/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include #include #include #include "radeon.h" #include "radeon_asic.h" #include "radeon_mode.h" #include "r600d.h" #include "atom.h" #include "avivod.h" #define PFP_UCODE_SIZE 576 #define PM4_UCODE_SIZE 1792 #define RLC_UCODE_SIZE 768 #define R700_PFP_UCODE_SIZE 848 #define R700_PM4_UCODE_SIZE 1360 #define R700_RLC_UCODE_SIZE 1024 #define EVERGREEN_PFP_UCODE_SIZE 1120 #define EVERGREEN_PM4_UCODE_SIZE 1376 #define EVERGREEN_RLC_UCODE_SIZE 768 #define CAYMAN_RLC_UCODE_SIZE 1024 #define ARUBA_RLC_UCODE_SIZE 1536 /* Firmware Names */ MODULE_FIRMWARE("radeon/R600_pfp.bin"); MODULE_FIRMWARE("radeon/R600_me.bin"); MODULE_FIRMWARE("radeon/RV610_pfp.bin"); MODULE_FIRMWARE("radeon/RV610_me.bin"); MODULE_FIRMWARE("radeon/RV630_pfp.bin"); MODULE_FIRMWARE("radeon/RV630_me.bin"); MODULE_FIRMWARE("radeon/RV620_pfp.bin"); MODULE_FIRMWARE("radeon/RV620_me.bin"); MODULE_FIRMWARE("radeon/RV635_pfp.bin"); MODULE_FIRMWARE("radeon/RV635_me.bin"); MODULE_FIRMWARE("radeon/RV670_pfp.bin"); MODULE_FIRMWARE("radeon/RV670_me.bin"); MODULE_FIRMWARE("radeon/RS780_pfp.bin"); MODULE_FIRMWARE("radeon/RS780_me.bin"); MODULE_FIRMWARE("radeon/RV770_pfp.bin"); MODULE_FIRMWARE("radeon/RV770_me.bin"); MODULE_FIRMWARE("radeon/RV730_pfp.bin"); MODULE_FIRMWARE("radeon/RV730_me.bin"); MODULE_FIRMWARE("radeon/RV710_pfp.bin"); MODULE_FIRMWARE("radeon/RV710_me.bin"); MODULE_FIRMWARE("radeon/R600_rlc.bin"); MODULE_FIRMWARE("radeon/R700_rlc.bin"); MODULE_FIRMWARE("radeon/CEDAR_pfp.bin"); MODULE_FIRMWARE("radeon/CEDAR_me.bin"); MODULE_FIRMWARE("radeon/CEDAR_rlc.bin"); MODULE_FIRMWARE("radeon/REDWOOD_pfp.bin"); MODULE_FIRMWARE("radeon/REDWOOD_me.bin"); MODULE_FIRMWARE("radeon/REDWOOD_rlc.bin"); MODULE_FIRMWARE("radeon/JUNIPER_pfp.bin"); MODULE_FIRMWARE("radeon/JUNIPER_me.bin"); MODULE_FIRMWARE("radeon/JUNIPER_rlc.bin"); MODULE_FIRMWARE("radeon/CYPRESS_pfp.bin"); MODULE_FIRMWARE("radeon/CYPRESS_me.bin"); MODULE_FIRMWARE("radeon/CYPRESS_rlc.bin"); MODULE_FIRMWARE("radeon/PALM_pfp.bin"); MODULE_FIRMWARE("radeon/PALM_me.bin"); MODULE_FIRMWARE("radeon/SUMO_rlc.bin"); MODULE_FIRMWARE("radeon/SUMO_pfp.bin"); MODULE_FIRMWARE("radeon/SUMO_me.bin"); MODULE_FIRMWARE("radeon/SUMO2_pfp.bin"); MODULE_FIRMWARE("radeon/SUMO2_me.bin"); static const u32 crtc_offsets[2] = { 0, AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL }; int r600_debugfs_mc_info_init(struct radeon_device *rdev); /* r600,rv610,rv630,rv620,rv635,rv670 */ int r600_mc_wait_for_idle(struct radeon_device *rdev); static void r600_gpu_init(struct radeon_device *rdev); void r600_fini(struct radeon_device *rdev); void r600_irq_disable(struct radeon_device *rdev); static void r600_pcie_gen2_enable(struct radeon_device *rdev); /* get temperature in millidegrees */ int rv6xx_get_temp(struct radeon_device *rdev) { u32 temp = (RREG32(CG_THERMAL_STATUS) & ASIC_T_MASK) >> ASIC_T_SHIFT; int actual_temp = temp & 0xff; if (temp & 0x100) actual_temp -= 256; return actual_temp * 1000; } void r600_pm_get_dynpm_state(struct radeon_device *rdev) { int i; rdev->pm.dynpm_can_upclock = true; rdev->pm.dynpm_can_downclock = true; /* power state array is low to high, default is first */ if ((rdev->flags & RADEON_IS_IGP) || (rdev->family == CHIP_R600)) { int min_power_state_index = 0; if (rdev->pm.num_power_states > 2) min_power_state_index = 1; switch (rdev->pm.dynpm_planned_action) { case DYNPM_ACTION_MINIMUM: rdev->pm.requested_power_state_index = min_power_state_index; rdev->pm.requested_clock_mode_index = 0; rdev->pm.dynpm_can_downclock = false; break; case DYNPM_ACTION_DOWNCLOCK: if (rdev->pm.current_power_state_index == min_power_state_index) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; rdev->pm.dynpm_can_downclock = false; } else { if (rdev->pm.active_crtc_count > 1) { for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY) continue; else if (i >= rdev->pm.current_power_state_index) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; break; } else { rdev->pm.requested_power_state_index = i; break; } } } else { if (rdev->pm.current_power_state_index == 0) rdev->pm.requested_power_state_index = rdev->pm.num_power_states - 1; else rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index - 1; } } rdev->pm.requested_clock_mode_index = 0; /* don't use the power state if crtcs are active and no display flag is set */ if ((rdev->pm.active_crtc_count > 0) && (rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].flags & RADEON_PM_MODE_NO_DISPLAY)) { rdev->pm.requested_power_state_index++; } break; case DYNPM_ACTION_UPCLOCK: if (rdev->pm.current_power_state_index == (rdev->pm.num_power_states - 1)) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; rdev->pm.dynpm_can_upclock = false; } else { if (rdev->pm.active_crtc_count > 1) { for (i = (rdev->pm.num_power_states - 1); i >= 0; i--) { if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY) continue; else if (i <= rdev->pm.current_power_state_index) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; break; } else { rdev->pm.requested_power_state_index = i; break; } } } else rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index + 1; } rdev->pm.requested_clock_mode_index = 0; break; case DYNPM_ACTION_DEFAULT: rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index; rdev->pm.requested_clock_mode_index = 0; rdev->pm.dynpm_can_upclock = false; break; case DYNPM_ACTION_NONE: default: DRM_ERROR("Requested mode for not defined action\n"); return; } } else { /* XXX select a power state based on AC/DC, single/dualhead, etc. */ /* for now just select the first power state and switch between clock modes */ /* power state array is low to high, default is first (0) */ if (rdev->pm.active_crtc_count > 1) { rdev->pm.requested_power_state_index = -1; /* start at 1 as we don't want the default mode */ for (i = 1; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY) continue; else if ((rdev->pm.power_state[i].type == POWER_STATE_TYPE_PERFORMANCE) || (rdev->pm.power_state[i].type == POWER_STATE_TYPE_BATTERY)) { rdev->pm.requested_power_state_index = i; break; } } /* if nothing selected, grab the default state. */ if (rdev->pm.requested_power_state_index == -1) rdev->pm.requested_power_state_index = 0; } else rdev->pm.requested_power_state_index = 1; switch (rdev->pm.dynpm_planned_action) { case DYNPM_ACTION_MINIMUM: rdev->pm.requested_clock_mode_index = 0; rdev->pm.dynpm_can_downclock = false; break; case DYNPM_ACTION_DOWNCLOCK: if (rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index) { if (rdev->pm.current_clock_mode_index == 0) { rdev->pm.requested_clock_mode_index = 0; rdev->pm.dynpm_can_downclock = false; } else rdev->pm.requested_clock_mode_index = rdev->pm.current_clock_mode_index - 1; } else { rdev->pm.requested_clock_mode_index = 0; rdev->pm.dynpm_can_downclock = false; } /* don't use the power state if crtcs are active and no display flag is set */ if ((rdev->pm.active_crtc_count > 0) && (rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].flags & RADEON_PM_MODE_NO_DISPLAY)) { rdev->pm.requested_clock_mode_index++; } break; case DYNPM_ACTION_UPCLOCK: if (rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index) { if (rdev->pm.current_clock_mode_index == (rdev->pm.power_state[rdev->pm.requested_power_state_index].num_clock_modes - 1)) { rdev->pm.requested_clock_mode_index = rdev->pm.current_clock_mode_index; rdev->pm.dynpm_can_upclock = false; } else rdev->pm.requested_clock_mode_index = rdev->pm.current_clock_mode_index + 1; } else { rdev->pm.requested_clock_mode_index = rdev->pm.power_state[rdev->pm.requested_power_state_index].num_clock_modes - 1; rdev->pm.dynpm_can_upclock = false; } break; case DYNPM_ACTION_DEFAULT: rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index; rdev->pm.requested_clock_mode_index = 0; rdev->pm.dynpm_can_upclock = false; break; case DYNPM_ACTION_NONE: default: DRM_ERROR("Requested mode for not defined action\n"); return; } } DRM_DEBUG_DRIVER("Requested: e: %d m: %d p: %d\n", rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].sclk, rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].mclk, rdev->pm.power_state[rdev->pm.requested_power_state_index]. pcie_lanes); } void rs780_pm_init_profile(struct radeon_device *rdev) { if (rdev->pm.num_power_states == 2) { /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0; /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0; } else if (rdev->pm.num_power_states == 3) { /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0; /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0; } else { /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0; /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 3; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 3; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0; } } void r600_pm_init_profile(struct radeon_device *rdev) { int idx; if (rdev->family == CHIP_R600) { /* XXX */ /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0; /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0; } else { if (rdev->pm.num_power_states < 4) { /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 2; /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 1; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = 1; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 2; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* low mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 1; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = 2; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 2; } else { /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 2; /* low sh */ if (rdev->flags & RADEON_IS_MOBILITY) idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 0); else idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0); rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 1; /* high sh */ idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0); rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 2; /* low mh */ if (rdev->flags & RADEON_IS_MOBILITY) idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 1); else idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 1); rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 1; /* high mh */ idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 1); rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 2; } } } void r600_pm_misc(struct radeon_device *rdev) { int req_ps_idx = rdev->pm.requested_power_state_index; int req_cm_idx = rdev->pm.requested_clock_mode_index; struct radeon_power_state *ps = &rdev->pm.power_state[req_ps_idx]; struct radeon_voltage *voltage = &ps->clock_info[req_cm_idx].voltage; if ((voltage->type == VOLTAGE_SW) && voltage->voltage) { /* 0xff01 is a flag rather then an actual voltage */ if (voltage->voltage == 0xff01) return; if (voltage->voltage != rdev->pm.current_vddc) { radeon_atom_set_voltage(rdev, voltage->voltage, SET_VOLTAGE_TYPE_ASIC_VDDC); rdev->pm.current_vddc = voltage->voltage; DRM_DEBUG_DRIVER("Setting: v: %d\n", voltage->voltage); } } } bool r600_gui_idle(struct radeon_device *rdev) { if (RREG32(GRBM_STATUS) & GUI_ACTIVE) return false; else return true; } /* hpd for digital panel detect/disconnect */ bool r600_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd) { bool connected = false; if (ASIC_IS_DCE3(rdev)) { switch (hpd) { case RADEON_HPD_1: if (RREG32(DC_HPD1_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_2: if (RREG32(DC_HPD2_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_3: if (RREG32(DC_HPD3_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_4: if (RREG32(DC_HPD4_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; /* DCE 3.2 */ case RADEON_HPD_5: if (RREG32(DC_HPD5_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; case RADEON_HPD_6: if (RREG32(DC_HPD6_INT_STATUS) & DC_HPDx_SENSE) connected = true; break; default: break; } } else { switch (hpd) { case RADEON_HPD_1: if (RREG32(DC_HOT_PLUG_DETECT1_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE) connected = true; break; case RADEON_HPD_2: if (RREG32(DC_HOT_PLUG_DETECT2_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE) connected = true; break; case RADEON_HPD_3: if (RREG32(DC_HOT_PLUG_DETECT3_INT_STATUS) & DC_HOT_PLUG_DETECTx_SENSE) connected = true; break; default: break; } } return connected; } void r600_hpd_set_polarity(struct radeon_device *rdev, enum radeon_hpd_id hpd) { u32 tmp; bool connected = r600_hpd_sense(rdev, hpd); if (ASIC_IS_DCE3(rdev)) { switch (hpd) { case RADEON_HPD_1: tmp = RREG32(DC_HPD1_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD1_INT_CONTROL, tmp); break; case RADEON_HPD_2: tmp = RREG32(DC_HPD2_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD2_INT_CONTROL, tmp); break; case RADEON_HPD_3: tmp = RREG32(DC_HPD3_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD3_INT_CONTROL, tmp); break; case RADEON_HPD_4: tmp = RREG32(DC_HPD4_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD4_INT_CONTROL, tmp); break; case RADEON_HPD_5: tmp = RREG32(DC_HPD5_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD5_INT_CONTROL, tmp); break; /* DCE 3.2 */ case RADEON_HPD_6: tmp = RREG32(DC_HPD6_INT_CONTROL); if (connected) tmp &= ~DC_HPDx_INT_POLARITY; else tmp |= DC_HPDx_INT_POLARITY; WREG32(DC_HPD6_INT_CONTROL, tmp); break; default: break; } } else { switch (hpd) { case RADEON_HPD_1: tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL); if (connected) tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY; else tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp); break; case RADEON_HPD_2: tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL); if (connected) tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY; else tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp); break; case RADEON_HPD_3: tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL); if (connected) tmp &= ~DC_HOT_PLUG_DETECTx_INT_POLARITY; else tmp |= DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp); break; default: break; } } } void r600_hpd_init(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; unsigned enable = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); if (connector->connector_type == DRM_MODE_CONNECTOR_eDP || connector->connector_type == DRM_MODE_CONNECTOR_LVDS) { /* don't try to enable hpd on eDP or LVDS avoid breaking the * aux dp channel on imac and help (but not completely fix) * https://bugzilla.redhat.com/show_bug.cgi?id=726143 */ continue; } if (ASIC_IS_DCE3(rdev)) { u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) | DC_HPDx_RX_INT_TIMER(0xfa); if (ASIC_IS_DCE32(rdev)) tmp |= DC_HPDx_EN; switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HPD1_CONTROL, tmp); break; case RADEON_HPD_2: WREG32(DC_HPD2_CONTROL, tmp); break; case RADEON_HPD_3: WREG32(DC_HPD3_CONTROL, tmp); break; case RADEON_HPD_4: WREG32(DC_HPD4_CONTROL, tmp); break; /* DCE 3.2 */ case RADEON_HPD_5: WREG32(DC_HPD5_CONTROL, tmp); break; case RADEON_HPD_6: WREG32(DC_HPD6_CONTROL, tmp); break; default: break; } } else { switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HOT_PLUG_DETECT1_CONTROL, DC_HOT_PLUG_DETECTx_EN); break; case RADEON_HPD_2: WREG32(DC_HOT_PLUG_DETECT2_CONTROL, DC_HOT_PLUG_DETECTx_EN); break; case RADEON_HPD_3: WREG32(DC_HOT_PLUG_DETECT3_CONTROL, DC_HOT_PLUG_DETECTx_EN); break; default: break; } } enable |= 1 << radeon_connector->hpd.hpd; radeon_hpd_set_polarity(rdev, radeon_connector->hpd.hpd); } radeon_irq_kms_enable_hpd(rdev, enable); } void r600_hpd_fini(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; unsigned disable = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); if (ASIC_IS_DCE3(rdev)) { switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HPD1_CONTROL, 0); break; case RADEON_HPD_2: WREG32(DC_HPD2_CONTROL, 0); break; case RADEON_HPD_3: WREG32(DC_HPD3_CONTROL, 0); break; case RADEON_HPD_4: WREG32(DC_HPD4_CONTROL, 0); break; /* DCE 3.2 */ case RADEON_HPD_5: WREG32(DC_HPD5_CONTROL, 0); break; case RADEON_HPD_6: WREG32(DC_HPD6_CONTROL, 0); break; default: break; } } else { switch (radeon_connector->hpd.hpd) { case RADEON_HPD_1: WREG32(DC_HOT_PLUG_DETECT1_CONTROL, 0); break; case RADEON_HPD_2: WREG32(DC_HOT_PLUG_DETECT2_CONTROL, 0); break; case RADEON_HPD_3: WREG32(DC_HOT_PLUG_DETECT3_CONTROL, 0); break; default: break; } } disable |= 1 << radeon_connector->hpd.hpd; } radeon_irq_kms_disable_hpd(rdev, disable); } /* * R600 PCIE GART */ void r600_pcie_gart_tlb_flush(struct radeon_device *rdev) { unsigned i; u32 tmp; /* flush hdp cache so updates hit vram */ if ((rdev->family >= CHIP_RV770) && (rdev->family <= CHIP_RV740) && !(rdev->flags & RADEON_IS_AGP)) { void __iomem *ptr = (void *)rdev->gart.ptr; u32 tmp; /* r7xx hw bug. write to HDP_DEBUG1 followed by fb read * rather than write to HDP_REG_COHERENCY_FLUSH_CNTL * This seems to cause problems on some AGP cards. Just use the old * method for them. */ WREG32(HDP_DEBUG1, 0); tmp = readl((void __iomem *)ptr); } else WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); WREG32(VM_CONTEXT0_INVALIDATION_LOW_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_INVALIDATION_HIGH_ADDR, (rdev->mc.gtt_end - 1) >> 12); WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1)); for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE); tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT; if (tmp == 2) { printk(KERN_WARNING "[drm] r600 flush TLB failed\n"); return; } if (tmp) { return; } udelay(1); } } int r600_pcie_gart_init(struct radeon_device *rdev) { int r; if (rdev->gart.robj) { WARN(1, "R600 PCIE GART already initialized\n"); return 0; } /* Initialize common gart structure */ r = radeon_gart_init(rdev); if (r) return r; rdev->gart.table_size = rdev->gart.num_gpu_pages * 8; return radeon_gart_table_vram_alloc(rdev); } static int r600_pcie_gart_enable(struct radeon_device *rdev) { u32 tmp; int r, i; if (rdev->gart.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; radeon_gart_restore(rdev); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1)); /* Setup TLB control */ tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) | ENABLE_WAIT_L2_QUERY; WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING); WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); for (i = 1; i < 7; i++) WREG32(VM_CONTEXT0_CNTL + (i * 4), 0); r600_pcie_gart_tlb_flush(rdev); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(rdev->mc.gtt_size >> 20), (unsigned long long)rdev->gart.table_addr); rdev->gart.ready = true; return 0; } static void r600_pcie_gart_disable(struct radeon_device *rdev) { u32 tmp; int i; /* Disable all tables */ for (i = 0; i < 7; i++) WREG32(VM_CONTEXT0_CNTL + (i * 4), 0); /* Disable L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1)); /* Setup L1 TLB control */ tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) | ENABLE_WAIT_L2_QUERY; WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp); radeon_gart_table_vram_unpin(rdev); } static void r600_pcie_gart_fini(struct radeon_device *rdev) { radeon_gart_fini(rdev); r600_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); } static void r600_agp_enable(struct radeon_device *rdev) { u32 tmp; int i; /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT_0(0) | BANK_SELECT_1(1)); /* Setup TLB control */ tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5) | ENABLE_WAIT_L2_QUERY; WREG32(MC_VM_L1_TLB_MCB_RD_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_SYS_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_HDP_CNTL, tmp | ENABLE_L1_STRICT_ORDERING); WREG32(MC_VM_L1_TLB_MCB_WR_HDP_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_A_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_RD_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCD_WR_B_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_GFX_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_WR_PDMA_CNTL, tmp); WREG32(MC_VM_L1_TLB_MCB_RD_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); WREG32(MC_VM_L1_TLB_MCB_WR_SEM_CNTL, tmp | ENABLE_SEMAPHORE_MODE); for (i = 0; i < 7; i++) WREG32(VM_CONTEXT0_CNTL + (i * 4), 0); } int r600_mc_wait_for_idle(struct radeon_device *rdev) { unsigned i; u32 tmp; for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(R_000E50_SRBM_STATUS) & 0x3F00; if (!tmp) return 0; udelay(1); } return -1; } static void r600_mc_program(struct radeon_device *rdev) { struct rv515_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); rv515_mc_stop(rdev, &save); if (r600_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Lockout access through VGA aperture (doesn't exist before R600) */ WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); /* Update configuration */ if (rdev->flags & RADEON_IS_AGP) { if (rdev->mc.vram_start < rdev->mc.gtt_start) { /* VRAM before AGP */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.gtt_end >> 12); } else { /* VRAM after AGP */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.gtt_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); } } else { WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); } WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12); tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); WREG32(MC_VM_FB_LOCATION, tmp); WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); WREG32(HDP_NONSURFACE_INFO, (2 << 7)); WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); if (rdev->flags & RADEON_IS_AGP) { WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 22); WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 22); WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22); } else { WREG32(MC_VM_AGP_BASE, 0); WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); } if (r600_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } rv515_mc_resume(rdev, &save); /* we need to own VRAM, so turn off the VGA renderer here * to stop it overwriting our objects */ rv515_vga_render_disable(rdev); } /** * r600_vram_gtt_location - try to find VRAM & GTT location * @rdev: radeon device structure holding all necessary informations * @mc: memory controller structure holding memory informations * * Function will place try to place VRAM at same place as in CPU (PCI) * address space as some GPU seems to have issue when we reprogram at * different address space. * * If there is not enough space to fit the unvisible VRAM after the * aperture then we limit the VRAM size to the aperture. * * If we are using AGP then place VRAM adjacent to AGP aperture are we need * them to be in one from GPU point of view so that we can program GPU to * catch access outside them (weird GPU policy see ??). * * This function will never fails, worst case are limiting VRAM or GTT. * * Note: GTT start, end, size should be initialized before calling this * function on AGP platform. */ static void r600_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { u64 size_bf, size_af; if (mc->mc_vram_size > 0xE0000000) { /* leave room for at least 512M GTT */ dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = 0xE0000000; mc->mc_vram_size = 0xE0000000; } if (rdev->flags & RADEON_IS_AGP) { size_bf = mc->gtt_start; size_af = 0xFFFFFFFF - mc->gtt_end; if (size_bf > size_af) { if (mc->mc_vram_size > size_bf) { dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = size_bf; mc->mc_vram_size = size_bf; } mc->vram_start = mc->gtt_start - mc->mc_vram_size; } else { if (mc->mc_vram_size > size_af) { dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = size_af; mc->mc_vram_size = size_af; } mc->vram_start = mc->gtt_end + 1; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; dev_info(rdev->dev, "VRAM: %lluM 0x%08llX - 0x%08llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } else { u64 base = 0; if (rdev->flags & RADEON_IS_IGP) { base = RREG32(MC_VM_FB_LOCATION) & 0xFFFF; base <<= 24; } radeon_vram_location(rdev, &rdev->mc, base); rdev->mc.gtt_base_align = 0; radeon_gtt_location(rdev, mc); } } static int r600_mc_init(struct radeon_device *rdev) { u32 tmp; int chansize, numchan; /* Get VRAM informations */ rdev->mc.vram_is_ddr = true; tmp = RREG32(RAMCFG); if (tmp & CHANSIZE_OVERRIDE) { chansize = 16; } else if (tmp & CHANSIZE_MASK) { chansize = 64; } else { chansize = 32; } tmp = RREG32(CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; } rdev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); /* Setup GPU memory space */ rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE); rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE); rdev->mc.visible_vram_size = rdev->mc.aper_size; r600_vram_gtt_location(rdev, &rdev->mc); if (rdev->flags & RADEON_IS_IGP) { rs690_pm_info(rdev); rdev->mc.igp_sideport_enabled = radeon_atombios_sideport_present(rdev); } radeon_update_bandwidth_info(rdev); return 0; } int r600_vram_scratch_init(struct radeon_device *rdev) { int r; if (rdev->vram_scratch.robj == NULL) { r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, NULL, &rdev->vram_scratch.robj); if (r) { return