/* * linux/drivers/video/omap2/dss/rfbi.c * * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define DSS_SUBSYS_NAME "RFBI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omapdss.h" #include "dss.h" struct rfbi_reg { u16 idx; }; #define RFBI_REG(idx) ((const struct rfbi_reg) { idx }) #define RFBI_REVISION RFBI_REG(0x0000) #define RFBI_SYSCONFIG RFBI_REG(0x0010) #define RFBI_SYSSTATUS RFBI_REG(0x0014) #define RFBI_CONTROL RFBI_REG(0x0040) #define RFBI_PIXEL_CNT RFBI_REG(0x0044) #define RFBI_LINE_NUMBER RFBI_REG(0x0048) #define RFBI_CMD RFBI_REG(0x004c) #define RFBI_PARAM RFBI_REG(0x0050) #define RFBI_DATA RFBI_REG(0x0054) #define RFBI_READ RFBI_REG(0x0058) #define RFBI_STATUS RFBI_REG(0x005c) #define RFBI_CONFIG(n) RFBI_REG(0x0060 + (n)*0x18) #define RFBI_ONOFF_TIME(n) RFBI_REG(0x0064 + (n)*0x18) #define RFBI_CYCLE_TIME(n) RFBI_REG(0x0068 + (n)*0x18) #define RFBI_DATA_CYCLE1(n) RFBI_REG(0x006c + (n)*0x18) #define RFBI_DATA_CYCLE2(n) RFBI_REG(0x0070 + (n)*0x18) #define RFBI_DATA_CYCLE3(n) RFBI_REG(0x0074 + (n)*0x18) #define RFBI_VSYNC_WIDTH RFBI_REG(0x0090) #define RFBI_HSYNC_WIDTH RFBI_REG(0x0094) #define REG_FLD_MOD(idx, val, start, end) \ rfbi_write_reg(idx, FLD_MOD(rfbi_read_reg(idx), val, start, end)) enum omap_rfbi_cycleformat { OMAP_DSS_RFBI_CYCLEFORMAT_1_1 = 0, OMAP_DSS_RFBI_CYCLEFORMAT_2_1 = 1, OMAP_DSS_RFBI_CYCLEFORMAT_3_1 = 2, OMAP_DSS_RFBI_CYCLEFORMAT_3_2 = 3, }; enum omap_rfbi_datatype { OMAP_DSS_RFBI_DATATYPE_12 = 0, OMAP_DSS_RFBI_DATATYPE_16 = 1, OMAP_DSS_RFBI_DATATYPE_18 = 2, OMAP_DSS_RFBI_DATATYPE_24 = 3, }; enum omap_rfbi_parallelmode { OMAP_DSS_RFBI_PARALLELMODE_8 = 0, OMAP_DSS_RFBI_PARALLELMODE_9 = 1, OMAP_DSS_RFBI_PARALLELMODE_12 = 2, OMAP_DSS_RFBI_PARALLELMODE_16 = 3, }; static int rfbi_convert_timings(struct rfbi_timings *t); static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div); static struct { struct platform_device *pdev; void __iomem *base; unsigned long l4_khz; enum omap_rfbi_datatype datatype; enum omap_rfbi_parallelmode parallelmode; enum omap_rfbi_te_mode te_mode; int te_enabled; void (*framedone_callback)(void *data); void *framedone_callback_data; struct omap_dss_device *dssdev[2]; struct semaphore bus_lock; struct omap_video_timings timings; int pixel_size; int data_lines; struct rfbi_timings intf_timings; struct omap_dss_device output; } rfbi; static inline void rfbi_write_reg(const struct rfbi_reg idx, u32 val) { __raw_writel(val, rfbi.base + idx.idx); } static inline u32 rfbi_read_reg(const struct rfbi_reg idx) { return __raw_readl(rfbi.base + idx.idx); } static int rfbi_runtime_get(void) { int r; DSSDBG("rfbi_runtime_get\n"); r = pm_runtime_get_sync(&rfbi.pdev->dev); WARN_ON(r < 0); return r < 0 ? r : 0; } static void rfbi_runtime_put(void) { int r; DSSDBG("rfbi_runtime_put\n"); r = pm_runtime_put_sync(&rfbi.pdev->dev); WARN_ON(r < 0 && r != -ENOSYS); } static void rfbi_bus_lock(void) { down(&rfbi.bus_lock); } static void rfbi_bus_unlock(void) { up(&rfbi.bus_lock); } static void rfbi_write_command(const void *buf, u32 len) { switch (rfbi.parallelmode) { case OMAP_DSS_RFBI_PARALLELMODE_8: { const u8 *b = buf; for (; len; len--) rfbi_write_reg(RFBI_CMD, *b++); break; } case OMAP_DSS_RFBI_PARALLELMODE_16: { const u16 *w = buf; BUG_ON(len & 1); for (; len; len -= 2) rfbi_write_reg(RFBI_CMD, *w++); break; } case OMAP_DSS_RFBI_PARALLELMODE_9: case OMAP_DSS_RFBI_PARALLELMODE_12: default: BUG(); } } static void rfbi_read_data(void *buf, u32 len) { switch (rfbi.parallelmode) { case OMAP_DSS_RFBI_PARALLELMODE_8: { u8 *b = buf; for (; len; len--) { rfbi_write_reg(RFBI_READ, 0); *b++ = rfbi_read_reg(RFBI_READ); } break; } case OMAP_DSS_RFBI_PARALLELMODE_16: { u16 *w = buf; BUG_ON(len & ~1); for (; len; len -= 2) { rfbi_write_reg(RFBI_READ, 0); *w++ = rfbi_read_reg(RFBI_READ); } break; } case OMAP_DSS_RFBI_PARALLELMODE_9: case OMAP_DSS_RFBI_PARALLELMODE_12: default: BUG(); } } static void rfbi_write_data(const void *buf, u32 len) { switch (rfbi.parallelmode) { case OMAP_DSS_RFBI_PARALLELMODE_8: { const u8 *b = buf; for (; len; len--) rfbi_write_reg(RFBI_PARAM, *b++); break; } case OMAP_DSS_RFBI_PARALLELMODE_16: { const u16 *w = buf; BUG_ON(len & 1); for (; len; len -= 2) rfbi_write_reg(RFBI_PARAM, *w++); break; } case OMAP_DSS_RFBI_PARALLELMODE_9: case OMAP_DSS_RFBI_PARALLELMODE_12: default: BUG(); } } static void rfbi_write_pixels(const void __iomem *buf, int scr_width, u16 x, u16 y, u16 w, u16 h) { int start_offset = scr_width * y + x; int horiz_offset = scr_width - w; int i; if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 && rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) { const u16 __iomem *pd = buf; pd += start_offset; for (; h; --h) { for (i = 0; i < w; ++i) { const u8 __iomem *b = (const u8 __iomem *)pd; rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1)); rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0)); ++pd; } pd += horiz_offset; } } else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_24 && rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) { const u32 __iomem *pd = buf; pd += start_offset; for (; h; --h) { for (i = 0; i < w; ++i) { const u8 __iomem *b = (const u8 __iomem *)pd; rfbi_write_reg(RFBI_PARAM, __raw_readb(b+2)); rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1)); rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0)); ++pd; } pd += horiz_offset; } } else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 && rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_16) { const u16 __iomem *pd = buf; pd += start_offset; for (; h; --h) { for (i = 0; i < w; ++i) { rfbi_write_reg(RFBI_PARAM, __raw_readw(pd)); ++pd; } pd += horiz_offset; } } else { BUG(); } } static int rfbi_transfer_area(struct omap_dss_device *dssdev, void (*callback)(void *data), void *data) { u32 l; int r; struct omap_overlay_manager *mgr = rfbi.output.manager; u16 width = rfbi.timings.hactive; u16 height = rfbi.timings.vactive; /*BUG_ON(callback == 0);*/ BUG_ON(rfbi.framedone_callback != NULL); DSSDBG("rfbi_transfer_area %dx%d\n", width, height); dss_mgr_set_timings(mgr, &rfbi.timings); r = dss_mgr_enable(mgr); if (r) return r; rfbi.framedone_callback = callback; rfbi.framedone_callback_data = data; rfbi_write_reg(RFBI_PIXEL_CNT, width * height); l = rfbi_read_reg(RFBI_CONTROL); l = FLD_MOD(l, 1, 0, 0); /* enable */ if (!rfbi.te_enabled) l = FLD_MOD(l, 1, 4, 4); /* ITE */ rfbi_write_reg(RFBI_CONTROL, l); return 0; } static void framedone_callback(void *data) { void (*callback)(void *data); DSSDBG("FRAMEDONE\n"); REG_FLD_MOD(RFBI_CONTROL, 0, 0, 0); callback = rfbi.framedone_callback; rfbi.framedone_callback = NULL; if (callback != NULL) callback(rfbi.framedone_callback_data); } #if 1 /* VERBOSE */ static void rfbi_print_timings(void) { u32 l; u32 time; l = rfbi_read_reg(RFBI_CONFIG(0)); time = 1000000000 / rfbi.l4_khz; if (l & (1 << 4)) time *= 2; DSSDBG("Tick time %u ps\n", time); l = rfbi_read_reg(RFBI_ONOFF_TIME(0)); DSSDBG("CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, " "REONTIME %d, REOFFTIME %d\n", l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f, (l >> 20) & 0x0f, (l >> 24) & 0x3f); l = rfbi_read_reg(RFBI_CYCLE_TIME(0)); DSSDBG("WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, " "ACCESSTIME %d\n", (l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f, (l >> 22) & 0x3f); } #else static void rfbi_print_timings(void) {} #endif static u32 extif_clk_period; static inline unsigned long round_to_extif_ticks(unsigned long ps, int div) { int bus_tick = extif_clk_period * div; return (ps + bus_tick - 1) / bus_tick * bus_tick; } static int calc_reg_timing(struct rfbi_timings *t, int div) { t->clk_div = div; t->cs_on_time = round_to_extif_ticks(t->cs_on_time, div); t->we_on_time = round_to_extif_ticks(t->we_on_time, div); t->we_off_time = round_to_extif_ticks(t->we_off_time, div); t->we_cycle_time = round_to_extif_ticks(t->we_cycle_time, div); t->re_on_time = round_to_extif_ticks(t->re_on_time, div); t->re_off_time = round_to_extif_ticks(t->re_off_time, div); t->re_cycle_time = round_to_extif_ticks(t->re_cycle_time, div); t->access_time = round_to_extif_ticks(t->access_time, div); t->cs_off_time = round_to_extif_ticks(t->cs_off_time, div); t->cs_pulse_width = round_to_extif_ticks(t->cs_pulse_width, div); DSSDBG("[reg]cson %d csoff %d reon %d reoff %d\n", t->cs_on_time, t->cs_off_time, t->re_on_time, t->re_off_time); DSSDBG("[reg]weon %d weoff %d recyc %d wecyc %d\n", t->we_on_time, t->we_off_time, t->re_cycle_time, t->we_cycle_time); DSSDBG("[reg]rdaccess %d cspulse %d\n", t->access_time, t->cs_pulse_width); return rfbi_convert_timings(t); } static int calc_extif_timings(struct rfbi_timings *t) { u32 max_clk_div; int div; rfbi_get_clk_info(&extif_clk_period, &max_clk_div); for (div = 1; div <= max_clk_div; div++) { if (calc_reg_timing(t, div) == 0) break; } if (div <= max_clk_div) return 0; DSSERR("can't setup timings\n"); return -1; } static void rfbi_set_timings(int rfbi_module, struct rfbi_timings *t) { int r; if (!t->converted) { r = calc_extif_timings(t); if (r < 0) DSSERR("Failed to calc timings\n"); } BUG_ON(!t->converted); rfbi_write_reg(RFBI_ONOFF_TIME(rfbi_module), t->tim[0]); rfbi_write_reg(RFBI_CYCLE_TIME(rfbi_module), t->tim[1]); /* TIMEGRANULARITY */ REG_FLD_MOD(RFBI_CONFIG(rfbi_module), (t->tim[2] ? 