// SPDX-License-Identifier: MIT /* * Copyright(c) 2020 Intel Corporation. */ #include #include "gem/i915_gem_context.h" #include "gt/intel_context.h" #include "gt/intel_gt.h" #include "i915_drv.h" #include "intel_pxp.h" #include "intel_pxp_gsccs.h" #include "intel_pxp_irq.h" #include "intel_pxp_regs.h" #include "intel_pxp_session.h" #include "intel_pxp_tee.h" #include "intel_pxp_types.h" /** * DOC: PXP * * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms. * It allows execution and flip to display of protected (i.e. encrypted) * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig. * * Objects can opt-in to PXP encryption at creation time via the * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be * correctly protected they must be used in conjunction with a context created * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation * of those two uapi flags for details and restrictions. * * Protected objects are tied to a pxp session; currently we only support one * session, which i915 manages and whose index is available in the uapi * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting * protected objects. * The session is invalidated by the HW when certain events occur (e.g. * suspend/resume). When this happens, all the objects that were used with the * session are marked as invalid and all contexts marked as using protected * content are banned. Any further attempt at using them in an execbuf call is * rejected, while flips are converted to black frames. * * Some of the PXP setup operations are performed by the Management Engine, * which is handled by the mei driver; communication between i915 and mei is * performed via the mei_pxp component module. */ bool intel_pxp_is_supported(const struct intel_pxp *pxp) { return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp; } bool intel_pxp_is_enabled(const struct intel_pxp *pxp) { return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp && pxp->ce; } bool intel_pxp_is_active(const struct intel_pxp *pxp) { return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp && pxp->arb_is_valid; } static void kcr_pxp_set_status(const struct intel_pxp *pxp, bool enable) { u32 val = enable ? _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES) : _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES); intel_uncore_write(pxp->ctrl_gt->uncore, KCR_INIT(pxp->kcr_base), val); } static void kcr_pxp_enable(const struct intel_pxp *pxp) { kcr_pxp_set_status(pxp, true); } static void kcr_pxp_disable(const struct intel_pxp *pxp) { kcr_pxp_set_status(pxp, false); } static int create_vcs_context(struct intel_pxp *pxp) { static struct lock_class_key pxp_lock; struct intel_gt *gt = pxp->ctrl_gt; struct intel_engine_cs *engine; struct intel_context *ce; int i; /* * Find the first VCS engine present. We're guaranteed there is one * if we're in this function due to the check in has_pxp */ for (i = 0, engine = NULL; !engine; i++) engine = gt->engine_class[VIDEO_DECODE_CLASS][i]; GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS); ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, I915_GEM_HWS_PXP_ADDR, &pxp_lock, "pxp_context"); if (IS_ERR(ce)) { drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n"); return PTR_ERR(ce); } pxp->ce = ce; return 0; } static void destroy_vcs_context(struct intel_pxp *pxp) { if (pxp->ce) intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce)); } static void pxp_init_full(struct intel_pxp *pxp) { struct intel_gt *gt = pxp->ctrl_gt; int ret; /* * we'll use the completion to check if there is a termination pending, * so we start it as completed and we reinit it when a termination * is triggered. */ init_completion(&pxp->termination); complete_all(&pxp->termination); if (pxp->ctrl_gt->type == GT_MEDIA) pxp->kcr_base = MTL_KCR_BASE; else pxp->kcr_base = GEN12_KCR_BASE; intel_pxp_session_management_init(pxp); ret = create_vcs_context(pxp); if (ret) return; if (HAS_ENGINE(pxp->ctrl_gt, GSC0)) ret = intel_pxp_gsccs_init(pxp); else ret = intel_pxp_tee_component_init(pxp); if (ret) goto out_context; drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n"); return; out_context: destroy_vcs_context(pxp); } static struct intel_gt *find_gt_for_required_teelink(struct drm_i915_private *i915) { /* * NOTE: Only certain platforms require PXP-tee-backend dependencies * for HuC authentication. For now, its limited to DG2. */ if (IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC) && intel_huc_is_loaded_by_gsc(&i915->gt0.uc.huc) && intel_uc_uses_huc(&i915->gt0.uc)) return &i915->gt0; return NULL; } static struct intel_gt *find_gt_for_required_protected_content(struct drm_i915_private *i915) { if (!IS_ENABLED(CONFIG_DRM_I915_PXP) || !INTEL_INFO(i915)->has_pxp) return NULL; /* * For MTL onwards, PXP-controller-GT needs to have a valid GSC engine * on the media GT. NOTE: if we have a media-tile with a GSC-engine, * the VDBOX is already present so skip that check. We also have to * ensure the GSC and HUC firmware are coming online */ if (i915->media_gt && HAS_ENGINE(i915->media_gt, GSC0) && intel_uc_fw_is_loadable(&i915->media_gt->uc.gsc.fw) && intel_uc_fw_is_loadable(&i915->media_gt->uc.huc.fw)) return i915->media_gt; /* * Else we rely on mei-pxp module but only on legacy platforms * prior to having separate media GTs and has a valid VDBOX. */ if (IS_ENABLED(CONFIG_INTEL_MEI_PXP) && !i915->media_gt && VDBOX_MASK(&i915->gt0)) return &i915->gt0; return NULL; } int intel_pxp_init(struct drm_i915_private *i915) { struct intel_gt *gt; bool is_full_feature = false; /* * NOTE: Get the ctrl_gt before checking intel_pxp_is_supported since * we still need it if PXP's backend tee transport is needed. */ gt = find_gt_for_required_protected_content(i915); if (gt) is_full_feature = true; else gt = find_gt_for_required_teelink(i915); if (!gt) return -ENODEV; /* * At this point, we will either enable full featured PXP capabilities * including session and object management, or we will init the backend tee * channel for internal users such as HuC loading by GSC */ i915->pxp = kzalloc(sizeof(*i915->pxp), GFP_KERNEL); if (!i915->pxp) return -ENOMEM; /* init common info used by all feature-mode usages*/ i915->pxp->ctrl_gt = gt; mutex_init(&i915->pxp->tee_mutex); /* * If full PXP feature is not available but HuC is loaded by GSC on pre-MTL * such as DG2, we can skip the init of the full PXP session/object management * and just init the tee channel. */ if (is_full_feature) pxp_init_full(i915->pxp); else intel_pxp_tee_component_init(i915->pxp); return 0; } void intel_pxp_fini(struct drm_i915_private *i915) { if (!i915->pxp) return; i915->pxp->arb_is_valid = false; if (HAS_ENGINE(i915->pxp->ctrl_gt, GSC0)) intel_pxp_gsccs_fini(i915->pxp); else intel_pxp_tee_component_fini(i915->pxp); destroy_vcs_context(i915->pxp); kfree(i915->pxp); i915->pxp = NULL; } void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp) { pxp->arb_is_valid = false; reinit_completion(&pxp->termination); } static void pxp_queue_termination(struct intel_pxp *pxp) { struct intel_gt *gt = pxp->ctrl_gt; /* * We want to get the same effect as if we received a termination * interrupt, so just pretend that we did. */ spin_lock_irq(gt->irq_lock); intel_pxp_mark_termination_in_progress(pxp); pxp->session_events |= PXP_TERMINATION_REQUEST; queue_work(system_unbound_wq, &pxp->session_work); spin_unlock_irq(gt->irq_lock); } static bool pxp_component_bound(struct intel_pxp *pxp) { bool bound = false; mutex_lock(&pxp->tee_mutex); if (pxp->pxp_component) bound = true; mutex_unlock(&pxp->tee_mutex); return bound; } static int __pxp_global_teardown_final(struct intel_pxp *pxp) { if (!pxp->arb_is_valid) return 0; /* * To ensure synchronous and coherent session teardown completion * in response to suspend or shutdown