r; } } r = radeon_bo_reserve(rdev->vram_scratch.robj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->vram_scratch.robj, RADEON_GEM_DOMAIN_VRAM, &rdev->vram_scratch.gpu_addr); if (r) { radeon_bo_unreserve(rdev->vram_scratch.robj); return r; } r = radeon_bo_kmap(rdev->vram_scratch.robj, (void **)&rdev->vram_scratch.ptr); if (r) radeon_bo_unpin(rdev->vram_scratch.robj); radeon_bo_unreserve(rdev->vram_scratch.robj); return r; } void r600_vram_scratch_fini(struct radeon_device *rdev) { int r; if (rdev->vram_scratch.robj == NULL) { return; } r = radeon_bo_reserve(rdev->vram_scratch.robj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->vram_scratch.robj); radeon_bo_unpin(rdev->vram_scratch.robj); radeon_bo_unreserve(rdev->vram_scratch.robj); } radeon_bo_unref(&rdev->vram_scratch.robj); } void r600_set_bios_scratch_engine_hung(struct radeon_device *rdev, bool hung) { u32 tmp = RREG32(R600_BIOS_3_SCRATCH); if (hung) tmp |= ATOM_S3_ASIC_GUI_ENGINE_HUNG; else tmp &= ~ATOM_S3_ASIC_GUI_ENGINE_HUNG; WREG32(R600_BIOS_3_SCRATCH, tmp); } static void r600_print_gpu_status_regs(struct radeon_device *rdev) { dev_info(rdev->dev, " R_008010_GRBM_STATUS = 0x%08X\n", RREG32(R_008010_GRBM_STATUS)); dev_info(rdev->dev, " R_008014_GRBM_STATUS2 = 0x%08X\n", RREG32(R_008014_GRBM_STATUS2)); dev_info(rdev->dev, " R_000E50_SRBM_STATUS = 0x%08X\n", RREG32(R_000E50_SRBM_STATUS)); dev_info(rdev->dev, " R_008674_CP_STALLED_STAT1 = 0x%08X\n", RREG32(CP_STALLED_STAT1)); dev_info(rdev->dev, " R_008678_CP_STALLED_STAT2 = 0x%08X\n", RREG32(CP_STALLED_STAT2)); dev_info(rdev->dev, " R_00867C_CP_BUSY_STAT = 0x%08X\n", RREG32(CP_BUSY_STAT)); dev_info(rdev->dev, " R_008680_CP_STAT = 0x%08X\n", RREG32(CP_STAT)); dev_info(rdev->dev, " R_00D034_DMA_STATUS_REG = 0x%08X\n", RREG32(DMA_STATUS_REG)); } static bool r600_is_display_hung(struct radeon_device *rdev) { u32 crtc_hung = 0; u32 crtc_status[2]; u32 i, j, tmp; for (i = 0; i < rdev->num_crtc; i++) { if (RREG32(AVIVO_D1CRTC_CONTROL + crtc_offsets[i]) & AVIVO_CRTC_EN) { crtc_status[i] = RREG32(AVIVO_D1CRTC_STATUS_HV_COUNT + crtc_offsets[i]); crtc_hung |= (1 << i); } } for (j = 0; j < 10; j++) { for (i = 0; i < rdev->num_crtc; i++) { if (crtc_hung & (1 << i)) { tmp = RREG32(AVIVO_D1CRTC_STATUS_HV_COUNT + crtc_offsets[i]); if (tmp != crtc_status[i]) crtc_hung &= ~(1 << i); } } if (crtc_hung == 0) return false; udelay(100); } return true; } static u32 r600_gpu_check_soft_reset(struct radeon_device *rdev) { u32 reset_mask = 0; u32 tmp; /* GRBM_STATUS */ tmp = RREG32(R_008010_GRBM_STATUS); if (rdev->family >= CHIP_RV770) { if (G_008010_PA_BUSY(tmp) | G_008010_SC_BUSY(tmp) | G_008010_SH_BUSY(tmp) | G_008010_SX_BUSY(tmp) | G_008010_TA_BUSY(tmp) | G_008010_VGT_BUSY(tmp) | G_008010_DB03_BUSY(tmp) | G_008010_CB03_BUSY(tmp) | G_008010_SPI03_BUSY(tmp) | G_008010_VGT_BUSY_NO_DMA(tmp)) reset_mask |= RADEON_RESET_GFX; } else { if (G_008010_PA_BUSY(tmp) | G_008010_SC_BUSY(tmp) | G_008010_SH_BUSY(tmp) | G_008010_SX_BUSY(tmp) | G_008010_TA03_BUSY(tmp) | G_008010_VGT_BUSY(tmp) | G_008010_DB03_BUSY(tmp) | G_008010_CB03_BUSY(tmp) | G_008010_SPI03_BUSY(tmp) | G_008010_VGT_BUSY_NO_DMA(tmp)) reset_mask |= RADEON_RESET_GFX; } if (G_008010_CF_RQ_PENDING(tmp) | G_008010_PF_RQ_PENDING(tmp) | G_008010_CP_BUSY(tmp) | G_008010_CP_COHERENCY_BUSY(tmp)) reset_mask |= RADEON_RESET_CP; if (G_008010_GRBM_EE_BUSY(tmp)) reset_mask |= RADEON_RESET_GRBM | RADEON_RESET_GFX | RADEON_RESET_CP; /* DMA_STATUS_REG */ tmp = RREG32(DMA_STATUS_REG); if (!(tmp & DMA_IDLE)) reset_mask |= RADEON_RESET_DMA; /* SRBM_STATUS */ tmp = RREG32(R_000E50_SRBM_STATUS); if (G_000E50_RLC_RQ_PENDING(tmp) | G_000E50_RLC_BUSY(tmp)) reset_mask |= RADEON_RESET_RLC; if (G_000E50_IH_BUSY(tmp)) reset_mask |= RADEON_RESET_IH; if (G_000E50_SEM_BUSY(tmp)) reset_mask |= RADEON_RESET_SEM; if (G_000E50_GRBM_RQ_PENDING(tmp)) reset_mask |= RADEON_RESET_GRBM; if (G_000E50_VMC_BUSY(tmp)) reset_mask |= RADEON_RESET_VMC; if (G_000E50_MCB_BUSY(tmp) | G_000E50_MCDZ_BUSY(tmp) | G_000E50_MCDY_BUSY(tmp) | G_000E50_MCDX_BUSY(tmp) | G_000E50_MCDW_BUSY(tmp)) reset_mask |= RADEON_RESET_MC; if (r600_is_display_hung(rdev)) reset_mask |= RADEON_RESET_DISPLAY; return reset_mask; } static void r600_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask) { struct rv515_mc_save save; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; if (reset_mask == 0) return; dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask); r600_print_gpu_status_regs(rdev); rv515_mc_stop(rdev, &save); if (r600_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Disable CP parsing/prefetching */ if (rdev->family >= CHIP_RV770) WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1) | S_0086D8_CP_PFP_HALT(1)); else WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1)); /* disable the RLC */ WREG32(RLC_CNTL, 0); if (reset_mask & RADEON_RESET_DMA) { /* Disable DMA */ tmp = RREG32(DMA_RB_CNTL); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL, tmp); } mdelay(50); if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE)) { if (rdev->family >= CHIP_RV770) grbm_soft_reset |= S_008020_SOFT_RESET_DB(1) | S_008020_SOFT_RESET_CB(1) | S_008020_SOFT_RESET_PA(1) | S_008020_SOFT_RESET_SC(1) | S_008020_SOFT_RESET_SPI(1) | S_008020_SOFT_RESET_SX(1) | S_008020_SOFT_RESET_SH(1) | S_008020_SOFT_RESET_TC(1) | S_008020_SOFT_RESET_TA(1) | S_008020_SOFT_RESET_VC(1) | S_008020_SOFT_RESET_VGT(1); else grbm_soft_reset |= S_008020_SOFT_RESET_CR(1) | S_008020_SOFT_RESET_DB(1) | S_008020_SOFT_RESET_CB(1) | S_008020_SOFT_RESET_PA(1) | S_008020_SOFT_RESET_SC(1) | S_008020_SOFT_RESET_SMX(1) | S_008020_SOFT_RESET_SPI(1) | S_008020_SOFT_RESET_SX(1) | S_008020_SOFT_RESET_SH(1) | S_008020_SOFT_RESET_TC(1) | S_008020_SOFT_RESET_TA(1) | S_008020_SOFT_RESET_VC(1) | S_008020_SOFT_RESET_VGT(1); } if (reset_mask & RADEON_RESET_CP) { grbm_soft_reset |= S_008020_SOFT_RESET_CP(1) | S_008020_SOFT_RESET_VGT(1); srbm_soft_reset |= S_000E60_SOFT_RESET_GRBM(1); } if (reset_mask & RADEON_RESET_DMA) { if (rdev->family >= CHIP_RV770) srbm_soft_reset |= RV770_SOFT_RESET_DMA; else srbm_soft_reset |= SOFT_RESET_DMA; } if (reset_mask & RADEON_RESET_RLC) srbm_soft_reset |= S_000E60_SOFT_RESET_RLC(1); if (reset_mask & RADEON_RESET_SEM) srbm_soft_reset |= S_000E60_SOFT_RESET_SEM(1); if (reset_mask & RADEON_RESET_IH) srbm_soft_reset |= S_000E60_SOFT_RESET_IH(1); if (reset_mask & RADEON_RESET_GRBM) srbm_soft_reset |= S_000E60_SOFT_RESET_GRBM(1); if (reset_mask & RADEON_RESET_MC) srbm_soft_reset |= S_000E60_SOFT_RESET_MC(1); if (reset_mask & RADEON_RESET_VMC) srbm_soft_reset |= S_000E60_SOFT_RESET_VMC(1); if (grbm_soft_reset) { tmp = RREG32(R_008020_GRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(rdev->dev, "R_008020_GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(R_008020_GRBM_SOFT_RESET, tmp); tmp = RREG32(R_008020_GRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(R_008020_GRBM_SOFT_RESET, tmp); tmp = RREG32(R_008020_GRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(SRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); } /* Wait a little for things to settle down */ mdelay(1); rv515_mc_resume(rdev, &save); udelay(50); r600_print_gpu_status_regs(rdev); } int r600_asic_reset(struct radeon_device *rdev) { u32 reset_mask; reset_mask = r600_gpu_check_soft_reset(rdev); if (reset_mask) r600_set_bios_scratch_engine_hung(rdev, true); r600_gpu_soft_reset(rdev, reset_mask); reset_mask = r600_gpu_check_soft_reset(rdev); if (!reset_mask) r600_set_bios_scratch_engine_hung(rdev, false); return 0; } bool r600_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 srbm_status; u32 grbm_status; u32 grbm_status2; srbm_status = RREG32(R_000E50_SRBM_STATUS); grbm_status = RREG32(R_008010_GRBM_STATUS); grbm_status2 = RREG32(R_008014_GRBM_STATUS2); if (!G_008010_GUI_ACTIVE(grbm_status)) { radeon_ring_lockup_update(ring); return false; } /* force CP activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } /** * r600_dma_is_lockup - Check if the DMA engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the async DMA engine is locked up (r6xx-evergreen). * Returns true if the engine appears to be locked up, false if not. */ bool r600_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 dma_status_reg; dma_status_reg = RREG32(DMA_STATUS_REG); if (dma_status_reg & DMA_IDLE) { radeon_ring_lockup_update(ring); return false; } /* force ring activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } u32 r6xx_remap_render_backend(struct radeon_device *rdev, u32 tiling_pipe_num, u32 max_rb_num, u32 total_max_rb_num, u32 disabled_rb_mask) { u32 rendering_pipe_num, rb_num_width, req_rb_num; u32 pipe_rb_ratio, pipe_rb_remain, tmp; u32 data = 0, mask = 1 << (max_rb_num - 1); unsigned i, j; /* mask out the RBs that don't exist on that asic */ tmp = disabled_rb_mask | ((0xff << max_rb_num) & 0xff); /* make sure at least one RB is available */ if ((tmp & 0xff) != 0xff) disabled_rb_mask = tmp; rendering_pipe_num = 1 << tiling_pipe_num; req_rb_num = total_max_rb_num - r600_count_pipe_bits(disabled_rb_mask); BUG_ON(rendering_pipe_num < req_rb_num); pipe_rb_ratio = rendering_pipe_num / req_rb_num; pipe_rb_remain = rendering_pipe_num - pipe_rb_ratio * req_rb_num; if (rdev->family <= CHIP_RV740) { /* r6xx/r7xx */ rb_num_width = 2; } else { /* eg+ */ rb_num_width = 4; } for (i = 0; i < max_rb_num; i++) { if (!(mask & disabled_rb_mask)) { for (j = 0; j < pipe_rb_ratio; j++) { data <<= rb_num_width; data |= max_rb_num - i - 1; } if (pipe_rb_remain) { data <<= rb_num_width; data |= max_rb_num - i - 1; pipe_rb_remain--; } } mask >>= 1; } return data; } int r600_count_pipe_bits(uint32_t val) { return hweight32(val); } static void r600_gpu_init(struct radeon_device *rdev) { u32 tiling_config; u32 ramcfg; u32 cc_rb_backend_disable; u32 cc_gc_shader_pipe_config; u32 tmp; int i, j; u32 sq_config; u32 sq_gpr_resource_mgmt_1 = 0; u32 sq_gpr_resource_mgmt_2 = 0; u32 sq_thread_resource_mgmt = 0; u32 sq_stack_resource_mgmt_1 = 0; u32 sq_stack_resource_mgmt_2 = 0; u32 disabled_rb_mask; rdev->config.r600.tiling_group_size = 256; switch (rdev->family) { case CHIP_R600: rdev->config.r600.max_pipes = 4; rdev->config.r600.max_tile_pipes = 8; rdev->config.r600.max_simds = 4; rdev->config.r600.max_backends = 4; rdev->config.r600.max_gprs = 256; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 256; rdev->config.r600.max_hw_contexts = 8; rdev->config.r600.max_gs_threads = 16; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 2; break; case CHIP_RV630: case CHIP_RV635: rdev->config.r600.max_pipes = 2; rdev->config.r600.max_tile_pipes = 2; rdev->config.r600.max_simds = 3; rdev->config.r600.max_backends = 1; rdev->config.r600.max_gprs = 128; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 128; rdev->config.r600.max_hw_contexts = 8; rdev->config.r600.max_gs_threads = 4; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 2; break; case CHIP_RV610: case CHIP_RV620: case CHIP_RS780: case CHIP_RS880: rdev->config.r600.max_pipes = 1; rdev->config.r600.max_tile_pipes = 1; rdev->config.r600.max_simds = 2; rdev->config.r600.max_backends = 1; rdev->config.r600.max_gprs = 128; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 128; rdev->config.r600.max_hw_contexts = 4; rdev->config.r600.max_gs_threads = 4; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 1; break; case CHIP_RV670: rdev->config.r600.max_pipes = 4; rdev->config.r600.max_tile_pipes = 4; rdev->config.r600.max_simds = 4; rdev->config.r600.max_backends = 4; rdev->config.r600.max_gprs = 192; rdev->config.r600.max_threads = 192; rdev->config.r600.max_stack_entries = 256; rdev->config.r600.max_hw_contexts = 8; rdev->config.r600.max_gs_threads = 16; rdev->config.r600.sx_max_export_size = 128; rdev->config.r600.sx_max_export_pos_size = 16; rdev->config.r600.sx_max_export_smx_size = 128; rdev->config.r600.sq_num_cf_insts = 2; break; default: break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); /* Setup tiling */ tiling_config = 0; ramcfg = RREG32(RAMCFG); switch (rdev->config.r600.max_tile_pipes) { case 1: tiling_config |= PIPE_TILING(0); break; case 2: tiling_config |= PIPE_TILING(1); break; case 4: tiling_config |= PIPE_TILING(2); break; case 8: tiling_config |= PIPE_TILING(3); break; default: break; } rdev->config.r600.tiling_npipes = rdev->config.r600.max_tile_pipes; rdev->config.r600.tiling_nbanks = 4 << ((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT); tiling_config |= BANK_TILING((ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT); tiling_config |= GROUP_SIZE((ramcfg & BURSTLENGTH_MASK) >> BURSTLENGTH_SHIFT); tmp = (ramcfg & NOOFROWS_MASK) >> NOOFROWS_SHIFT; if (tmp > 3) { tiling_config |= ROW_TILING(3); tiling_config |= SAMPLE_SPLIT(3); } else { tiling_config |= ROW_TILING(tmp); tiling_config |= SAMPLE_SPLIT(tmp); } tiling_config |= BANK_SWAPS(1); cc_rb_backend_disable = RREG32(CC_RB_BACKEND_DISABLE) & 0x00ff0000; tmp = R6XX_MAX_BACKENDS - r600_count_pipe_bits((cc_rb_backend_disable >> 16) & R6XX_MAX_BACKENDS_MASK); if (tmp < rdev->config.r600.max_backends) { rdev->config.r600.max_backends = tmp; } cc_gc_shader_pipe_config = RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0x00ffff00; tmp = R6XX_MAX_PIPES - r600_count_pipe_bits((cc_gc_shader_pipe_config >> 8) & R6XX_MAX_PIPES_MASK); if (tmp < rdev->config.r600.max_pipes) { rdev->config.r600.max_pipes = tmp; } tmp = R6XX_MAX_SIMDS - r600_count_pipe_bits((cc_gc_shader_pipe_config >> 16) & R6XX_MAX_SIMDS_MASK); if (tmp < rdev->config.r600.max_simds) { rdev->config.r600.max_simds = tmp; } disabled_rb_mask = (RREG32(CC_RB_BACKEND_DISABLE) >> 16) & R6XX_MAX_BACKENDS_MASK; tmp = (tiling_config & PIPE_TILING__MASK) >> PIPE_TILING__SHIFT; tmp = r6xx_remap_render_backend(rdev, tmp, rdev->config.r600.max_backends, R6XX_MAX_BACKENDS, disabled_rb_mask); tiling_config |= tmp << 16; rdev->config.r600.backend_map = tmp; rdev->config.r600.tile_config = tiling_config; WREG32(GB_TILING_CONFIG, tiling_config); WREG32(DCP_TILING_CONFIG, tiling_config & 0xffff); WREG32(HDP_TILING_CONFIG, tiling_config & 0xffff); WREG32(DMA_TILING_CONFIG, tiling_config & 0xffff); tmp = R6XX_MAX_PIPES - r600_count_pipe_bits((cc_gc_shader_pipe_config & INACTIVE_QD_PIPES_MASK) >> 8); WREG32(VGT_OUT_DEALLOC_CNTL, (tmp * 4) & DEALLOC_DIST_MASK); WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, ((tmp * 4) - 2) & VTX_REUSE_DEPTH_MASK); /* Setup some CP states */ WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b))); WREG32(CP_MEQ_THRESHOLDS, (MEQ_END(0x40) | ROQ_END(0x40))); WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO | SYNC_GRADIENT | SYNC_WALKER | SYNC_ALIGNER)); /* Setup various GPU states */ if (rdev->family == CHIP_RV670) WREG32(ARB_GDEC_RD_CNTL, 0x00000021); tmp = RREG32(SX_DEBUG_1); tmp |= SMX_EVENT_RELEASE; if ((rdev->family > CHIP_R600)) tmp |= ENABLE_NEW_SMX_ADDRESS; WREG32(SX_DEBUG_1, tmp); if (((rdev->family) == CHIP_R600) || ((rdev->family) == CHIP_RV630) || ((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { WREG32(DB_DEBUG, PREZ_MUST_WAIT_FOR_POSTZ_DONE); } else { WREG32(DB_DEBUG, 0); } WREG32(DB_WATERMARKS, (DEPTH_FREE(4) | DEPTH_CACHELINE_FREE(16) | DEPTH_FLUSH(16) | DEPTH_PENDING_FREE(4))); WREG32(PA_SC_MULTI_CHIP_CNTL, 0); WREG32(VGT_NUM_INSTANCES, 0); WREG32(SPI_CONFIG_CNTL, GPR_WRITE_PRIORITY(0)); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(0)); tmp = RREG32(SQ_MS_FIFO_SIZES); if (((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { tmp = (CACHE_FIFO_SIZE(0xa) | FETCH_FIFO_HIWATER(0xa) | DONE_FIFO_HIWATER(0xe0) | ALU_UPDATE_FIFO_HIWATER(0x8)); } else if (((rdev->family) == CHIP_R600) || ((rdev->family) == CHIP_RV630)) { tmp &= ~DONE_FIFO_HIWATER(0xff); tmp |= DONE_FIFO_HIWATER(0x4); } WREG32(SQ_MS_FIFO_SIZES, tmp); /* SQ_CONFIG, SQ_GPR_RESOURCE_MGMT, SQ_THREAD_RESOURCE_MGMT, SQ_STACK_RESOURCE_MGMT * should be adjusted as needed by the 2D/3D drivers. This just sets default values */ sq_config = RREG32(SQ_CONFIG); sq_config &= ~(PS_PRIO(3) | VS_PRIO(3) | GS_PRIO(3) | ES_PRIO(3)); sq_config |= (DX9_CONSTS | VC_ENABLE | PS_PRIO(0) | VS_PRIO(1) | GS_PRIO(2) | ES_PRIO(3)); if ((rdev->family) == CHIP_R600) { sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(124) | NUM_VS_GPRS(124) | NUM_CLAUSE_TEMP_GPRS(4)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(0) | NUM_ES_GPRS(0)); sq_thread_resource_mgmt = (NUM_PS_THREADS(136) | NUM_VS_THREADS(48) | NUM_GS_THREADS(4) | NUM_ES_THREADS(4)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(128) | NUM_VS_STACK_ENTRIES(128)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(0) | NUM_ES_STACK_ENTRIES(0)); } else if (((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { /* no vertex cache */ sq_config &= ~VC_ENABLE; sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) | NUM_VS_GPRS(44) | NUM_CLAUSE_TEMP_GPRS(2)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) | NUM_ES_GPRS(17)); sq_thread_resource_mgmt = (NUM_PS_THREADS(79) | NUM_VS_THREADS(78) | NUM_GS_THREADS(4) | NUM_ES_THREADS(31)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) | NUM_VS_STACK_ENTRIES(40)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) | NUM_ES_STACK_ENTRIES(16)); } else if (((rdev->family) == CHIP_RV630) || ((rdev->family) == CHIP_RV635)) { sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) | NUM_VS_GPRS(44) | NUM_CLAUSE_TEMP_GPRS(2)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(18) | NUM_ES_GPRS(18)); sq_thread_resource_mgmt = (NUM_PS_THREADS(79) | NUM_VS_THREADS(78) | NUM_GS_THREADS(4) | NUM_ES_THREADS(31)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(40) | NUM_VS_STACK_ENTRIES(40)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(32) | NUM_ES_STACK_ENTRIES(16)); } else if ((rdev->family) == CHIP_RV670) { sq_gpr_resource_mgmt_1 = (NUM_PS_GPRS(44) | NUM_VS_GPRS(44) | NUM_CLAUSE_TEMP_GPRS(2)); sq_gpr_resource_mgmt_2 = (NUM_GS_GPRS(17) | NUM_ES_GPRS(17)); sq_thread_resource_mgmt = (NUM_PS_THREADS(79) | NUM_VS_THREADS(78) | NUM_GS_THREADS(4) | NUM_ES_THREADS(31)); sq_stack_resource_mgmt_1 = (NUM_PS_STACK_ENTRIES(64) | NUM_VS_STACK_ENTRIES(64)); sq_stack_resource_mgmt_2 = (NUM_GS_STACK_ENTRIES(64) | NUM_ES_STACK_ENTRIES(64)); } WREG32(SQ_CONFIG, sq_config); WREG32(SQ_GPR_RESOURCE_MGMT_1, sq_gpr_resource_mgmt_1); WREG32(SQ_GPR_RESOURCE_MGMT_2, sq_gpr_resource_mgmt_2); WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt); WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1); WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2); if (((rdev->family) == CHIP_RV610) || ((rdev->family) == CHIP_RV620) || ((rdev->family) == CHIP_RS780) || ((rdev->family) == CHIP_RS880)) { WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(TC_ONLY)); } else { WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC)); } /* More default values. 2D/3D driver should adjust as needed */ WREG32(PA_SC_AA_SAMPLE_LOCS_2S, (S0_X(0xc) | S0_Y(0x4) | S1_X(0x4) | S1_Y(0xc))); WREG32(PA_SC_AA_SAMPLE_LOCS_4S, (S0_X(0xe) | S0_Y(0xe) | S1_X(0x2) | S1_Y(0x2) | S2_X(0xa) | S2_Y(0x6) | S3_X(0x6) | S3_Y(0xa))); WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD0, (S0_X(0xe) | S0_Y(0xb) | S1_X(0x4) | S1_Y(0xc) | S2_X(0x1) | S2_Y(0x6) | S3_X(0xa) | S3_Y(0xe))); WREG32(PA_SC_AA_SAMPLE_LOCS_8S_WD1, (S4_X(0x6) | S4_Y(0x1) | S5_X(0x0) | S5_Y(0x0) | S6_X(0xb) | S6_Y(0x4) | S7_X(0x7) | S7_Y(0x8))); WREG32(VGT_STRMOUT_EN, 0); tmp = rdev->config.r600.max_pipes * 16; switch (rdev->family) { case CHIP_RV610: case CHIP_RV620: case CHIP_RS780: case CHIP_RS880: tmp += 32; break; case CHIP_RV670: tmp += 128; break; default: break; } if (tmp > 256) { tmp = 256; } WREG32(VGT_ES_PER_GS, 128); WREG32(VGT_GS_PER_ES, tmp); WREG32(VGT_GS_PER_VS, 2); WREG32(VGT_GS_VERTEX_REUSE, 16); /* more default values. 2D/3D driver should adjust as needed */ WREG32(PA_SC_LINE_STIPPLE_STATE, 0); WREG32(VGT_STRMOUT_EN, 0); WREG32(SX_MISC, 0); WREG32(PA_SC_MODE_CNTL, 0); WREG32(PA_SC_AA_CONFIG, 0); WREG32(PA_SC_LINE_STIPPLE, 0); WREG32(SPI_INPUT_Z, 0); WREG32(SPI_PS_IN_CONTROL_0, NUM_INTERP(2)); WREG32(CB_COLOR7_FRAG, 0); /* Clear render buffer base addresses */ WREG32(CB_COLOR0_BASE, 0); WREG32(CB_COLOR1_BASE, 0); WREG32(CB_COLOR2_BASE, 0); WREG32(CB_COLOR3_BASE, 0); WREG32(CB_COLOR4_BASE, 0); WREG32(CB_COLOR5_BASE, 0); WREG32(CB_COLOR6_BASE, 0); WREG32(CB_COLOR7_BASE, 0); WREG32(CB_COLOR7_FRAG, 0); switch (rdev->family) { case CHIP_RV610: case CHIP_RV620: case CHIP_RS780: case CHIP_RS880: tmp = TC_L2_SIZE(8); break; case CHIP_RV630: case CHIP_RV635: tmp = TC_L2_SIZE(4); break; case CHIP_R600: tmp = TC_L2_SIZE(0) | L2_DISABLE_LATE_HIT; break; default: tmp = TC_L2_SIZE(0); break; } WREG32(TC_CNTL, tmp); tmp = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, tmp); tmp = RREG32(ARB_POP); tmp |= ENABLE_TC128; WREG32(ARB_POP, tmp); WREG32(PA_SC_MULTI_CHIP_CNTL, 0); WREG32(PA_CL_ENHANCE, (CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3))); WREG32(PA_SC_ENHANCE, FORCE_EOV_MAX_CLK_CNT(4095)); WREG32(VC_ENHANCE, 0); } /* * Indirect registers accessor */ u32 r600_pciep_rreg(struct radeon_device *rdev, u32 reg) { u32 r; WREG32(PCIE_PORT_INDEX, ((reg) & 0xff)); (void)RREG32(PCIE_PORT_INDEX); r = RREG32(PCIE_PORT_DATA); return r; } void r600_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v) { WREG32(PCIE_PORT_INDEX, ((reg) & 0xff)); (void)RREG32(PCIE_PORT_INDEX); WREG32(PCIE_PORT_DATA, (v)); (void)RREG32(PCIE_PORT_DATA); } /* * CP & Ring */ void r600_cp_stop(struct radeon_device *rdev) { radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); WREG32(R_0086D8_CP_ME_CNTL, S_0086D8_CP_ME_HALT(1)); WREG32(SCRATCH_UMSK, 0); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; } int r600_init_microcode(struct radeon_device *rdev) { struct platform_device *pdev; const char *chip_name; const char *rlc_chip_name; size_t pfp_req_size, me_req_size, rlc_req_size; char fw_name[30]; int err; DRM_DEBUG("\n"); pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0); err = IS_ERR(pdev); if (err) { printk(KERN_ERR "radeon_cp: Failed to register firmware\n"); return -EINVAL; } switch (rdev->family) { case CHIP_R600: chip_name = "R600"; rlc_chip_name = "R600"; break; case CHIP_RV610: chip_name = "RV610"; rlc_chip_name = "R600"; break; case CHIP_RV630: chip_name = "RV630"; rlc_chip_name = "R600"; break; case CHIP_RV620: chip_name = "RV620"; rlc_chip_name = "R600"; break; case CHIP_RV635: chip_name = "RV635"; rlc_chip_name = "R600"; break; case CHIP_RV670: chip_name = "RV670"; rlc_chip_name = "R600"; break; case CHIP_RS780: case CHIP_RS880: chip_name = "RS780"; rlc_chip_name = "R600"; break; case CHIP_RV770: chip_name = "RV770"; rlc_chip_name = "R700"; break; case CHIP_RV730: case CHIP_RV740: chip_name = "RV730"; rlc_chip_name = "R700"; break; case CHIP_RV710: chip_name = "RV710"; rlc_chip_name = "R700"; break; case CHIP_CEDAR: chip_name = "CEDAR"; rlc_chip_name = "CEDAR"; break; case CHIP_REDWOOD: chip_name = "REDWOOD"; rlc_chip_name = "REDWOOD"; break; case CHIP_JUNIPER: chip_name = "JUNIPER"; rlc_chip_name = "JUNIPER"; break; case CHIP_CYPRESS: case CHIP_HEMLOCK: chip_name = "CYPRESS"; rlc_chip_name = "CYPRESS"; break; case CHIP_PALM: chip_name = "PALM"; rlc_chip_name = "SUMO"; break; case CHIP_SUMO: chip_name = "SUMO"; rlc_chip_name = "SUMO"; break; case CHIP_SUMO2: chip_name = "SUMO2"; rlc_chip_name = "SUMO"; break; default: BUG(); } if (rdev->family >= CHIP_CEDAR) { pfp_req_size = EVERGREEN_PFP_UCODE_SIZE * 4; me_req_size = EVERGREEN_PM4_UCODE_SIZE * 4; rlc_req_size = EVERGREEN_RLC_UCODE_SIZE * 4; } else if (rdev->family >= CHIP_RV770) { pfp_req_size = R700_PFP_UCODE_SIZE * 4; me_req_size = R700_PM4_UCODE_SIZE * 4; rlc_req_size = R700_RLC_UCODE_SIZE * 4; } else { pfp_req_size = PFP_UCODE_SIZE * 4; me_req_size = PM4_UCODE_SIZE * 12; rlc_req_size = RLC_UCODE_SIZE * 4; } DRM_INFO("Loading %s Microcode\n", chip_name); snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->pfp_fw->size != pfp_req_size) { printk(KERN_ERR "r600_cp: Bogus length %zu in firmware \"%s\"\n", rdev->pfp_fw->size, fw_name); err = -EINVAL; goto out; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->me_fw->size != me_req_size) { printk(KERN_ERR "r600_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", rlc_chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->rlc_fw->size != rlc_req_size) { printk(KERN_ERR "r600_rlc: Bogus length %zu in firmware \"%s\"\n", rdev->rlc_fw->size, fw_name); err = -EINVAL; } out: platform_device_unregister(pdev); if (err) { if (err != -EINVAL) printk(KERN_ERR "r600_cp: Failed to load firmware \"%s\"\n", fw_name); release_firmware(rdev->pfp_fw); rdev->pfp_fw = NULL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; release_firmware(rdev->rlc_fw); rdev->rlc_fw = NULL; } return err; } static int r600_cp_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->me_fw || !rdev->pfp_fw) return -EINVAL; r600_cp_stop(rdev); WREG32(CP_RB_CNTL, #ifdef __BIG_ENDIAN BUF_SWAP_32BIT | #endif RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3)); /* Reset