kvmgt_guest_info { struct kvm *kvm; struct intel_vgpu *vgpu; struct kvm_page_track_notifier_node track_node; #define NR_BKT (1 << 18) struct hlist_head ptable[NR_BKT]; #undef NR_BKT struct dentry *debugfs_cache_entries; }; struct gvt_dma { struct intel_vgpu *vgpu; struct rb_node gfn_node; struct rb_node dma_addr_node; gfn_t gfn; dma_addr_t dma_addr; unsigned long size; struct kref ref; }; static inline bool handle_valid(unsigned long handle) { return !!(handle & ~0xff); } static int kvmgt_guest_init(struct mdev_device *mdev); static void intel_vgpu_release_work(struct work_struct *work); static bool kvmgt_guest_exit(struct kvmgt_guest_info *info); static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn, unsigned long size) { int total_pages; int npage; int ret; total_pages = roundup(size, PAGE_SIZE) / PAGE_SIZE; for (npage = 0; npage < total_pages; npage++) { unsigned long cur_gfn = gfn + npage; ret = vfio_unpin_pages(mdev_dev(vgpu->vdev.mdev), &cur_gfn, 1); WARN_ON(ret != 1); } } /* Pin a normal or compound guest page for dma. */ static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn, unsigned long size, struct page **page) { unsigned long base_pfn = 0; int total_pages; int npage; int ret; total_pages = roundup(size, PAGE_SIZE) / PAGE_SIZE; /* * We pin the pages one-by-one to avoid allocating a big arrary * on stack to hold pfns. */ for (npage = 0; npage < total_pages; npage++) { unsigned long cur_gfn = gfn + npage; unsigned long pfn; ret = vfio_pin_pages(mdev_dev(vgpu->vdev.mdev), &cur_gfn, 1, IOMMU_READ | IOMMU_WRITE, &pfn); if (ret != 1) { gvt_vgpu_err("vfio_pin_pages failed for gfn 0x%lx, ret %d\n", cur_gfn, ret); goto err; } if (!pfn_valid(pfn)) { gvt_vgpu_err("pfn 0x%lx is not mem backed\n", pfn); npage++; ret = -EFAULT; goto err; } if (npage == 0) base_pfn = pfn; else if (base_pfn + npage != pfn) { gvt_vgpu_err("The pages are not continuous\n"); ret = -EINVAL; npage++; goto err; } } *page = pfn_to_page(base_pfn); return 0; err: gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE); return ret; } static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn, dma_addr_t *dma_addr, unsigned long size) { struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; struct page *page = NULL; int ret; ret = gvt_pin_guest_page(vgpu, gfn, size, &page); if (ret) return ret; /* Setup DMA mapping. */ *dma_addr = dma_map_page(dev, page, 0, size, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, *dma_addr)) { gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n", page_to_pfn(page), ret); gvt_unpin_guest_page(vgpu, gfn, size); return -ENOMEM; } return 0; } static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn, dma_addr_t dma_addr, unsigned long size) { struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; dma_unmap_page(dev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); gvt_unpin_guest_page(vgpu, gfn, size); } static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu, dma_addr_t dma_addr) { struct rb_node *node = vgpu->vdev.dma_addr_cache.rb_node; struct gvt_dma *itr; while (node) { itr = rb_entry(node, struct gvt_dma, dma_addr_node); if (dma_addr < itr->dma_addr) node = node->rb_left; else if (dma_addr > itr->dma_addr) node = node->rb_right; else return itr; } return NULL; } static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn) { struct rb_node *node = vgpu->vdev.gfn_cache.rb_node; struct gvt_dma *itr; while (node) { itr = rb_entry(node, struct gvt_dma, gfn_node); if (gfn < itr->gfn) node = node->rb_left; else if (gfn > itr->gfn) node = node->rb_right; else return itr; } return NULL; } static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn, dma_addr_t dma_addr, unsigned long size) { struct gvt_dma *new, *itr; struct rb_node **link, *parent = NULL; new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL); if (!new) return -ENOMEM; new->vgpu = vgpu; new->gfn = gfn; new->dma_addr = dma_addr; new->size = size; kref_init(&new->ref); /* gfn_cache maps gfn to struct gvt_dma. */ link = &vgpu->vdev.gfn_cache.rb_node; while (*link) { parent = *link; itr = rb_entry(parent, struct gvt_dma, gfn_node); if (gfn < itr->gfn) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(&new->gfn_node, parent, link); rb_insert_color(&new->gfn_node, &vgpu->vdev.gfn_cache); /* dma_addr_cache maps dma addr to struct gvt_dma. */ parent = NULL; link = &vgpu->vdev.dma_addr_cache.rb_node; while (*link) { parent = *link; itr = rb_entry(parent, struct gvt_dma, dma_addr_node); if (dma_addr < itr->dma_addr) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(&new->dma_addr_node, parent, link); rb_insert_color(&new->dma_addr_node, &vgpu->vdev.dma_addr_cache); vgpu->vdev.nr_cache_entries++; return 0; } static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu, struct