triggers, don't use a worker. */ intel_pxp_mark_termination_in_progress(pxp); intel_pxp_terminate(pxp, false); if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(250))) return -ETIMEDOUT; return 0; } static int __pxp_global_teardown_restart(struct intel_pxp *pxp) { if (pxp->arb_is_valid) return 0; /* * The arb-session is currently inactive and we are doing a reset and restart * due to a runtime event. Use the worker that was designed for this. */ pxp_queue_termination(pxp); if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(250))) return -ETIMEDOUT; return 0; } void intel_pxp_end(struct intel_pxp *pxp) { struct drm_i915_private *i915 = pxp->ctrl_gt->i915; intel_wakeref_t wakeref; if (!intel_pxp_is_enabled(pxp)) return; wakeref = intel_runtime_pm_get(&i915->runtime_pm); mutex_lock(&pxp->arb_mutex); if (__pxp_global_teardown_final(pxp)) drm_dbg(&i915->drm, "PXP end timed out\n"); mutex_unlock(&pxp->arb_mutex); intel_pxp_fini_hw(pxp); intel_runtime_pm_put(&i915->runtime_pm, wakeref); } /* * the arb session is restarted from the irq work when we receive the * termination completion interrupt */ int intel_pxp_start(struct intel_pxp *pxp) { int ret = 0; if (!intel_pxp_is_enabled(pxp)) return -ENODEV; if (wait_for(pxp_component_bound(pxp), 250)) return -ENXIO; mutex_lock(&pxp->arb_mutex); ret = __pxp_global_teardown_restart(pxp); if (ret) goto unlock; /* make sure the compiler doesn't optimize the double access */ barrier(); if (!pxp->arb_is_valid) ret = -EIO; unlock: mutex_unlock(&pxp->arb_mutex); return ret; } void intel_pxp_init_hw(struct intel_pxp *pxp) { kcr_pxp_enable(pxp); intel_pxp_irq_enable(pxp); } void intel_pxp_fini_hw(struct intel_pxp *pxp) { kcr_pxp_disable(pxp); intel_pxp_irq_disable(pxp); } int intel_pxp_key_check(struct intel_pxp *pxp, struct drm_i915_gem_object *obj, bool assign) { if (!intel_pxp_is_active(pxp)) return -ENODEV; if (!i915_gem_object_is_protected(obj)) return -EINVAL; GEM_BUG_ON(!pxp->key_instance); /* * If this is the first time we're using this object, it's not * encrypted yet; it will be encrypted with the current key, so mark it * as such. If the object is already encrypted, check instead if the * used key is still valid. */ if (!obj->pxp_key_instance && assign) obj->pxp_key_instance = pxp->key_instance; if (obj->pxp_key_instance != pxp->key_instance) return -ENOEXEC; return 0; } void intel_pxp_invalidate(struct intel_pxp *pxp) { struct drm_i915_private *i915 = pxp->ctrl_gt->i915; struct i915_gem_context *ctx, *cn; /* ban all contexts marked as protected */ spin_lock_irq(&i915->gem.contexts.lock); list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { struct i915_gem_engines_iter it; struct intel_context *ce; if (!kref_get_unless_zero(&ctx->ref)) continue; if (likely(!i915_gem_context_uses_protected_content(ctx))) { i915_gem_context_put(ctx); continue; } spin_unlock_irq(&i915->gem.contexts.lock); /* * By the time we get here we are either going to suspend with * quiesced execution or the HW keys are already long gone and * in this case it is worthless to attempt to close the context * and wait for its execution. It will hang the GPU if it has * not already. So, as a fast mitigation, we can ban the * context as quick as we can. That might race with the * execbuffer, but currently this is the best that can be done. */ for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) intel_context_ban(ce, NULL); i915_gem_context_unlock_engines(ctx); /* * The context has been banned, no need to keep the wakeref. * This is safe from races because the only other place this * is touched is context_release and we're holding a ctx ref */ if (ctx->pxp_wakeref) { intel_runtime_pm_put(&i915->runtime_pm, ctx->pxp_wakeref); ctx->pxp_wakeref = 0; } spin_lock_irq(&i915->gem.contexts.lock); list_safe_reset_next(ctx, cn, link); i915_gem_context_put(ctx); } spin_unlock_irq(&i915->gem.contexts.lock); }