1 : 0), 4, 4); rfbi_print_timings(); } static int ps_to_rfbi_ticks(int time, int div) { unsigned long tick_ps; int ret; /* Calculate in picosecs to yield more exact results */ tick_ps = 1000000000 / (rfbi.l4_khz) * div; ret = (time + tick_ps - 1) / tick_ps; return ret; } static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div) { *clk_period = 1000000000 / rfbi.l4_khz; *max_clk_div = 2; } static int rfbi_convert_timings(struct rfbi_timings *t) { u32 l; int reon, reoff, weon, weoff, cson, csoff, cs_pulse; int actim, recyc, wecyc; int div = t->clk_div; if (div <= 0 || div > 2) return -1; /* Make sure that after conversion it still holds that: * weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff, * csoff > cson, csoff >= max(weoff, reoff), actim > reon */ weon = ps_to_rfbi_ticks(t->we_on_time, div); weoff = ps_to_rfbi_ticks(t->we_off_time, div); if (weoff <= weon) weoff = weon + 1; if (weon > 0x0f) return -1; if (weoff > 0x3f) return -1; reon = ps_to_rfbi_ticks(t->re_on_time, div); reoff = ps_to_rfbi_ticks(t->re_off_time, div); if (reoff <= reon) reoff = reon + 1; if (reon > 0x0f) return -1; if (reoff > 0x3f) return -1; cson = ps_to_rfbi_ticks(t->cs_on_time, div); csoff = ps_to_rfbi_ticks(t->cs_off_time, div); if (csoff <= cson) csoff = cson + 1; if (csoff < max(weoff, reoff)) csoff = max(weoff, reoff); if (cson > 0x0f) return -1; if (csoff > 0x3f) return -1; l = cson; l |= csoff << 4; l |= weon << 10; l |= weoff << 14; l |= reon << 20; l |= reoff << 24; t->tim[0] = l; actim = ps_to_rfbi_ticks(t->access_time, div); if (actim <= reon) actim = reon + 1; if (actim > 0x3f) return -1; wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div); if (wecyc < weoff) wecyc = weoff; if (wecyc > 0x3f) return -1; recyc = ps_to_rfbi_ticks(t->re_cycle_time, div); if (recyc < reoff) recyc = reoff; if (recyc > 0x3f) return -1; cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div); if (cs_pulse > 0x3f) return -1; l = wecyc; l |= recyc << 6; l |= cs_pulse << 12; l |= actim << 22; t->tim[1] = l; t->tim[2] = div - 1; t->converted = 1; return 0; } /* xxx FIX module selection missing */ static int rfbi_setup_te(enum omap_rfbi_te_mode mode, unsigned hs_pulse_time, unsigned vs_pulse_time, int hs_pol_inv, int vs_pol_inv, int extif_div) { int hs, vs; int min; u32 l; hs = ps_to_rfbi_ticks(hs_pulse_time, 1); vs = ps_to_rfbi_ticks(vs_pulse_time, 1); if (hs < 2) return -EDOM; if (mode == OMAP_DSS_RFBI_TE_MODE_2) min = 2; else /* OMAP_DSS_RFBI_TE_MODE_1 */ min = 4; if (vs < min) return -EDOM; if (vs == hs) return -EINVAL; rfbi.te_mode = mode; DSSDBG("setup_te: mode %d hs %d vs %d hs_inv %d vs_inv %d\n", mode, hs, vs, hs_pol_inv, vs_pol_inv); rfbi_write_reg(RFBI_HSYNC_WIDTH, hs); rfbi_write_reg(RFBI_VSYNC_WIDTH, vs); l = rfbi_read_reg(RFBI_CONFIG(0)); if (hs_pol_inv) l &= ~(1 << 21); else l |= 1 << 21; if (vs_pol_inv) l &= ~(1 << 20); else l |= 1 << 20; return 0; } /* xxx FIX module selection missing */ static int rfbi_enable_te(bool enable, unsigned line) { u32 l; DSSDBG("te %d line %d mode %d\n", enable, line, rfbi.te_mode); if (line > (1 << 11) - 1) return -EINVAL; l = rfbi_read_reg(RFBI_CONFIG(0)); l &= ~(0x3 << 2); if (enable) { rfbi.te_enabled = 1; l |= rfbi.te_mode << 2; } else