gvt_dma *entry) { rb_erase(&entry->gfn_node, &vgpu->vdev.gfn_cache); rb_erase(&entry->dma_addr_node, &vgpu->vdev.dma_addr_cache); kfree(entry); vgpu->vdev.nr_cache_entries--; } static void gvt_cache_destroy(struct intel_vgpu *vgpu) { struct gvt_dma *dma; struct rb_node *node = NULL; for (;;) { mutex_lock(&vgpu->vdev.cache_lock); node = rb_first(&vgpu->vdev.gfn_cache); if (!node) { mutex_unlock(&vgpu->vdev.cache_lock); break; } dma = rb_entry(node, struct gvt_dma, gfn_node); gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size); __gvt_cache_remove_entry(vgpu, dma); mutex_unlock(&vgpu->vdev.cache_lock); } } static void gvt_cache_init(struct intel_vgpu *vgpu) { vgpu->vdev.gfn_cache = RB_ROOT; vgpu->vdev.dma_addr_cache = RB_ROOT; vgpu->vdev.nr_cache_entries = 0; mutex_init(&vgpu->vdev.cache_lock); } static void kvmgt_protect_table_init(struct kvmgt_guest_info *info) { hash_init(info->ptable); } static void kvmgt_protect_table_destroy(struct kvmgt_guest_info *info) { struct kvmgt_pgfn *p; struct hlist_node *tmp; int i; hash_for_each_safe(info->ptable, i, tmp, p, hnode) { hash_del(&p->hnode); kfree(p); } } static struct kvmgt_pgfn * __kvmgt_protect_table_find(struct kvmgt_guest_info *info, gfn_t gfn) { struct kvmgt_pgfn *p, *res = NULL; hash_for_each_possible(info->ptable, p, hnode, gfn) { if (gfn == p->gfn) { res = p; break; } } return res; } static bool kvmgt_gfn_is_write_protected(struct kvmgt_guest_info *info, gfn_t gfn) { struct kvmgt_pgfn *p; p = __kvmgt_protect_table_find(info, gfn); return !!p; } static void kvmgt_protect_table_add(struct kvmgt_guest_info *info, gfn_t gfn) { struct kvmgt_pgfn *p; if (kvmgt_gfn_is_write_protected(info, gfn)) return; p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC); if (WARN(!p, "gfn: 0x%llx\n", gfn)) return; p->gfn = gfn; hash_add(info->ptable, &p->hnode, gfn); } static void kvmgt_protect_table_del(struct kvmgt_guest_info *info, gfn_t gfn) { struct kvmgt_pgfn *p; p = __kvmgt_protect_table_find(info, gfn); if (p) { hash_del(&p->hnode); kfree(p); } } static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf, size_t count, loff_t *ppos, bool iswrite) { unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS; void *base = vgpu->vdev.region[i].data; loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK; if (pos >= vgpu->vdev.region[i].size || iswrite) { gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n"); return -EINVAL; } count = min(count, (size_t)(vgpu->vdev.region[i].size - pos)); memcpy(buf, base + pos, count); return count; } static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu, struct vfio_region *region) { } static const struct intel_vgpu_regops intel_vgpu_regops_opregion = { .rw = intel_vgpu_reg_rw_opregion, .release = intel_vgpu_reg_release_opregion, }; static int intel_vgpu_register_reg(struct intel_vgpu *vgpu, unsigned int type, unsigned int subtype, const struct intel_vgpu_regops *ops, size_t size, u32 flags, void *data) { struct vfio_region *region; region = krealloc(vgpu->vdev.region, (vgpu->vdev.num_regions + 1) * sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; vgpu->vdev.region = region; vgpu->vdev.region[vgpu->vdev.num_regions].type = type; vgpu->vdev.region[vgpu->vdev.num_regions].subtype = subtype; vgpu->vdev.region[vgpu->vdev.num_regions].ops = ops; vgpu->vdev.region[vgpu->vdev.num_regions].size = size; vgpu->vdev.region[vgpu->vdev.num_regions].flags = flags; vgpu->vdev.region[vgpu->vdev.num_regions].data = data; vgpu->vdev.num_regions++; return 0; } static int kvmgt_get_vfio_device(void *p_vgpu) { struct intel_vgpu *vgpu = (struct intel_vgpu *)p_vgpu; vgpu->vdev.vfio_device = vfio_device_get_from_dev( mdev_dev(vgpu->vdev.mdev)); if (!vgpu->vdev.vfio_device) { gvt_vgpu_err("failed to get vfio device\n"); return -ENODEV; } return 0; } static int kvmgt_set_opregion(void *p_vgpu) { struct intel_vgpu *vgpu = (struct intel_vgpu *)p_vgpu; void *base; int ret; /* Each vgpu has its own opregion, although VFIO would create another * one later. This one is used to expose opregion to VFIO. And the * other one created by VFIO later, is used by guest actually. */ base = vgpu_opregion(vgpu)->va; if (!base) return -ENOMEM; if (memcmp(base, OPREGION_SIGNATURE, 16)) { memunmap(base); return -EINVAL; } ret = intel_vgpu_register_reg(vgpu, PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE, VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &intel_vgpu_regops_opregion, OPREGION_SIZE, VFIO_REGION_INFO_FLAG_READ, base); return ret; } static void kvmgt_put_vfio_device(void *vgpu) { if (WARN_ON(!