cp */ WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); WREG32(CP_ME_RAM_WADDR, 0); fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < PM4_UCODE_SIZE * 3; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } int r600_cp_start(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r; uint32_t cp_me; r = radeon_ring_lock(rdev, ring, 7); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5)); radeon_ring_write(ring, 0x1); if (rdev->family >= CHIP_RV770) { radeon_ring_write(ring, 0x0); radeon_ring_write(ring, rdev->config.rv770.max_hw_contexts - 1); } else { radeon_ring_write(ring, 0x3); radeon_ring_write(ring, rdev->config.r600.max_hw_contexts - 1); } radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1)); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); radeon_ring_unlock_commit(rdev, ring); cp_me = 0xff; WREG32(R_0086D8_CP_ME_CNTL, cp_me); return 0; } int r600_cp_resume(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; u32 tmp; u32 rb_bufsz; int r; /* Reset cp */ WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); /* Set ring buffer size */ rb_bufsz = drm_order(ring->ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB_CNTL, tmp); WREG32(CP_SEM_WAIT_TIMER, 0x0); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA); WREG32(CP_RB_RPTR_WR, 0); ring->wptr = 0; WREG32(CP_RB_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB_RPTR_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC)); WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); if (rdev->wb.enabled) WREG32(SCRATCH_UMSK, 0xff); else { tmp |= RB_NO_UPDATE; WREG32(SCRATCH_UMSK, 0); } mdelay(1); WREG32(CP_RB_CNTL, tmp); WREG32(CP_RB_BASE, ring->gpu_addr >> 8); WREG32(CP_DEBUG, (1 << 27) | (1 << 28)); ring->rptr = RREG32(CP_RB_RPTR); r600_cp_start(rdev); ring->ready = true; r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, ring); if (r) { ring->ready = false; return r; } return 0; } void r600_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size) { u32 rb_bufsz; int r; /* Align ring size */ rb_bufsz = drm_order(ring_size / 8); ring_size = (1 << (rb_bufsz + 1)) * 4; ring->ring_size = ring_size; ring->align_mask = 16 - 1; if (radeon_ring_supports_scratch_reg(rdev, ring)) { r = radeon_scratch_get(rdev, &ring->rptr_save_reg); if (r) { DRM_ERROR("failed to get scratch reg for rptr save (%d).\n", r); ring->rptr_save_reg = 0; } } } void r600_cp_fini(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; r600_cp_stop(rdev); radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); } /* * DMA * Starting with R600, the GPU has an asynchronous * DMA engine. The programming model is very similar * to the 3D engine (ring buffer, IBs, etc.), but the * DMA controller has it's own packet format that is * different form the PM4 format used by the 3D engine. * It supports copying data, writing embedded data, * solid fills, and a number of other things. It also * has support for tiling/detiling of buffers. */ /** * r600_dma_stop - stop the async dma engine * * @rdev: radeon_device pointer * * Stop the async dma engine (r6xx-evergreen). */ void r600_dma_stop(struct radeon_device *rdev) { u32 rb_cntl = RREG32(DMA_RB_CNTL); radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); rb_cntl &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL, rb_cntl); rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false; } /** * r600_dma_resume - setup and start the async dma engine * * @rdev: radeon_device pointer * * Set up the DMA ring buffer and enable it. (r6xx-evergreen). * Returns 0 for success, error for failure. */ int r600_dma_resume(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; u32 rb_cntl, dma_cntl, ib_cntl; u32 rb_bufsz; int r; /* Reset dma */ if (rdev->family >= CHIP_RV770) WREG32(SRBM_SOFT_RESET, RV770_SOFT_RESET_DMA); else WREG32(SRBM_SOFT_RESET, SOFT_RESET_DMA); RREG32(SRBM_SOFT_RESET); udelay(50); WREG32(SRBM_SOFT_RESET, 0); WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL, 0); WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); /* Set ring buffer size in dwords */ rb_bufsz = drm_order(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE; #endif WREG32(DMA_RB_CNTL, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(DMA_RB_RPTR, 0); WREG32(DMA_RB_WPTR, 0); /* set the wb address whether it's enabled or not */ WREG32(DMA_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_DMA_RPTR_OFFSET) & 0xFF); WREG32(DMA_RB_RPTR_ADDR_LO, ((rdev->wb.gpu_addr + R600_WB_DMA_RPTR_OFFSET) & 0xFFFFFFFC)); if (rdev->wb.enabled) rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE; WREG32(DMA_RB_BASE, ring->gpu_addr >> 8); /* enable DMA IBs */ ib_cntl = DMA_IB_ENABLE; #ifdef __BIG_ENDIAN ib_cntl |= DMA_IB_SWAP_ENABLE; #endif WREG32(DMA_IB_CNTL, ib_cntl); dma_cntl = RREG32(DMA_CNTL); dma_cntl &= ~CTXEMPTY_INT_ENABLE; WREG32(DMA_CNTL, dma_cntl); if (rdev->family >= CHIP_RV770) WREG32(DMA_MODE, 1); ring->wptr = 0; WREG32(DMA_RB_WPTR, ring->wptr << 2); ring->rptr = RREG32(DMA_RB_RPTR) >> 2; WREG32(DMA_RB_CNTL, rb_cntl | DMA_RB_ENABLE); ring->ready = true; r = radeon_ring_test(rdev, R600_RING_TYPE_DMA_INDEX, ring); if (r) { ring->ready = false; return r; } radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); return 0; } /** * r600_dma_fini - tear down the async dma engine * * @rdev: radeon_device pointer * * Stop the async dma engine and free the ring (r6xx-evergreen). */ void r600_dma_fini(struct radeon_device *rdev) { r600_dma_stop(rdev); radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); } /* * GPU scratch registers helpers function. */ void r600_scratch_init(struct radeon_device *rdev) { int i; rdev->scratch.num_reg = 7; rdev->scratch.reg_base = SCRATCH_REG0; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); } } int r600_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ring_lock(rdev, ring, 3); if (r) { DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r); radeon_scratch_free(rdev, scratch); return r; } radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2)); radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n", ring->idx, scratch, tmp); r = -EINVAL; } radeon_scratch_free(rdev, scratch); return r; } /** * r600_dma_ring_test - simple async dma engine test * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (r6xx-SI). * Returns 0 for success, error for failure. */ int r600_dma_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { unsigned i; int r; void __iomem *ptr = (void *)rdev->vram_scratch.ptr; u32 tmp; if (!ptr) { DRM_ERROR("invalid vram scratch pointer\n"); return -EINVAL; } tmp = 0xCAFEDEAD; writel(tmp, ptr); r = radeon_ring_lock(rdev, ring, 4); if (r) { DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); return r; } radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1)); radeon_ring_write(ring, rdev->vram_scratch.gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xff); radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring); for (i = 0; i < rdev->usec_timeout; i++) { tmp = readl(ptr); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", ring->idx, tmp); r = -EINVAL; } return r; } /* * CP fences/semaphores */ void r600_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; if (rdev->wb.use_event) { u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* flush read cache over gart */ radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); radeon_ring_write(ring, PACKET3_TC_ACTION_ENA | PACKET3_VC_ACTION_ENA | PACKET3_SH_ACTION_ENA); radeon_ring_write(ring, 0xFFFFFFFF); radeon_ring_write(ring, 0); radeon_ring_write(ring, 10); /* poll interval */ /* EVENT_WRITE_EOP - flush caches, send int */ radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_EVENT_TS) | EVENT_INDEX(5)); radeon_ring_write(ring, addr & 0xffffffff); radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | DATA_SEL(1) | INT_SEL(2)); radeon_ring_write(ring, fence->seq); radeon_ring_write(ring, 0); } else { /* flush read cache over gart */ radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); radeon_ring_write(ring, PACKET3_TC_ACTION_ENA | PACKET3_VC_ACTION_ENA | PACKET3_SH_ACTION_ENA); radeon_ring_write(ring, 0xFFFFFFFF); radeon_ring_write(ring, 0); radeon_ring_write(ring, 10); /* poll interval */ radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0)); radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_EVENT) | EVENT_INDEX(0)); /* wait for 3D idle clean */ radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, (WAIT_UNTIL - PACKET3_SET_CONFIG_REG_OFFSET) >> 2); radeon_ring_write(ring, WAIT_3D_IDLE_bit | WAIT_3D_IDLECLEAN_bit); /* Emit fence sequence & fire IRQ */ radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, ((rdev->fence_drv[fence->ring].scratch_reg - PACKET3_SET_CONFIG_REG_OFFSET) >> 2)); radeon_ring_write(ring, fence->seq); /* CP_INTERRUPT packet 3 no longer exists, use packet 0 */ radeon_ring_write(ring, PACKET0(CP_INT_STATUS, 0)); radeon_ring_write(ring, RB_INT_STAT); } } void r600_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { uint64_t addr = semaphore->gpu_addr; unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL; if (rdev->family < CHIP_CAYMAN) sel |= PACKET3_SEM_WAIT_ON_SIGNAL; radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1)); radeon_ring_write(ring, addr & 0xffffffff); radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | sel); } /* * DMA fences/semaphores */ /** * r600_dma_fence_ring_emit - emit a fence on the DMA ring * * @rdev: radeon_device pointer * @fence: radeon fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (r6xx-r7xx). */ void r600_dma_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* write the fence */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0)); radeon_ring_write(ring, addr & 0xfffffffc); radeon_ring_write(ring, (upper_32_bits(addr) & 0xff)); radeon_ring_write(ring, lower_32_bits(fence->seq)); /* generate an interrupt */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_TRAP, 0, 0, 0)); } /** * r600_dma_semaphore_ring_emit - emit a semaphore on the dma ring * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @semaphore: radeon semaphore object * @emit_wait: wait or signal semaphore * * Add a DMA semaphore packet to the ring wait on or signal * other rings (r6xx-SI). */ void r600_dma_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { u64 addr = semaphore->gpu_addr; u32 s = emit_wait ? 0 : 1; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SEMAPHORE, 0, s, 0)); radeon_ring_write(ring, addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(addr) & 0xff); } int r600_copy_blit(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct radeon_fence **fence) { struct radeon_semaphore *sem = NULL; struct radeon_sa_bo *vb = NULL; int r; r = r600_blit_prepare_copy(rdev, num_gpu_pages, fence, &vb, &sem); if (r) { return r; } r600_kms_blit_copy(rdev, src_offset, dst_offset, num_gpu_pages, vb); r600_blit_done_copy(rdev, fence, vb, sem); return 0; } /** * r600_copy_dma - copy pages using the DMA engine * * @rdev: radeon_device pointer * @src_offset: src GPU address * @dst_offset: dst GPU address * @num_gpu_pages: number of GPU pages to xfer * @fence: radeon fence object * * Copy GPU paging using the DMA engine (r6xx). * Used by the radeon ttm implementation to move pages if * registered as the asic copy callback. */ int r600_copy_dma(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct radeon_fence **fence) { struct radeon_semaphore *sem = NULL; int ring_index = rdev->asic->copy.dma_ring_index; struct radeon_ring *ring = &rdev->ring[ring_index]; u32 size_in_dw, cur_size_in_dw; int i, num_loops; int r = 0; r = radeon_semaphore_create(rdev, &sem); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); return r; } size_in_dw = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT) / 4; num_loops = DIV_ROUND_UP(size_in_dw, 0xFFFE); r = radeon_ring_lock(rdev, ring, num_loops * 4 + 8); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); radeon_semaphore_free(rdev, &sem, NULL); return r; } if (radeon_fence_need_sync(*fence, ring->idx)) { radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring, ring->idx); radeon_fence_note_sync(*fence, ring->idx); } else { radeon_semaphore_free(rdev, &sem, NULL); } for (i = 0; i < num_loops; i++) { cur_size_in_dw = size_in_dw; if (cur_size_in_dw > 0xFFFE) cur_size_in_dw = 0xFFFE; size_in_dw -= cur_size_in_dw; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_COPY, 0, 0, cur_size_in_dw)); radeon_ring_write(ring, dst_offset & 0xfffffffc); radeon_ring_write(ring, src_offset & 0xfffffffc); radeon_ring_write(ring, (((upper_32_bits(dst_offset) & 0xff) << 16) | (upper_32_bits(src_offset) & 0xff))); src_offset += cur_size_in_dw * 4; dst_offset += cur_size_in_dw * 4; } r = radeon_fence_emit(rdev, fence, ring->idx); if (r) { radeon_ring_unlock_undo(rdev, ring); return r; } radeon_ring_unlock_commit(rdev, ring); radeon_semaphore_free(rdev, &sem, *fence); return r; } int r600_set_surface_reg(struct radeon_device *rdev, int reg, uint32_t tiling_flags, uint32_t pitch, uint32_t offset, uint32_t obj_size) { /* FIXME: implement */ return 0; } void r600_clear_surface_reg(struct radeon_device *rdev, int reg) { /* FIXME: implement */ } static int r600_startup(struct radeon_device *rdev) { struct radeon_ring *ring; int r; /* enable pcie gen2 link */ r600_pcie_gen2_enable(rdev); if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) { r = r600_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } r = r600_vram_scratch_init(rdev); if (r) return r; r600_mc_program(rdev); if (rdev->flags & RADEON_IS_AGP) { r600_agp_enable(rdev); } else { r = r600_pcie_gart_enable(rdev); if (r) return r; } r600_gpu_init(rdev); r = r600_blit_init(rdev); if (r) { r600_blit_fini(rdev); rdev->asic->copy.copy = NULL; dev_warn(rdev->dev, "failed blitter (%d) falling back to memcpy\n", r); } /* allocate wb buffer */ r = radeon_wb_init(rdev); if (r) return r; r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } /* Enable IRQ */ r = r600_irq_init(rdev); if (r) { DRM_ERROR("radeon: IH init failed (%d).