rfbi.te_enabled = 0; rfbi_write_reg(RFBI_CONFIG(0), l); rfbi_write_reg(RFBI_LINE_NUMBER, line); return 0; } static int rfbi_configure_bus(int rfbi_module, int bpp, int lines) { u32 l; int cycle1 = 0, cycle2 = 0, cycle3 = 0; enum omap_rfbi_cycleformat cycleformat; enum omap_rfbi_datatype datatype; enum omap_rfbi_parallelmode parallelmode; switch (bpp) { case 12: datatype = OMAP_DSS_RFBI_DATATYPE_12; break; case 16: datatype = OMAP_DSS_RFBI_DATATYPE_16; break; case 18: datatype = OMAP_DSS_RFBI_DATATYPE_18; break; case 24: datatype = OMAP_DSS_RFBI_DATATYPE_24; break; default: BUG(); return 1; } rfbi.datatype = datatype; switch (lines) { case 8: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_8; break; case 9: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_9; break; case 12: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_12; break; case 16: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_16; break; default: BUG(); return 1; } rfbi.parallelmode = parallelmode; if ((bpp % lines) == 0) { switch (bpp / lines) { case 1: cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_1_1; break; case 2: cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_2_1; break; case 3: cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_1; break; default: BUG(); return 1; } } else if ((2 * bpp % lines) == 0) { if ((2 * bpp / lines) == 3) cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_2; else { BUG(); return 1; } } else { BUG(); return 1; } switch (cycleformat) { case OMAP_DSS_RFBI_CYCLEFORMAT_1_1: cycle1 = lines; break; case OMAP_DSS_RFBI_CYCLEFORMAT_2_1: cycle1 = lines; cycle2 = lines; break; case OMAP_DSS_RFBI_CYCLEFORMAT_3_1: cycle1 = lines; cycle2 = lines; cycle3 = lines; break; case OMAP_DSS_RFBI_CYCLEFORMAT_3_2: cycle1 = lines; cycle2 = (lines / 2) | ((lines / 2) << 16); cycle3 = (lines << 16); break; } REG_FLD_MOD(RFBI_CONTROL, 0, 3, 2); /* clear CS */ l = 0; l |= FLD_VAL(parallelmode, 1, 0); l |= FLD_VAL(0, 3, 2); /* TRIGGERMODE: ITE */ l |= FLD_VAL(0, 4, 4); /* TIMEGRANULARITY */ l |= FLD_VAL(datatype, 6, 5); /* l |= FLD_VAL(2, 8, 7); */ /* L4FORMAT, 2pix/L4 */ l |= FLD_VAL(0, 8, 7); /* L4FORMAT, 1pix/L4 */ l |= FLD_VAL(cycleformat, 10, 9); l |= FLD_VAL(0, 12, 11); /* UNUSEDBITS */ l |= FLD_VAL(0, 16, 16); /* A0POLARITY */ l |= FLD_VAL(0, 17, 17); /* REPOLARITY */ l |= FLD_VAL(0, 18, 18); /* WEPOLARITY */ l |= FLD_VAL(0, 19, 19); /* CSPOLARITY */ l |= FLD_VAL(1, 20, 20); /* TE_VSYNC_POLARITY */ l |= FLD_VAL(1, 21, 21); /* HSYNCPOLARITY */ rfbi_write_reg(RFBI_CONFIG(rfbi_module), l); rfbi_write_reg(RFBI_DATA_CYCLE1(rfbi_module), cycle1); rfbi_write_reg(RFBI_DATA_CYCLE2(rfbi_module), cycle2); rfbi_write_reg(RFBI_DATA_CYCLE3(rfbi_module), cycle3); l = rfbi_read_reg(RFBI_CONTROL); l = FLD_MOD(l, rfbi_module+1, 3, 2); /* Select CSx */ l = FLD_MOD(l, 0, 1, 1); /* clear bypass */ rfbi_write_reg(RFBI_CONTROL, l); DSSDBG("RFBI config: bpp %d, lines %d, cycles: 0x%x 0x%x 0x%x\n", bpp, lines, cycle1, cycle2, cycle3); return 0; } static int rfbi_configure(struct omap_dss_device *dssdev) { return rfbi_configure_bus(dssdev->phy.rfbi.channel, rfbi.pixel_size, rfbi.data_lines); } static