((struct intel_vgpu *)vgpu)->vdev.vfio_device)) return; vfio_device_put(((struct intel_vgpu *)vgpu)->vdev.vfio_device); } static int intel_vgpu_create(struct kobject *kobj, struct mdev_device *mdev) { struct intel_vgpu *vgpu = NULL; struct intel_vgpu_type *type; struct device *pdev; void *gvt; int ret; pdev = mdev_parent_dev(mdev); gvt = kdev_to_i915(pdev)->gvt; type = intel_gvt_ops->gvt_find_vgpu_type(gvt, kobject_name(kobj)); if (!type) { gvt_vgpu_err("failed to find type %s to create\n", kobject_name(kobj)); ret = -EINVAL; goto out; } vgpu = intel_gvt_ops->vgpu_create(gvt, type); if (IS_ERR_OR_NULL(vgpu)) { ret = vgpu == NULL ? -EFAULT : PTR_ERR(vgpu); gvt_err("failed to create intel vgpu: %d\n", ret); goto out; } INIT_WORK(&vgpu->vdev.release_work, intel_vgpu_release_work); vgpu->vdev.mdev = mdev; mdev_set_drvdata(mdev, vgpu); gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n", dev_name(mdev_dev(mdev))); ret = 0; out: return ret; } static int intel_vgpu_remove(struct mdev_device *mdev) { struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); if (handle_valid(vgpu->handle)) return -EBUSY; intel_gvt_ops->vgpu_destroy(vgpu); return 0; } static int intel_vgpu_iommu_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct intel_vgpu *vgpu = container_of(nb, struct intel_vgpu, vdev.iommu_notifier); if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) { struct vfio_iommu_type1_dma_unmap *unmap = data; struct gvt_dma *entry; unsigned long iov_pfn, end_iov_pfn; iov_pfn = unmap->iova >> PAGE_SHIFT; end_iov_pfn = iov_pfn + unmap->size / PAGE_SIZE; mutex_lock(&vgpu->vdev.cache_lock); for (; iov_pfn < end_iov_pfn; iov_pfn++) { entry = __gvt_cache_find_gfn(vgpu, iov_pfn); if (!entry) continue; gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr, entry->size); __gvt_cache_remove_entry(vgpu, entry); } mutex_unlock(&vgpu->vdev.cache_lock); } return NOTIFY_OK; } static int intel_vgpu_group_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct intel_vgpu *vgpu = container_of(nb, struct intel_vgpu, vdev.group_notifier); /* the only action we care about */ if (action == VFIO_GROUP_NOTIFY_SET_KVM) { vgpu->vdev.kvm = data; if (!data) schedule_work(&vgpu->vdev.release_work); } return NOTIFY_OK; } static int intel_vgpu_open(struct mdev_device *mdev) { struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); unsigned long events; int ret; vgpu->vdev.iommu_notifier.notifier_call = intel_vgpu_iommu_notifier; vgpu->vdev.group_notifier.notifier_call = intel_vgpu_group_notifier; events = VFIO_IOMMU_NOTIFY_DMA_UNMAP; ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY, &events, &vgpu->vdev.iommu_notifier); if (ret != 0) { gvt_vgpu_err("vfio_register_notifier for iommu failed: %d\n", ret); goto out; } events = VFIO_GROUP_NOTIFY_SET_KVM; ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY, &events, &vgpu->vdev.group_notifier); if (ret != 0) { gvt_vgpu_err("vfio_register_notifier for group failed: %d\n", ret); goto undo_iommu; } ret = kvmgt_guest_init(mdev); if (ret) goto undo_group; intel_gvt_ops->vgpu_activate(vgpu); atomic_set(&vgpu->vdev.released, 0); return ret; undo_group: vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY, &vgpu->vdev.group_notifier); undo_iommu: vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY, &vgpu->vdev.iommu_notifier); out: return ret; } static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu) { struct eventfd_ctx *trigger; trigger = vgpu->vdev.msi_trigger; if (trigger) { eventfd_ctx_put(trigger); vgpu->vdev.msi_trigger = NULL; } } static void __intel_vgpu_release(struct intel_vgpu *vgpu) { struct kvmgt_guest_info *info; int ret; if (!handle_valid(vgpu->handle)) return; if (atomic_cmpxchg(&vgpu->vdev.released, 0, 1)) return; intel_gvt_ops->vgpu_release(vgpu); ret = vfio_unregister_notifier(mdev_dev(vgpu->vdev.mdev), VFIO_IOMMU_NOTIFY, &vgpu->vdev.iommu_notifier); WARN(ret, "vfio_unregister_notifier for iommu failed: %d\n", ret); ret = vfio_unregister_notifier(mdev_dev(vgpu->vdev.mdev), VFIO_GROUP_NOTIFY, &vgpu->vdev.group_notifier); WARN(ret, "vfio_unregister_notifier for group failed: %d\n", ret); info = (struct kvmgt_guest_info *)vgpu->handle; kvmgt_guest_exit(info); intel_vgpu_release_msi_eventfd_ctx(vgpu); vgpu->vdev.kvm = NULL; vgpu->handle = 0; } static void intel_vgpu_release(struct mdev_device *mdev) { struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); __intel_vgpu_release(vgpu); } static void intel_vgpu_release_work(struct work_struct *work) { struct intel_vgpu *vgpu = container_of(work, struct intel_vgpu, vdev.release_work); __intel_vgpu_release(vgpu); } static uint64_t intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar) { u32 start_lo, start_hi; u32 mem_type; start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) & PCI_BASE_ADDRESS_MEM_MASK; mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_64: start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar + 4)); break; case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: /* 1M mem BAR treated as 32-bit BAR */ default: /* mem unknown type treated as 32-bit BAR */ start_hi = 0; break; } return ((u64)start_hi << 32) | start_lo; } static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, uint64_t off, void *buf, unsigned int count, bool is_write) { uint64_t bar_start = intel_vgpu_get_bar_addr(vgpu, bar); int ret; if (is_write) ret = intel_gvt_ops->emulate_mmio_write(vgpu, bar_start + off, buf, count); else ret = intel_gvt_ops->emulate_mmio_read(vgpu, bar_start + off, buf, count); return ret; } static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, uint64_t off) { return off >= vgpu_aperture_offset(vgpu) && off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu); } static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, uint64_t off, void *buf, unsigned long count, bool is_write) { void *aperture_va; if (!intel_vgpu_in_aperture(vgpu, off) || !intel_vgpu_in_aperture(vgpu, off + count)) { gvt_vgpu_err("Invalid aperture offset %llu\n", off); return -EINVAL; } aperture_va = io_mapping_map_wc(&vgpu->gvt->dev_priv->ggtt.iomap, ALIGN_DOWN(off, PAGE_SIZE), count + offset_in_page(off)); if (!aperture_va) return -EIO; if (is_write) memcpy(aperture_va + offset_in_page(off), buf, count); else memcpy(buf, aperture_va + offset_in_page(off), count); io_mapping_unmap(aperture_va); return 0; } static ssize_t intel_vgpu_rw(struct mdev_device *mdev, char *buf, size_t count, loff_t *ppos, bool is_write) { struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); uint64_t pos = *ppos & VFIO_PCI_OFFSET_MASK; int ret = -EINVAL; if (index >= VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions) { gvt_vgpu_err("invalid index: %u\n", index); return -EINVAL; } switch (index) { case VFIO_PCI_CONFIG_REGION_INDEX: if (is_write) ret = intel_gvt_ops->emulate_cfg_write(vgpu, pos, buf, count); else ret = intel_gvt_ops->emulate_cfg_read(vgpu, pos, buf, count); break; case VFIO_PCI_BAR0_REGION_INDEX: ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos, buf, count, is_write); break; case VFIO_PCI_BAR2_REGION_INDEX: ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write); break; case VFIO_PCI_BAR1_REGION_INDEX: case VFIO_PCI_BAR3_REGION_INDEX: case VFIO_PCI_BAR4_REGION_INDEX: case VFIO_PCI_BAR5_REGION_INDEX: case VFIO_PCI_VGA_REGION_INDEX: case VFIO_PCI_ROM_REGION_INDEX: break; default: if (index >= VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions) return -EINVAL; index -= VFIO_PCI_NUM_REGIONS; return vgpu->vdev.region[index].ops->rw(vgpu, buf, count, ppos, is_write); } return ret == 0 ? count : ret; } static bool gtt_entry(struct mdev_device *mdev, loff_t *ppos) { struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); struct intel_gvt *gvt = vgpu->gvt; int offset; /* Only allow MMIO GGTT entry access */ if (index != PCI_BASE_ADDRESS_0) return false; offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) - intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0); return (offset >= gvt->device_info.gtt_start_offset && offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ? true : false; } static ssize_t intel_vgpu_read(struct mdev_device *mdev, char __user *buf, size_t count, loff_t *ppos) { unsigned int done = 0; int ret; while (count) { size_t filled; /* Only support GGTT entry 8 bytes read */ if (count >= 8 && !(*ppos % 8) && gtt_entry(mdev, ppos)) { u64 val; ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 8; } else if (count >= 4 && !(*ppos % 4)) { u32 val; ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 4; } else if (count >= 2 && !(*ppos % 2)) { u16 val; ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 2; } else { u8 val; ret = intel_vgpu_rw(mdev, &val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 1; } count -= filled; done += filled; *ppos += filled; buf += filled; } return done; read_err: return -EFAULT; } static ssize_t intel_vgpu_write(struct mdev_device *mdev, const char __user *buf, size_t count, loff_t *ppos) { unsigned int done = 0; int ret; while (count) { size_t filled; /* Only support GGTT entry 8 bytes write */ if (count >= 8 && !(*ppos % 8) && gtt_entry(mdev, ppos)) { u64 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 8; } else if (count >= 4 && !(*ppos % 4)) { u32 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 4; } else if (count >= 2 && !