int rfbi_update(struct omap_dss_device *dssdev, void (*callback)(void *), void *data) { return rfbi_transfer_area(dssdev, callback, data); } static void rfbi_set_size(struct omap_dss_device *dssdev, u16 w, u16 h) { rfbi.timings.hactive = w; rfbi.timings.vactive = h; } static void rfbi_set_pixel_size(struct omap_dss_device *dssdev, int pixel_size) { rfbi.pixel_size = pixel_size; } static void rfbi_set_data_lines(struct omap_dss_device *dssdev, int data_lines) { rfbi.data_lines = data_lines; } static void rfbi_set_interface_timings(struct omap_dss_device *dssdev, struct rfbi_timings *timings) { rfbi.intf_timings = *timings; } static void rfbi_dump_regs(struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, rfbi_read_reg(r)) if (rfbi_runtime_get()) return; DUMPREG(RFBI_REVISION); DUMPREG(RFBI_SYSCONFIG); DUMPREG(RFBI_SYSSTATUS); DUMPREG(RFBI_CONTROL); DUMPREG(RFBI_PIXEL_CNT); DUMPREG(RFBI_LINE_NUMBER); DUMPREG(RFBI_CMD); DUMPREG(RFBI_PARAM); DUMPREG(RFBI_DATA); DUMPREG(RFBI_READ); DUMPREG(RFBI_STATUS); DUMPREG(RFBI_CONFIG(0)); DUMPREG(RFBI_ONOFF_TIME(0)); DUMPREG(RFBI_CYCLE_TIME(0)); DUMPREG(RFBI_DATA_CYCLE1(0)); DUMPREG(RFBI_DATA_CYCLE2(0)); DUMPREG(RFBI_DATA_CYCLE3(0)); DUMPREG(RFBI_CONFIG(1)); DUMPREG(RFBI_ONOFF_TIME(1)); DUMPREG(RFBI_CYCLE_TIME(1)); DUMPREG(RFBI_DATA_CYCLE1(1)); DUMPREG(RFBI_DATA_CYCLE2(1)); DUMPREG(RFBI_DATA_CYCLE3(1)); DUMPREG(RFBI_VSYNC_WIDTH); DUMPREG(RFBI_HSYNC_WIDTH); rfbi_runtime_put(); #undef DUMPREG } static void rfbi_config_lcd_manager(struct omap_dss_device *dssdev) { struct omap_overlay_manager *mgr = rfbi.output.manager; struct dss_lcd_mgr_config mgr_config; mgr_config.io_pad_mode = DSS_IO_PAD_MODE_RFBI; mgr_config.stallmode = true; /* Do we need fifohandcheck for RFBI? */ mgr_config.fifohandcheck = false; mgr_config.video_port_width = rfbi.pixel_size; mgr_config.lcden_sig_polarity = 0; dss_mgr_set_lcd_config(mgr, &mgr_config); /* * Set rfbi.timings with default values, the hactive and vactive fields * are expected to be already configured by the panel driver via * omapdss_rfbi_set_size() */ rfbi.timings.hsync_len = 1; rfbi.timings.hfp = 1; rfbi.timings.hbp = 1; rfbi.timings.vsw = 1; rfbi.timings.vfp = 0; rfbi.timings.vbp = 0; rfbi.timings.interlace = false; rfbi.timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH; rfbi.timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH; rfbi.timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE; rfbi.timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH; rfbi.timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_FALLING_EDGE; dss_mgr_set_timings(mgr, &rfbi.timings); } static int rfbi_display_enable(struct omap_dss_device *dssdev) { struct omap_dss_device *out = &rfbi.output; int r; if (!out->dispc_channel_connected) { DSSERR("failed to enable display: no output/manager\n"); return -ENODEV; } r = rfbi_runtime_get(); if (r) return r; r = dss_mgr_register_framedone_handler(out->manager, framedone_callback, NULL); if (r) { DSSERR("can't get FRAMEDONE irq\n"); goto err1; } rfbi_config_lcd_manager(dssdev); rfbi_configure_bus(dssdev->phy.rfbi.channel, rfbi.pixel_size, rfbi.data_lines); rfbi_set_timings(dssdev->phy.rfbi.channel, &rfbi.intf_timings); return 