(*ppos % 2)) { u16 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 2; } else { u8 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(mdev, &val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 1; } count -= filled; done += filled; *ppos += filled; buf += filled; } return done; write_err: return -EFAULT; } static int intel_vgpu_mmap(struct mdev_device *mdev, struct vm_area_struct *vma) { unsigned int index; u64 virtaddr; unsigned long req_size, pgoff = 0; pgprot_t pg_prot; struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); if (index >= VFIO_PCI_ROM_REGION_INDEX) return -EINVAL; if (vma->vm_end < vma->vm_start) return -EINVAL; if ((vma->vm_flags & VM_SHARED) == 0) return -EINVAL; if (index != VFIO_PCI_BAR2_REGION_INDEX) return -EINVAL; pg_prot = vma->vm_page_prot; virtaddr = vma->vm_start; req_size = vma->vm_end - vma->vm_start; pgoff = vgpu_aperture_pa_base(vgpu) >> PAGE_SHIFT; return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot); } static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type) { if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX) return 1; return 0; } static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, uint32_t flags, void *data) { return 0; } static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, uint32_t flags, void *data) { return 0; } static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, uint32_t flags, void *data) { return 0; } static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, uint32_t flags, void *data) { struct eventfd_ctx *trigger; if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { int fd = *(int *)data; trigger = eventfd_ctx_fdget(fd); if (IS_ERR(trigger)) { gvt_vgpu_err("eventfd_ctx_fdget failed\n"); return PTR_ERR(trigger); } vgpu->vdev.msi_trigger = trigger; } else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count) intel_vgpu_release_msi_eventfd_ctx(vgpu); return 0; } static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, uint32_t flags, unsigned int index, unsigned int start, unsigned int count, void *data) { int (*func)(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, uint32_t flags, void *data) = NULL; switch (index) { case VFIO_PCI_INTX_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_MASK: func = intel_vgpu_set_intx_mask; break; case VFIO_IRQ_SET_ACTION_UNMASK: func = intel_vgpu_set_intx_unmask; break; case VFIO_IRQ_SET_ACTION_TRIGGER: func = intel_vgpu_set_intx_trigger; break; } break; case VFIO_PCI_MSI_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_MASK: case VFIO_IRQ_SET_ACTION_UNMASK: /* XXX Need masking support exported */ break; case VFIO_IRQ_SET_ACTION_TRIGGER: func = intel_vgpu_set_msi_trigger; break; } break; } if (!func) return -ENOTTY; return func(vgpu, index, start, count, flags, data); } static long intel_vgpu_ioctl(struct mdev_device *mdev, unsigned int cmd, unsigned long arg) { struct intel_vgpu *vgpu = mdev_get_drvdata(mdev); unsigned long minsz; gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd); if (cmd == VFIO_DEVICE_GET_INFO) { struct vfio_device_info info; minsz = offsetofend(struct vfio_device_info, num_irqs); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; info.flags = VFIO_DEVICE_FLAGS_PCI; info.flags |= VFIO_DEVICE_FLAGS_RESET; info.num_regions = VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions; info.num_irqs = VFIO_PCI_NUM_IRQS; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_GET_REGION_INFO) { struct vfio_region_info info; struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; unsigned int i; int ret; struct vfio_region_info_cap_sparse_mmap *sparse = NULL; size_t size; int nr_areas = 1; int cap_type_id; minsz = offsetofend(struct vfio_region_info, offset); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; switch (info.index) { case VFIO_PCI_CONFIG_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = vgpu->gvt->device_info.cfg_space_size; info.flags = VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; break; case VFIO_PCI_BAR0_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = vgpu->cfg_space.bar[info.index].size; if (!info.size) { info.flags = 0; break; } info.flags = VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; break; case VFIO_PCI_BAR1_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = 0; info.flags = 0; break; case VFIO_PCI_BAR2_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.flags = VFIO_REGION_INFO_FLAG_CAPS | VFIO_REGION_INFO_FLAG_MMAP | VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; info.size = gvt_aperture_sz(vgpu->gvt); size = sizeof(*sparse) + (nr_areas * sizeof(*sparse->areas)); sparse = kzalloc(size, GFP_KERNEL); if (!sparse) return -ENOMEM; sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; sparse->header.version = 1; sparse->nr_areas = nr_areas; cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; sparse->areas[0].offset = PAGE_ALIGN(vgpu_aperture_offset(vgpu)); sparse->areas[0].size = vgpu_aperture_sz(vgpu); break; case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = 0; info.flags = 0; gvt_dbg_core("get region info bar:%d\n", info.index); break; case VFIO_PCI_ROM_REGION_INDEX: case VFIO_PCI_VGA_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = 0; info.flags = 0; gvt_dbg_core("get region info index:%d\n", info.index); break; default: { struct vfio_region_info_cap_type cap_type = { .header.id = VFIO_REGION_INFO_CAP_TYPE, .header.version = 1 }; if (info.index >= VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions) return -EINVAL; info.index = array_index_nospec(info.index, VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions); i = info.index - VFIO_PCI_NUM_REGIONS; info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = vgpu->vdev.region[i].size; info.flags = vgpu->vdev.region[i].flags; cap_type.type = vgpu->vdev.region[i].type; cap_type.subtype = vgpu->vdev.region[i].subtype; ret = vfio_info_add_capability(&caps, &cap_type.header, sizeof(cap_type)); if (ret) return ret; } } if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) { switch (cap_type_id) { case VFIO_REGION_INFO_CAP_SPARSE_MMAP: ret = vfio_info_add_capability(&caps, &sparse->header, sizeof(*sparse) + (sparse->nr_areas * sizeof(*sparse->areas))); if (ret) { kfree(sparse); return ret; } break; default: kfree(sparse); return -EINVAL; } } if (caps.size) { info.flags |= VFIO_REGION_INFO_FLAG_CAPS; if (info.argsz < sizeof(info) + caps.size) { info.argsz = sizeof(info) + caps.size; info.cap_offset = 0; } else { vfio_info_cap_shift(&caps, sizeof(info)); if (copy_to_user((void __user *)arg + sizeof(info), caps.buf, caps.size)) { kfree(caps.buf); kfree(sparse); return -EFAULT; } info.cap_offset = sizeof(info); } kfree(caps.buf); } kfree(sparse); return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) { struct vfio_irq_info info; minsz = offsetofend(struct vfio_irq_info, count); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) return -EINVAL; switch (info.index) { case VFIO_PCI_INTX_IRQ_INDEX: case VFIO_PCI_MSI_IRQ_INDEX: break; default: return -EINVAL; } info.flags = VFIO_IRQ_INFO_EVENTFD; info.count = intel_vgpu_get_irq_count(vgpu, info.index); if (info.index == VFIO_PCI_INTX_IRQ_INDEX) info.flags |= (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); else info.flags |= VFIO_IRQ_INFO_NORESIZE; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_SET_IRQS) { struct vfio_irq_set hdr; u8 *data = NULL; int ret = 0; size_t data_size = 0; minsz = offsetofend(struct vfio_irq_set, count); if (copy_from_user(&hdr, (void __user *)arg, minsz)) return -EFAULT; if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) { int max = intel_vgpu_get_irq_count(vgpu, hdr.index); ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, &data_size); if (ret) { gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n"); return -EINVAL; } if (data_size) { data = memdup_user((void __user *)(arg + minsz), data_size); if (IS_ERR(data)) return PTR_ERR(data); } } ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index, hdr.start, hdr.count, data); kfree(data); return ret; } else if (cmd == VFIO_DEVICE_RESET) { intel_gvt_ops->vgpu_reset(vgpu); return 0; } else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) { struct vfio_device_gfx_plane_info dmabuf; int ret = 0; minsz = offsetofend(struct vfio_device_gfx_plane_info, dmabuf_id); if (copy_from_user(&dmabuf, (void __user *)arg, minsz)) return -EFAULT; if (dmabuf.argsz < minsz) return -EINVAL; ret = intel_gvt_ops->vgpu_query_plane(vgpu, &dmabuf); if (ret != 0) return ret; return copy_to_user((void __user *)arg, &dmabuf, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) { __u32 dmabuf_id; __s32 dmabuf_fd; if (get_user(dmabuf_id, (__u32 __user *)arg)) return -EFAULT; dmabuf_fd = intel_gvt_ops->vgpu_get_dmabuf(vgpu, dmabuf_id); return dmabuf_fd; } return -ENOTTY; } static ssize_t vgpu_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mdev_device *mdev = mdev_from_dev(dev); if (mdev) { struct intel_vgpu *vgpu = (struct intel_vgpu *) mdev_get_drvdata(mdev); return sprintf(buf, "%d\n", vgpu->id); } return sprintf(buf, "\n"); } static ssize_t hw_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mdev_device *mdev = mdev_from_dev(dev); if (mdev) { struct intel_vgpu *vgpu = (struct intel_vgpu *) mdev_get_drvdata(mdev); return sprintf(buf, "%u\n", vgpu->submission.shadow_ctx->hw_id); } return sprintf(buf, "\n"); } static DEVICE_ATTR_RO(vgpu_id); static DEVICE_ATTR_RO(hw_id); static struct attribute *intel_vgpu_attrs[] = { &dev_attr_vgpu_id.attr, &dev_attr_hw_id.attr, NULL }; static const struct attribute_group intel_vgpu_group = { .name = "intel_vgpu", .attrs = intel_vgpu_attrs, }; static const struct attribute_group *intel_vgpu_groups[] = { &intel_vgpu_group, NULL, }; static struct mdev_parent_ops intel_vgpu_ops = { .mdev_attr_groups = intel_vgpu_groups, .create = intel_vgpu_create, .remove = intel_vgpu_remove, .open = intel_vgpu_open, .release = intel_vgpu_release, .read = intel_vgpu_read, .write = intel_vgpu_write, .mmap = intel_vgpu_mmap, .ioctl = intel_vgpu_ioctl, }; static int kvmgt_host_init(struct device *dev, void *gvt, const void *ops) { struct attribute **kvm_type_attrs; struct attribute_group **kvm_vgpu_type_groups; intel_gvt_ops = ops; if (!intel_gvt_ops->get_gvt_attrs(&kvm_type_attrs, &kvm_vgpu_type_groups)) return -EFAULT; intel_vgpu_ops.supported_type_groups = kvm_vgpu_type_groups; return mdev_register_device(dev, &intel_vgpu_ops); } static void kvmgt_host_exit(struct device *dev, void *gvt) { mdev_unregister_device(dev); } static int kvmgt_page_track_add(unsigned long handle, u64 gfn) { struct kvmgt_guest_info *info; struct kvm *kvm; struct kvm_memory_slot *slot; int idx; if (!handle_valid(handle)) return -ESRCH; info = (struct kvmgt_guest_info *)handle; kvm = info->kvm; idx = srcu_read_lock(&kvm->srcu); slot = gfn_to_memslot(kvm, gfn); if (!slot) { srcu_read_unlock(&kvm->srcu, idx); return -EINVAL; } spin_lock(&kvm->mmu_lock); if (kvmgt_gfn_is_write_protected(info, gfn)) goto out; kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE); kvmgt_protect_table_add(info, gfn); out: spin_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, idx); return 0; } static int kvmgt_page_track_remove(unsigned long handle, u64 gfn) { struct kvmgt_guest_info *info; struct kvm *kvm; struct kvm_memory_slot *slot; int idx; if (!handle_valid(handle)) return 0; info = (struct kvmgt_guest_info *)handle; kvm = info->kvm; idx = srcu_read_lock(&kvm->srcu); slot = gfn_to_memslot(kvm, gfn); if (!slot) { srcu_read_unlock(&kvm->srcu, idx); return -EINVAL; } spin_lock(&kvm->mmu_lock); if (!kvmgt_gfn_is_write_protected(info, gfn)) goto out; kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE); kvmgt_protect_table_del(info, gfn); out: spin_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, idx); return 0; } static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *val, int len, struct kvm_page_track_notifier_node *node) { struct kvmgt_guest_info *info = container_of(node, struct kvmgt_guest_info, track_node); if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa))) intel_gvt_ops->write_protect_handler(info->vgpu, gpa, (void *)val, len); } static void kvmgt_page_track_flush_slot(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_page_track_notifier_node *node) { int i; gfn_t gfn; struct kvmgt_guest_info *info = container_of(node, struct kvmgt_guest_info, track_node); spin_lock(&kvm->mmu_lock); for (i = 0; i < slot->npages; i++) { gfn = slot->base_gfn + i; if (kvmgt_gfn_is_write_protected(info, gfn)) { kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE); kvmgt_protect_table_del(info, gfn); } } spin_unlock(&kvm->mmu_lock); } static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu, struct kvm *kvm) { struct intel_vgpu *itr; struct kvmgt_guest_info *info; int id; bool ret = false; mutex_lock(&vgpu->gvt->lock); for_each_active_vgpu(vgpu->gvt, itr, id) { if (!handle_valid(itr->handle)) continue; info = (struct kvmgt_guest_info *)itr->handle; if (kvm && kvm == info->kvm) { ret = true; goto out; } } out: mutex_unlock(&vgpu->gvt->lock); return ret; } static int kvmgt_guest_init(struct mdev_device *mdev) { struct kvmgt_guest_info *info; struct intel_vgpu *vgpu; struct kvm *kvm; vgpu = mdev_get_drvdata(mdev); if (handle_valid(vgpu->handle)) return -EEXIST; kvm = vgpu->vdev.kvm; if (!kvm || kvm->mm != current->mm) { gvt_vgpu_err("KVM is required to use Intel vGPU\n"); return -ESRCH; } if (__kvmgt_vgpu_exist(vgpu, kvm)) return -EEXIST; info = vzalloc(sizeof(struct kvmgt_guest_info)); if (!info) return -ENOMEM; vgpu->handle = (unsigned long)info; info->vgpu = vgpu; info->kvm = kvm; kvm_get_kvm(info->kvm); kvmgt_protect_table_init(info); gvt_cache_init(vgpu); init_completion(&vgpu->vblank_done); info->track_node.track_write = kvmgt_page_track_write; info->track_node.track_flush_slot = kvmgt_page_track_flush_slot; kvm_page_track_register_notifier(kvm, &info->track_node); info->debugfs_cache_entries = debugfs_create_ulong( "kvmgt_nr_cache_entries", 0444, vgpu->debugfs, &vgpu->vdev.nr_cache_entries); if (!info->debugfs_cache_entries) gvt_vgpu_err("Cannot create kvmgt debugfs entry\n"); return 0; } static bool kvmgt_guest_exit(struct kvmgt_guest_info *info) { debugfs_remove(info->debugfs_cache_entries); kvm_page_track_unregister_notifier(info->kvm, &info->track_node); kvm_put_kvm(info->kvm); kvmgt_protect_table_destroy(info); gvt_cache_destroy(info->vgpu); vfree(info); return true; } static int kvmgt_attach_vgpu(void *vgpu, unsigned long *handle) { /* nothing to do here */ return 0; } static void kvmgt_detach_vgpu(unsigned long handle) { /* nothing to do here */ } static int kvmgt_inject_msi(unsigned long