0; err1: rfbi_runtime_put(); return r; } static void rfbi_display_disable(struct omap_dss_device *dssdev) { struct omap_dss_device *out = &rfbi.output; dss_mgr_unregister_framedone_handler(out->manager, framedone_callback, NULL); rfbi_runtime_put(); } static int rfbi_init_display(struct omap_dss_device *dssdev) { rfbi.dssdev[dssdev->phy.rfbi.channel] = dssdev; return 0; } static void rfbi_init_output(struct platform_device *pdev) { struct omap_dss_device *out = &rfbi.output; out->dev = &pdev->dev; out->id = OMAP_DSS_OUTPUT_DBI; out->output_type = OMAP_DISPLAY_TYPE_DBI; out->name = "rfbi.0"; out->dispc_channel = OMAP_DSS_CHANNEL_LCD; out->owner = THIS_MODULE; omapdss_register_output(out); } static void rfbi_uninit_output(struct platform_device *pdev) { struct omap_dss_device *out = &rfbi.output; omapdss_unregister_output(out); } /* RFBI HW IP initialisation */ static int rfbi_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); u32 rev; struct resource *rfbi_mem; struct clk *clk; int r; rfbi.pdev = pdev; sema_init(&rfbi.bus_lock, 1); rfbi_mem = platform_get_resource(rfbi.pdev, IORESOURCE_MEM, 0); if (!rfbi_mem) { DSSERR("can't get IORESOURCE_MEM RFBI\n"); return -EINVAL; } rfbi.base = devm_ioremap(&pdev->dev, rfbi_mem->start, resource_size(rfbi_mem)); if (!rfbi.base) { DSSERR("can't ioremap RFBI\n"); return -ENOMEM; } clk = clk_get(&pdev->dev, "ick"); if (IS_ERR(clk)) { DSSERR("can't get ick\n"); return PTR_ERR(clk); } rfbi.l4_khz = clk_get_rate(clk) / 1000; clk_put(clk); pm_runtime_enable(&pdev->dev); r = rfbi_runtime_get(); if (r) goto err_runtime_get; msleep(10); rev = rfbi_read_reg(RFBI_REVISION); dev_dbg(&pdev->dev, "OMAP RFBI rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); rfbi_runtime_put(); dss_debugfs_create_file("rfbi", rfbi_dump_regs); rfbi_init_output(pdev); return 0; err_runtime_get: pm_runtime_disable(&pdev->dev); return r; } static void rfbi_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); rfbi_uninit_output(pdev); pm_runtime_disable(&pdev->dev); return 0; } static const struct component_ops rfbi_component_ops = { .bind = rfbi_bind, .unbind = rfbi_unbind, }; static int rfbi_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &rfbi_component_ops); } static int rfbi_remove(struct platform_device *pdev) { component_del(&pdev->dev, &rfbi_component_ops); return 0; } static int rfbi_runtime_suspend(struct device *dev) { dispc_runtime_put(); return 0; } static int rfbi_runtime_resume(struct device *dev) { int r; r = dispc_runtime_get(); if (r < 0) return r; return 0; } static const struct dev_pm_ops rfbi_pm_ops = { .runtime_suspend = rfbi_runtime_suspend, .runtime_resume = rfbi_runtime_resume, }; static struct platform_driver omap_rfbihw_driver = { .probe = rfbi_probe, .remove = rfbi_remove, .driver = { .name = "omapdss_rfbi", .pm = &rfbi_pm_ops, .suppress_bind_attrs = true, }, }; int __init rfbi_init_platform_driver(void) { return platform_driver_register(&omap_rfbihw_driver); } void rfbi_uninit_platform_driver(void) { platform_driver_unregister(&omap_rfbihw_driver); }