handle, u32 addr, u16 data) { struct kvmgt_guest_info *info; struct intel_vgpu *vgpu; if (!handle_valid(handle)) return -ESRCH; info = (struct kvmgt_guest_info *)handle; vgpu = info->vgpu; /* * When guest is poweroff, msi_trigger is set to NULL, but vgpu's * config and mmio register isn't restored to default during guest * poweroff. If this vgpu is still used in next vm, this vgpu's pipe * may be enabled, then once this vgpu is active, it will get inject * vblank interrupt request. But msi_trigger is null until msi is * enabled by guest. so if msi_trigger is null, success is still * returned and don't inject interrupt into guest. */ if (vgpu->vdev.msi_trigger == NULL) return 0; if (eventfd_signal(vgpu->vdev.msi_trigger, 1) == 1) return 0; return -EFAULT; } static unsigned long kvmgt_gfn_to_pfn(unsigned long handle, unsigned long gfn) { struct kvmgt_guest_info *info; kvm_pfn_t pfn; if (!handle_valid(handle)) return INTEL_GVT_INVALID_ADDR; info = (struct kvmgt_guest_info *)handle; pfn = gfn_to_pfn(info->kvm, gfn); if (is_error_noslot_pfn(pfn)) return INTEL_GVT_INVALID_ADDR; return pfn; } int kvmgt_dma_map_guest_page(unsigned long handle, unsigned long gfn, unsigned long size, dma_addr_t *dma_addr) { struct kvmgt_guest_info *info; struct intel_vgpu *vgpu; struct gvt_dma *entry; int ret; if (!handle_valid(handle)) return -EINVAL; info = (struct kvmgt_guest_info *)handle; vgpu = info->vgpu; mutex_lock(&info->vgpu->vdev.cache_lock); entry = __gvt_cache_find_gfn(info->vgpu, gfn); if (!entry) { ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size); if (ret) goto err_unlock; ret = __gvt_cache_add(info->vgpu, gfn, *dma_addr, size); if (ret) goto err_unmap; } else { kref_get(&entry->ref); *dma_addr = entry->dma_addr; } mutex_unlock(&info->vgpu->vdev.cache_lock); return 0; err_unmap: gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size); err_unlock: mutex_unlock(&info->vgpu->vdev.cache_lock); return ret; } static void __gvt_dma_release(struct kref *ref) { struct gvt_dma *entry = container_of(ref, typeof(*entry), ref); gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr, entry->size); __gvt_cache_remove_entry(entry->vgpu, entry); } void kvmgt_dma_unmap_guest_page(unsigned long handle, dma_addr_t dma_addr) { struct kvmgt_guest_info *info; struct gvt_dma *entry; if (!handle_valid(handle)) return; info = (struct kvmgt_guest_info *)handle; mutex_lock(&info->vgpu->vdev.cache_lock); entry = __gvt_cache_find_dma_addr(info->vgpu, dma_addr); if (entry) kref_put(&entry->ref, __gvt_dma_release); mutex_unlock(&info->vgpu->vdev.cache_lock); } static int kvmgt_rw_gpa(unsigned long handle, unsigned long gpa, void *buf, unsigned long len, bool write) { struct kvmgt_guest_info *info; struct kvm *kvm; int idx, ret; bool kthread = current->mm == NULL; if (!handle_valid(handle)) return -ESRCH; info = (struct kvmgt_guest_info *)handle; kvm = info->kvm; if (kthread) { if (!mmget_not_zero(kvm->mm)) return -EFAULT; use_mm(kvm->mm); } idx = srcu_read_lock(&kvm->srcu); ret = write ? kvm_write_guest(kvm, gpa, buf, len) : kvm_read_guest(kvm, gpa, buf, len); srcu_read_unlock(&kvm->srcu, idx); if (kthread) { unuse_mm(kvm->mm); mmput(kvm->mm); } return ret; } static int kvmgt_read_gpa(unsigned long handle, unsigned long gpa, void *buf, unsigned long len) { return kvmgt_rw_gpa(handle, gpa, buf, len, false); } static int kvmgt_write_gpa(unsigned long handle, unsigned long gpa, void *buf, unsigned long len) { return kvmgt_rw_gpa(handle, gpa, buf, len, true); } static unsigned long kvmgt_virt_to_pfn(void *addr) { return PFN_DOWN(__pa(addr)); } static bool kvmgt_is_valid_gfn(unsigned long handle, unsigned long gfn) { struct kvmgt_guest_info *info; struct kvm *kvm; if (!handle_valid(handle)) return false; info = (struct kvmgt_guest_info *)handle; kvm = info->kvm; return kvm_is_visible_gfn(kvm, gfn); } struct intel_gvt_mpt kvmgt_mpt = { .host_init = kvmgt_host_init, .host_exit = kvmgt_host_exit, .attach_vgpu = kvmgt_attach_vgpu, .detach_vgpu = kvmgt_detach_vgpu, .inject_msi = kvmgt_inject_msi, .from_virt_to_mfn = kvmgt_virt_to_pfn, .enable_page_track = kvmgt_page_track_add, .disable_page_track = kvmgt_page_track_remove, .read_gpa = kvmgt_read_gpa, .write_gpa = kvmgt_write_gpa, .gfn_to_mfn = kvmgt_gfn_to_pfn, .dma_map_guest_page = kvmgt_dma_map_guest_page, .dma_unmap_guest_page = kvmgt_dma_unmap_guest_page, .set_opregion = kvmgt_set_opregion, .get_vfio_device = kvmgt_get_vfio_device, .put_vfio_device = kvmgt_put_vfio_device, .is_valid_gfn = kvmgt_is_valid_gfn, }; EXPORT_SYMBOL_GPL(kvmgt_mpt); static int __init kvmgt_init(void) { return 0; } static void __exit kvmgt_exit(void) { } module_init(kvmgt_init); module_exit(kvmgt_exit); MODULE_LICENSE("GPL and additional rights"); MODULE_AUTHOR("Intel Corporation");