\n", r); radeon_irq_kms_fini(rdev); return r; } r600_irq_set(rdev); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET, R600_CP_RB_RPTR, R600_CP_RB_WPTR, 0, 0xfffff, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET, DMA_RB_RPTR, DMA_RB_WPTR, 2, 0x3fffc, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0)); if (r) return r; r = r600_cp_load_microcode(rdev); if (r) return r; r = r600_cp_resume(rdev); if (r) return r; r = r600_dma_resume(rdev); if (r) return r; r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); return r; } r = r600_audio_init(rdev); if (r) { DRM_ERROR("radeon: audio init failed\n"); return r; } return 0; } void r600_vga_set_state(struct radeon_device *rdev, bool state) { uint32_t temp; temp = RREG32(CONFIG_CNTL); if (state == false) { temp &= ~(1<<0); temp |= (1<<1); } else { temp &= ~(1<<1); } WREG32(CONFIG_CNTL, temp); } int r600_resume(struct radeon_device *rdev) { int r; /* Do not reset GPU before posting, on r600 hw unlike on r500 hw, * posting will perform necessary task to bring back GPU into good * shape. */ /* post card */ atom_asic_init(rdev->mode_info.atom_context); rdev->accel_working = true; r = r600_startup(rdev); if (r) { DRM_ERROR("r600 startup failed on resume\n"); rdev->accel_working = false; return r; } return r; } int r600_suspend(struct radeon_device *rdev) { r600_audio_fini(rdev); r600_cp_stop(rdev); r600_dma_stop(rdev); r600_irq_suspend(rdev); radeon_wb_disable(rdev); r600_pcie_gart_disable(rdev); return 0; } /* Plan is to move initialization in that function and use * helper function so that radeon_device_init pretty much * do nothing more than calling asic specific function. This * should also allow to remove a bunch of callback function * like vram_info. */ int r600_init(struct radeon_device *rdev) { int r; if (r600_debugfs_mc_info_init(rdev)) { DRM_ERROR("Failed to register debugfs file for mc !\n"); } /* Read BIOS */ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } /* Must be an ATOMBIOS */ if (!rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting atombios for R600 GPU\n"); return -EINVAL; } r = radeon_atombios_init(rdev); if (r) return r; /* Post card if necessary */ if (!radeon_card_posted(rdev)) { if (!rdev->bios) { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return -EINVAL; } DRM_INFO("GPU not posted. posting now...\n"); atom_asic_init(rdev->mode_info.atom_context); } /* Initialize scratch registers */ r600_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) return r; if (rdev->flags & RADEON_IS_AGP) { r = radeon_agp_init(rdev); if (r) radeon_agp_disable(rdev); } r = r600_mc_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; r = radeon_irq_kms_init(rdev); if (r) return r; rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX], 1024 * 1024); rdev->ring[R600_RING_TYPE_DMA_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX], 64 * 1024); rdev->ih.ring_obj = NULL; r600_ih_ring_init(rdev, 64 * 1024); r = r600_pcie_gart_init(rdev); if (r) return r; rdev->accel_working = true; r = r600_startup(rdev); if (r) { dev_err(rdev->dev, "disabling GPU acceleration\n"); r600_cp_fini(rdev); r600_dma_fini(rdev); r600_irq_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); r600_pcie_gart_fini(rdev); rdev->accel_working = false; } return 0; } void r600_fini(struct radeon_device *rdev) { r600_audio_fini(rdev); r600_blit_fini(rdev); r600_cp_fini(rdev); r600_dma_fini(rdev); r600_irq_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); r600_pcie_gart_fini(rdev); r600_vram_scratch_fini(rdev); radeon_agp_fini(rdev); radeon_gem_fini(rdev); radeon_fence_driver_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; } /* * CS stuff */ void r600_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; u32 next_rptr; if (ring->rptr_save_reg) { next_rptr = ring->wptr + 3 + 4; radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, ((ring->rptr_save_reg - PACKET3_SET_CONFIG_REG_OFFSET) >> 2)); radeon_ring_write(ring, next_rptr); } else if (rdev->wb.enabled) { next_rptr = ring->wptr + 5 + 4; radeon_ring_write(ring, PACKET3(PACKET3_MEM_WRITE, 3)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, (upper_32_bits(ring->next_rptr_gpu_addr) & 0xff) | (1 << 18)); radeon_ring_write(ring, next_rptr); radeon_ring_write(ring, 0); } radeon_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); radeon_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFF); radeon_ring_write(ring, ib->length_dw); } int r600_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); goto free_scratch; } ib.ptr[0] = PACKET3(PACKET3_SET_CONFIG_REG, 1); ib.ptr[1] = ((scratch - PACKET3_SET_CONFIG_REG_OFFSET) >> 2); ib.ptr[2] = 0xDEADBEEF; ib.length_dw = 3; r = radeon_ib_schedule(rdev, &ib, NULL); if (r) { DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); goto free_ib; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); goto free_ib; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); } else { DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } free_ib: radeon_ib_free(rdev, &ib); free_scratch: radeon_scratch_free(rdev, scratch); return r; } /** * r600_dma_ib_test - test an IB on the DMA engine * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test a simple IB in the DMA ring (r6xx-SI). * Returns 0 on success, error on failure. */ int r600_dma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; unsigned i; int r; void __iomem *ptr = (void *)rdev->vram_scratch.ptr; u32 tmp = 0; if (!ptr) { DRM_ERROR("invalid vram scratch pointer\n"); return -EINVAL; } tmp = 0xCAFEDEAD; writel(tmp, ptr); r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); return r; } ib.ptr[0] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1); ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc; ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xff; ib.ptr[3] = 0xDEADBEEF; ib.length_dw = 4; r = radeon_ib_schedule(rdev, &ib, NULL); if (r) { radeon_ib_free(rdev, &ib); DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); return r; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); return r; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = readl(ptr); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); } else { DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); r = -EINVAL; } radeon_ib_free(rdev, &ib); return r; } /** * r600_dma_ring_ib_execute - Schedule an IB on the DMA engine * * @rdev: radeon_device pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (r6xx-r7xx). */ void r600_dma_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; if (rdev->wb.enabled) { u32 next_rptr = ring->wptr + 4; while ((next_rptr & 7) != 5) next_rptr++; next_rptr += 3; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff); radeon_ring_write(ring, next_rptr); } /* The indirect buffer packet must end on an 8 DW boundary in the DMA ring. * Pad as necessary with NOPs. */ while ((ring->wptr & 7) != 5) radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0)); radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_INDIRECT_BUFFER, 0, 0, 0)); radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0)); radeon_ring_write(ring, (ib->length_dw << 16) | (upper_32_bits(ib->gpu_addr) & 0xFF)); } /* * Interrupts * * Interrupts use a ring buffer on r6xx/r7xx hardware. It works pretty * the same as the CP ring buffer, but in reverse. Rather than the CPU * writing to the ring and the GPU consuming, the GPU writes to the ring * and host consumes. As the host irq handler processes interrupts, it * increments the rptr. When the rptr catches up with the wptr, all the * current interrupts have been processed. */ void r600_ih_ring_init(struct radeon_device *rdev, unsigned ring_size) { u32 rb_bufsz; /* Align ring size */ rb_bufsz = drm_order(ring_size / 4); ring_size = (1 << rb_bufsz) * 4; rdev->ih.ring_size = ring_size; rdev->ih.ptr_mask = rdev->ih.ring_size - 1; rdev->ih.rptr = 0; } int r600_ih_ring_alloc(struct radeon_device *rdev) { int r; /* Allocate ring buffer */ if (rdev->ih.ring_obj == NULL) { r = radeon_bo_create(rdev, rdev->ih.ring_size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, NULL, &rdev->ih.ring_obj); if (r) { DRM_ERROR("radeon: failed to create ih ring buffer (%d).\n", r); return r; } r = radeon_bo_reserve(rdev->ih.ring_obj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->ih.ring_obj, RADEON_GEM_DOMAIN_GTT, &rdev->ih.gpu_addr); if (r) { radeon_bo_unreserve(rdev->ih.ring_obj); DRM_ERROR("radeon: failed to pin ih ring buffer (%d).\n", r); return r; } r = radeon_bo_kmap(rdev->ih.ring_obj, (void **)&rdev->ih.ring); radeon_bo_unreserve(rdev->ih.ring_obj); if (r) { DRM_ERROR("radeon: failed to map ih ring buffer (%d).\n", r); return r; } } return 0; } void r600_ih_ring_fini(struct radeon_device *rdev) { int r; if (rdev->ih.ring_obj) { r = radeon_bo_reserve(rdev->ih.ring_obj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->ih.ring_obj); radeon_bo_unpin(rdev->ih.ring_obj); radeon_bo_unreserve(rdev->ih.ring_obj); } radeon_bo_unref(&rdev->ih.ring_obj); rdev->ih.ring = NULL; rdev->ih.ring_obj = NULL; } } void r600_rlc_stop(struct radeon_device *rdev) { if ((rdev->family >= CHIP_RV770) && (rdev->family <= CHIP_RV740)) { /* r7xx asics need to soft reset RLC before halting */ WREG32(SRBM_SOFT_RESET, SOFT_RESET_RLC); RREG32(SRBM_SOFT_RESET); mdelay(15); WREG32(SRBM_SOFT_RESET, 0); RREG32(SRBM_SOFT_RESET); } WREG32(RLC_CNTL, 0); } static void r600_rlc_start(struct radeon_device *rdev) { WREG32(RLC_CNTL, RLC_ENABLE); } static int r600_rlc_init(struct radeon_device *rdev) { u32 i; const __be32 *fw_data; if (!rdev->rlc_fw) return -EINVAL; r600_rlc_stop(rdev); WREG32(RLC_HB_CNTL, 0); if (rdev->family == CHIP_ARUBA) { WREG32(TN_RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); WREG32(TN_RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8); } if (rdev->family <= CHIP_CAYMAN) { WREG32(RLC_HB_BASE, 0); WREG32(RLC_HB_RPTR, 0); WREG32(RLC_HB_WPTR, 0); } if (rdev->family <= CHIP_CAICOS) { WREG32(RLC_HB_WPTR_LSB_ADDR, 0); WREG32(RLC_HB_WPTR_MSB_ADDR, 0); } WREG32(RLC_MC_CNTL, 0); WREG32(RLC_UCODE_CNTL, 0); fw_data = (const __be32 *)rdev->rlc_fw->data; if (rdev->family >= CHIP_ARUBA) { for (i = 0; i < ARUBA_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else if (rdev->family >= CHIP_CAYMAN) { for (i = 0; i < CAYMAN_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else if (rdev->family >= CHIP_CEDAR) { for (i = 0; i < EVERGREEN_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else if (rdev->family >= CHIP_RV770) { for (i = 0; i < R700_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else { for (i = 0; i < RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } WREG32(RLC_UCODE_ADDR, 0); r600_rlc_start(rdev); return 0; } static void r600_enable_interrupts(struct radeon_device *rdev) { u32 ih_cntl = RREG32(IH_CNTL); u32 ih_rb_cntl = RREG32(IH_RB_CNTL); ih_cntl |= ENABLE_INTR; ih_rb_cntl |= IH_RB_ENABLE; WREG32(IH_CNTL, ih_cntl); WREG32(IH_RB_CNTL, ih_rb_cntl); rdev->ih.enabled = true; } void r600_disable_interrupts(struct radeon_device *rdev) { u32 ih_rb_cntl = RREG32(IH_RB_CNTL); u32 ih_cntl = RREG32(IH_CNTL); ih_rb_cntl &= ~IH_RB_ENABLE; ih_cntl &= ~ENABLE_INTR; WREG32(IH_RB_CNTL, ih_rb_cntl); WREG32(IH_CNTL, ih_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); rdev->ih.enabled = false; rdev->ih.rptr = 0; } static void r600_disable_interrupt_state(struct radeon_device *rdev) { u32 tmp; WREG32(CP_INT_CNTL, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); tmp = RREG32(DMA_CNTL) & ~TRAP_ENABLE; WREG32(DMA_CNTL, tmp); WREG32(GRBM_INT_CNTL, 0); WREG32(DxMODE_INT_MASK, 0); WREG32(D1GRPH_INTERRUPT_CONTROL, 0); WREG32(D2GRPH_INTERRUPT_CONTROL, 0); if (ASIC_IS_DCE3(rdev)) { WREG32(DCE3_DACA_AUTODETECT_INT_CONTROL, 0); WREG32(DCE3_DACB_AUTODETECT_INT_CONTROL, 0); tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD1_INT_CONTROL, tmp); tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD2_INT_CONTROL, tmp); tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD3_INT_CONTROL, tmp); tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD4_INT_CONTROL, tmp); if (ASIC_IS_DCE32(rdev)) { tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD5_INT_CONTROL, tmp); tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD6_INT_CONTROL, tmp); tmp = RREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET0) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; WREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET0, tmp); tmp = RREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET1) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; WREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET1, tmp); } else { tmp = RREG32(HDMI0_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; WREG32(HDMI0_AUDIO_PACKET_CONTROL, tmp); tmp = RREG32(DCE3_HDMI1_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; WREG32(DCE3_HDMI1_AUDIO_PACKET_CONTROL, tmp); } } else { WREG32(DACA_AUTODETECT_INT_CONTROL, 0); WREG32(DACB_AUTODETECT_INT_CONTROL, 0); tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp); tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp); tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & DC_HOT_PLUG_DETECTx_INT_POLARITY; WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp); tmp = RREG32(HDMI0_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; WREG32(HDMI0_AUDIO_PACKET_CONTROL, tmp); tmp = RREG32(HDMI1_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; WREG32(HDMI1_AUDIO_PACKET_CONTROL, tmp); } } int r600_irq_init(struct radeon_device *rdev) { int ret = 0; int rb_bufsz; u32 interrupt_cntl, ih_cntl, ih_rb_cntl; /* allocate ring */ ret = r600_ih_ring_alloc(rdev); if (ret) return ret; /* disable irqs */ r600_disable_interrupts(rdev); /* init rlc */ ret = r600_rlc_init(rdev); if (ret) { r600_ih_ring_fini(rdev); return ret; } /* setup interrupt control */ /* set dummy read address to ring address */ WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8); interrupt_cntl = RREG32(INTERRUPT_CNTL); /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; WREG32(INTERRUPT_CNTL, interrupt_cntl); WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); rb_bufsz = drm_order(rdev->ih.ring_size / 4); ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | IH_WPTR_OVERFLOW_CLEAR | (rb_bufsz << 1)); if (rdev->wb.enabled) ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE; /* set the writeback address whether it's enabled or not */ WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC); WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF); WREG32(IH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); /* Default settings for IH_CNTL (disabled at first) */ ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10); /* RPTR_REARM only works if msi's are enabled */ if (rdev->msi_enabled) ih_cntl |= RPTR_REARM; WREG32(IH_CNTL, ih_cntl); /* force the active interrupt state to all disabled */ if (rdev->family >= CHIP_CEDAR) evergreen_disable_interrupt_state(rdev); else r600_disable_interrupt_state(rdev); /* at this point everything should be setup correctly to enable master */ pci_set_master(rdev->pdev); /* enable irqs */ r600_enable_interrupts(rdev); return ret; } void r600_irq_suspend(struct radeon_device *rdev) { r600_irq_disable(rdev); r600_rlc_stop(rdev); } void r600_irq_fini(struct radeon_device *rdev) { r600_irq_suspend(rdev); r600_ih_ring_fini(rdev); } int r600_irq_set(struct radeon_device *rdev) { u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE; u32 mode_int = 0; u32 hpd1, hpd2, hpd3, hpd4 = 0, hpd5 = 0, hpd6 = 0; u32 grbm_int_cntl = 0; u32 hdmi0, hdmi1; u32 d1grph = 0, d2grph = 0; u32 dma_cntl; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); return -EINVAL; } /* don't enable anything if the ih is disabled */ if (!rdev->ih.enabled) { r600_disable_interrupts(rdev); /* force the active interrupt state to all disabled */ r600_disable_interrupt_state(rdev); return 0; } if (ASIC_IS_DCE3(rdev)) { hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN; if (ASIC_IS_DCE32(rdev)) { hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN; hdmi0 = RREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET0) & ~AFMT_AZ_FORMAT_WTRIG_MASK; hdmi1 = RREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET1) & ~AFMT_AZ_FORMAT_WTRIG_MASK; } else { hdmi0 = RREG32(HDMI0_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; hdmi1 = RREG32(DCE3_HDMI1_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; } } else { hpd1 = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd2 = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd3 = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL) & ~DC_HPDx_INT_EN; hdmi0 = RREG32(HDMI0_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; hdmi1 = RREG32(HDMI1_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK; } dma_cntl = RREG32(DMA_CNTL) & ~TRAP_ENABLE; if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { DRM_DEBUG("r600_irq_set: sw int\n"); cp_int_cntl |= RB_INT_ENABLE; cp_int_cntl |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { DRM_DEBUG("r600_irq_set: sw int dma\n"); dma_cntl |= TRAP_ENABLE; } if (rdev->irq.crtc_vblank_int[0] || atomic_read(&rdev->irq.pflip[0])) { DRM_DEBUG("r600_irq_set: vblank 0\n"); mode_int |= D1MODE_VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[1] || atomic_read(&rdev->irq.pflip[1])) { DRM_DEBUG("r600_irq_set: vblank 1\n"); mode_int |= D2MODE_VBLANK_INT_MASK; } if (rdev->irq.hpd[0]) { DRM_DEBUG("r600_irq_set: hpd 1\n"); hpd1 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[1]) { DRM_DEBUG("r600_irq_set: hpd 2\n"); hpd2 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[2]) { DRM_DEBUG("r600_irq_set: hpd 3\n"); hpd3 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[3]) { DRM_DEBUG("r600_irq_set: hpd 4\n"); hpd4 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[4]) { DRM_DEBUG("r600_irq_set: hpd 5\n"); hpd5 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[5]) { DRM_DEBUG("r600_irq_set: hpd 6\n"); hpd6 |= DC_HPDx_INT_EN; } if (rdev->irq.afmt[0]) { DRM_DEBUG("r600_irq_set: hdmi 0\n"); hdmi0 |= HDMI0_AZ_FORMAT_WTRIG_MASK; } if (rdev->irq.afmt[1]) { DRM_DEBUG("r600_irq_set: hdmi 0\n"); hdmi1 |= HDMI0_AZ_FORMAT_WTRIG_MASK; } WREG32(CP_INT_CNTL, cp_int_cntl); WREG32(DMA_CNTL, dma_cntl); WREG32(DxMODE_INT_MASK, mode_int); WREG32(D1GRPH_INTERRUPT_CONTROL, d1grph); WREG32(D2GRPH_INTERRUPT_CONTROL, d2grph); WREG32(GRBM_INT_CNTL, grbm_int_cntl); if (ASIC_IS_DCE3(rdev)) { WREG32(DC_HPD1_INT_CONTROL, hpd1); WREG32(DC_HPD2_INT_CONTROL, hpd2); WREG32(DC_HPD3_INT_CONTROL, hpd3); WREG32(DC_HPD4_INT_CONTROL, hpd4); if (ASIC_IS_DCE32(rdev)) { WREG32(DC_HPD5_INT_CONTROL, hpd5); WREG32(DC_HPD6_INT_CONTROL, hpd6); WREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET0, hdmi0); WREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET1, hdmi1); } else { WREG32(HDMI0_AUDIO_PACKET_CONTROL, hdmi0); WREG32(DCE3_HDMI1_AUDIO_PACKET_CONTROL, hdmi1); } } else { WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, hpd1); WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, hpd2); WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, hpd3); WREG32(HDMI0_AUDIO_PACKET_CONTROL, hdmi0); WREG32(HDMI1_AUDIO_PACKET_CONTROL, hdmi1); } return 0; } static void r600_irq_ack(struct radeon_device *rdev) { u32 tmp; if (ASIC_IS_DCE3(rdev)) { rdev->irq.stat_regs.r600.disp_int = RREG32(DCE3_DISP_INTERRUPT_STATUS); rdev->irq.stat_regs.r600.disp_int_cont = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE); rdev->irq.stat_regs.r600.disp_int_cont2 = RREG32(DCE3_DISP_INTERRUPT_STATUS_CONTINUE2); if (ASIC_IS_DCE32(rdev)) { rdev->irq.stat_regs.r600.hdmi0_status = RREG32(AFMT_STATUS + DCE3_HDMI_OFFSET0); rdev->irq.stat_regs.r600.hdmi1_status = RREG32(AFMT_STATUS + DCE3_HDMI_OFFSET1); } else { rdev->irq.stat_regs.r600.hdmi0_status = RREG32(HDMI0_STATUS); rdev->irq.stat_regs.r600.hdmi1_status = RREG32(DCE3_HDMI1_STATUS); } } else { rdev->irq.stat_regs.r600.disp_int = RREG32(DISP_INTERRUPT_STATUS); rdev->irq.stat_regs.r600.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE); rdev->irq.stat_regs.r600.disp_int_cont2 = 0; rdev->irq.stat_regs.r600.hdmi0_status = RREG32(HDMI0_STATUS); rdev->irq.stat_regs.r600.hdmi1_status = RREG32(HDMI1_STATUS); } rdev->irq.stat_regs.r600.d1grph_int = RREG32(D1GRPH_INTERRUPT_STATUS); rdev->irq.stat_regs.r600.d2grph_int = RREG32(D2GRPH_INTERRUPT_STATUS); if (rdev->irq.stat_regs.r600.d1grph_int & DxGRPH_PFLIP_INT_OCCURRED) WREG32(D1GRPH_INTERRUPT_STATUS, DxGRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.r600.d2grph_int & DxGRPH_PFLIP_INT_OCCURRED) WREG32(D2GRPH_INTERRUPT_STATUS, DxGRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VBLANK_INTERRUPT) WREG32(D1MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK); if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VLINE_INTERRUPT) WREG32(D1MODE_VLINE_STATUS, DxMODE_VLINE_ACK); if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VBLANK_INTERRUPT) WREG32(D2MODE_VBLANK_STATUS, DxMODE_VBLANK_ACK); if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VLINE_INTERRUPT) WREG32(D2MODE_VLINE_STATUS, DxMODE_VLINE_ACK); if (rdev->irq.stat_regs.r600.disp_int & DC_HPD1_INTERRUPT) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DC_HPD1_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD1_INT_CONTROL, tmp); } else { tmp = RREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HOT_PLUG_DETECT1_INT_CONTROL, tmp); } } if (rdev->irq.stat_regs.r600.disp_int & DC_HPD2_INTERRUPT) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DC_HPD2_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD2_INT_CONTROL, tmp); } else { tmp = RREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HOT_PLUG_DETECT2_INT_CONTROL, tmp); } } if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD3_INTERRUPT) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DC_HPD3_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD3_INT_CONTROL, tmp); } else { tmp = RREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HOT_PLUG_DETECT3_INT_CONTROL, tmp); } } if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD4_INTERRUPT) { tmp = RREG32(DC_HPD4_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD4_INT_CONTROL, tmp); } if (ASIC_IS_DCE32(rdev)) { if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD5_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD5_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD6_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD6_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.r600.hdmi0_status & AFMT_AZ_FORMAT_WTRIG) { tmp = RREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET0); tmp |= AFMT_AZ_FORMAT_WTRIG_ACK; WREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET0, tmp); } if (rdev->irq.stat_regs.r600.hdmi1_status & AFMT_AZ_FORMAT_WTRIG) { tmp = RREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET1); tmp |= AFMT_AZ_FORMAT_WTRIG_ACK; WREG32(AFMT_AUDIO_PACKET_CONTROL + DCE3_HDMI_OFFSET1, tmp); } } else { if (rdev->irq.stat_regs.r600.hdmi0_status & HDMI0_AZ_FORMAT_WTRIG) { tmp = RREG32(HDMI0_AUDIO_PACKET_CONTROL); tmp |= HDMI0_AZ_FORMAT_WTRIG_ACK; WREG32(HDMI0_AUDIO_PACKET_CONTROL, tmp); } if (rdev->irq.stat_regs.r600.hdmi1_status & HDMI0_AZ_FORMAT_WTRIG) { if (ASIC_IS_DCE3(rdev)) { tmp = RREG32(DCE3_HDMI1_AUDIO_PACKET_CONTROL); tmp |= HDMI0_AZ_FORMAT_WTRIG_ACK; WREG32(DCE3_HDMI1_AUDIO_PACKET_CONTROL, tmp); } else { tmp = RREG32(HDMI1_AUDIO_PACKET_CONTROL); tmp |= HDMI0_AZ_FORMAT_WTRIG_ACK; WREG32(HDMI1_AUDIO_PACKET_CONTROL, tmp); } } } } void r600_irq_disable(struct radeon_device *rdev) { r600_disable_interrupts(rdev); /* Wait and acknowledge irq */ mdelay(1); r600_irq_ack(rdev); r600_disable_interrupt_state(rdev); } static u32 r600_get_ih_wptr(struct radeon_device *rdev) { u32 wptr, tmp; if (rdev->wb.enabled) wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); else wptr = RREG32(IH_RB_WPTR); if (wptr & RB_OVERFLOW) { /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n", wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask); rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; tmp = RREG32(IH_RB_CNTL); tmp |= IH_WPTR_OVERFLOW_CLEAR; WREG32(IH_RB_CNTL, tmp); } return (wptr & rdev->ih.ptr_mask); } /* r600 IV Ring * Each IV ring entry is 128 bits: * [7:0] - interrupt source id * [31:8] - reserved * [59:32] - interrupt source data * [127:60] - reserved * * The basic interrupt vector entries * are decoded as follows: * src_id src_data description * 1 0 D1 Vblank * 1 1 D1 Vline * 5 0 D2 Vblank * 5 1 D2 Vline * 19 0 FP Hot plug detection A * 19 1 FP Hot plug detection B * 19 2 DAC A auto-detection * 19 3 DAC B auto-detection * 21 4 HDMI block A * 21 5 HDMI block B * 176 - CP_INT RB * 177 - CP_INT IB1 * 178 - CP_INT IB2 * 181 - EOP Interrupt * 233 - GUI Idle * * Note, these are based on r600 and may need to be * adjusted or added to on newer asics */ int r600_irq_process(struct radeon_device *rdev) { u32 wptr; u32 rptr; u32 src_id, src_data; u32 ring_index; bool queue_hotplug = false; bool queue_hdmi = false; if (!rdev->ih.enabled || rdev->shutdown) return IRQ_NONE; /* No MSIs, need a dummy read to flush PCI DMAs */ if (!rdev->msi_enabled) RREG32(IH_RB_WPTR); wptr = r600_get_ih_wptr(rdev); restart_ih: /* is somebody else already processing irqs? */ if (atomic_xchg(&rdev->ih.lock, 1)) return IRQ_NONE; rptr = rdev->ih.rptr; DRM_DEBUG("r600_irq_process start: rptr %d, wptr %d\n", rptr, wptr); /* Order reading of wptr vs. reading of IH ring data */ rmb(); /* display interrupts */ r600_irq_ack(rdev); while (rptr != wptr) { /* wptr/rptr are in bytes! */ ring_index = rptr / 4; src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; switch (src_id) { case 1: /* D1 vblank/vline */ switch (src_data) { case 0: /* D1 vblank */ if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[0]) { drm_handle_vblank(rdev->ddev, 0); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[0])) radeon_crtc_handle_flip(rdev, 0); rdev->irq.stat_regs.r600.disp_int &= ~LB_D1_VBLANK_INTERRUPT; DRM_DEBUG("IH: D1 vblank\n"); } break; case 1: /* D1 vline */ if (rdev->irq.stat_regs.r600.disp_int & LB_D1_VLINE_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int &= ~LB_D1_VLINE_INTERRUPT; DRM_DEBUG("IH: D1 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 5: /* D2 vblank/vline */ switch (src_data) { case 0: /* D2 vblank */ if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[1]) { drm_handle_vblank(rdev->ddev, 1); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[1])) radeon_crtc_handle_flip(rdev, 1); rdev->irq.stat_regs.r600.disp_int &= ~LB_D2_VBLANK_INTERRUPT; DRM_DEBUG("IH: D2 vblank\n"); } break; case 1: /* D1 vline */ if (rdev->irq.stat_regs.r600.disp_int & LB_D2_VLINE_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int &= ~LB_D2_VLINE_INTERRUPT; DRM_DEBUG("IH: D2 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 19: /* HPD/DAC hotplug */ switch (src_data) { case 0: if (rdev->irq.stat_regs.r600.disp_int & DC_HPD1_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int &= ~DC_HPD1_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD1\n"); } break; case 1: if (rdev->irq.stat_regs.r600.disp_int & DC_HPD2_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int &= ~DC_HPD2_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD2\n"); } break; case 4: if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD3_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int_cont &= ~DC_HPD3_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD3\n"); } break; case 5: if (rdev->irq.stat_regs.r600.disp_int_cont & DC_HPD4_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int_cont &= ~DC_HPD4_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD4\n"); } break; case 10: if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD5_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int_cont2 &= ~DC_HPD5_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD5\n"); } break; case 12: if (rdev->irq.stat_regs.r600.disp_int_cont2 & DC_HPD6_INTERRUPT) { rdev->irq.stat_regs.r600.disp_int_cont2 &= ~DC_HPD6_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD6\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 21: /* hdmi */ switch (src_data) { case 4: if (rdev->irq.stat_regs.r600.hdmi0_status & HDMI0_AZ_FORMAT_WTRIG) { rdev->irq.stat_regs.r600.hdmi0_status &= ~HDMI0_AZ_FORMAT_WTRIG; queue_hdmi = true; DRM_DEBUG("IH: HDMI0\n"); } break; case 5: if (rdev->irq.stat_regs.r600.hdmi1_status & HDMI0_AZ_FORMAT_WTRIG) { rdev->irq.stat_regs.r600.hdmi1_status &= ~HDMI0_AZ_FORMAT_WTRIG; queue_hdmi = true; DRM_DEBUG("IH: HDMI1\n"); } break; default: DRM_ERROR("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 176: /* CP_INT in ring buffer */ case 177: /* CP_INT in IB1 */ case 178: /* CP_INT in IB2 */ DRM_DEBUG("IH: CP int: 0x%08x\n", src_data); radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 181: /* CP EOP event */ DRM_DEBUG("IH: CP EOP\n"); radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 224: /* DMA trap event */ DRM_DEBUG("IH: DMA trap\n"); radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); break; case 233: /* GUI IDLE */ DRM_DEBUG("IH: GUI idle\n"); break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } /* wptr/rptr are in bytes! */ rptr += 16; rptr &= rdev->ih.ptr_mask; } if (queue_hotplug) schedule_work(&rdev->hotplug_work); if (queue_hdmi) schedule_work(&rdev->audio_work); rdev->ih.rptr = rptr; WREG32(IH_RB_RPTR, rdev->ih.rptr); atomic_set(&rdev->ih.lock, 0); /* make sure wptr hasn't changed while processing */ wptr = r600_get_ih_wptr(rdev); if (wptr != rptr) goto restart_ih; return IRQ_HANDLED; } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int r600_debugfs_mc_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; DREG32_SYS(m, rdev, R_000E50_SRBM_STATUS); DREG32_SYS(m, rdev, VM_L2_STATUS); return 0; } static struct drm_info_list r600_mc_info_list[] = { {"r600_mc_info", r600_debugfs_mc_info, 0, NULL}, }; #endif int r600_debugfs_mc_info_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r600_mc_info_list, ARRAY_SIZE(r600_mc_info_list)); #else return 0; #endif } /** * r600_ioctl_wait_idle - flush host path cache on wait idle ioctl * rdev: radeon device structure * bo: buffer object struct which userspace is waiting for idle * * Some R6XX/R7XX doesn't seems to take into account HDP flush performed * through ring buffer, this leads to corruption in rendering, see * http://bugzilla.kernel.org/show_bug.cgi?id=15186 to avoid this we * directly perform HDP flush by writing register through MMIO. */ void r600_ioctl_wait_idle(struct radeon_device *rdev, struct radeon_bo *bo) { /* r7xx hw bug. write to HDP_DEBUG1 followed by fb read * rather than write to HDP_REG_COHERENCY_FLUSH_CNTL. * This seems to cause problems on some AGP cards. Just use the old * method for them. */ if ((rdev->family >= CHIP_RV770) && (rdev->family <= CHIP_RV740) && rdev->vram_scratch.ptr && !(rdev->flags & RADEON_IS_AGP)) { void __iomem *ptr = (void *)rdev->vram_scratch.ptr; u32 tmp; WREG32(HDP_DEBUG1, 0); tmp = readl((void __iomem *)ptr); } else WREG32(R_005480_HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); } void r600_set_pcie_lanes(struct radeon_device *rdev, int lanes) { u32 link_width_cntl, mask, target_reg; if (rdev->flags & RADEON_IS_IGP) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; /* x2 cards have a special sequence */ if (ASIC_IS_X2(rdev)) return; /* FIXME wait for idle */ switch (lanes) { case 0: mask = RADEON_PCIE_LC_LINK_WIDTH_X0; break; case 1: mask = RADEON_PCIE_LC_LINK_WIDTH_X1; break; case 2: mask = RADEON_PCIE_LC_LINK_WIDTH_X2; break; case 4: mask = RADEON_PCIE_LC_LINK_WIDTH_X4; break; case 8: mask = RADEON_PCIE_LC_LINK_WIDTH_X8; break; case 12: mask = RADEON_PCIE_LC_LINK_WIDTH_X12; break; case 16: default: mask = RADEON_PCIE_LC_LINK_WIDTH_X16; break; } link_width_cntl = RREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL); if ((link_width_cntl & RADEON_PCIE_LC_LINK_WIDTH_RD_MASK) == (mask << RADEON_PCIE_LC_LINK_WIDTH_RD_SHIFT)) return; if (link_width_cntl & R600_PCIE_LC_UPCONFIGURE_DIS) return; link_width_cntl &= ~(RADEON_PCIE_LC_LINK_WIDTH_MASK | RADEON_PCIE_LC_RECONFIG_NOW | R600_PCIE_LC_RENEGOTIATE_EN | R600_PCIE_LC_RECONFIG_ARC_MISSING_ESCAPE); link_width_cntl |= mask; WREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); /* some northbridges can renegotiate the link rather than requiring * a complete re-config. * e.g., AMD 780/790 northbridges (pci ids: 0x5956, 0x5957, 0x5958, etc.) */ if (link_width_cntl & R600_PCIE_LC_RENEGOTIATION_SUPPORT) link_width_cntl |= R600_PCIE_LC_RENEGOTIATE_EN | R600_PCIE_LC_UPCONFIGURE_SUPPORT; else link_width_cntl |= R600_PCIE_LC_RECONFIG_ARC_MISSING_ESCAPE; WREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL, (link_width_cntl | RADEON_PCIE_LC_RECONFIG_NOW)); if (rdev->family >= CHIP_RV770) target_reg = R700_TARGET_AND_CURRENT_PROFILE_INDEX; else target_reg = R600_TARGET_AND_CURRENT_PROFILE_INDEX; /* wait for lane set to complete */ link_width_cntl = RREG32(target_reg); while (link_width_cntl == 0xffffffff) link_width_cntl = RREG32(target_reg); } int r600_get_pcie_lanes(struct radeon_device *rdev) { u32 link_width_cntl; if (rdev->flags & RADEON_IS_IGP) return 0; if (!(rdev->flags & RADEON_IS_PCIE)) return 0; /* x2 cards have a special sequence */ if (ASIC_IS_X2(rdev)) return 0; /* FIXME wait for idle */ link_width_cntl = RREG32_PCIE_P(RADEON_PCIE_LC_LINK_WIDTH_CNTL); switch ((link_width_cntl & RADEON_PCIE_LC_LINK_WIDTH_RD_MASK) >> RADEON_PCIE_LC_LINK_WIDTH_RD_SHIFT) { case RADEON_PCIE_LC_LINK_WIDTH_X0: return 0; case RADEON_PCIE_LC_LINK_WIDTH_X1: return 1; case RADEON_PCIE_LC_LINK_WIDTH_X2: return 2; case RADEON_PCIE_LC_LINK_WIDTH_X4: return 4; case RADEON_PCIE_LC_LINK_WIDTH_X8: return 8; case RADEON_PCIE_LC_LINK_WIDTH_X16: default: return 16; } } static void r600_pcie_gen2_enable(struct radeon_device *rdev) { u32 link_width_cntl, lanes, speed_cntl, training_cntl, tmp; u16 link_cntl2; u32 mask; int ret; if (radeon_pcie_gen2 == 0) return; if (rdev->flags & RADEON_IS_IGP) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; /* x2 cards have a special sequence */ if (ASIC_IS_X2(rdev)) return; /* only RV6xx+ chips are supported */ if (rdev->family <= CHIP_R600) return; ret = drm_pcie_get_speed_cap_mask(rdev->ddev, &mask); if (ret != 0) return; if (!(mask & DRM_PCIE_SPEED_50)) return; speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL); if (speed_cntl & LC_CURRENT_DATA_RATE) { DRM_INFO("PCIE gen 2 link speeds already enabled\n"); return; } DRM_INFO("enabling PCIE gen 2 link speeds, disable with radeon.pcie_gen2=0\n"); /* 55 nm r6xx asics */ if ((rdev->family == CHIP_RV670) || (rdev->family == CHIP_RV620) || (rdev->family == CHIP_RV635)) { /* advertise upconfig capability */ link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL); link_width_cntl &= ~LC_UPCONFIGURE_DIS; WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL); if (link_width_cntl & LC_RENEGOTIATION_SUPPORT) { lanes = (link_width_cntl & LC_LINK_WIDTH_RD_MASK) >> LC_LINK_WIDTH_RD_SHIFT; link_width_cntl &= ~(LC_LINK_WIDTH_MASK | LC_RECONFIG_ARC_MISSING_ESCAPE); link_width_cntl |= lanes | LC_RECONFIG_NOW | LC_RENEGOTIATE_EN; WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); } else { link_width_cntl |= LC_UPCONFIGURE_DIS; WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); } } speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL); if ((speed_cntl & LC_OTHER_SIDE_EVER_SENT_GEN2) && (speed_cntl & LC_OTHER_SIDE_SUPPORTS_GEN2)) { /* 55 nm r6xx asics */ if ((rdev->family == CHIP_RV670) || (rdev->family == CHIP_RV620) || (rdev->family == CHIP_RV635)) { WREG32(MM_CFGREGS_CNTL, 0x8); link_cntl2 = RREG32(0x4088); WREG32(MM_CFGREGS_CNTL, 0); /* not supported yet */ if (link_cntl2 & SELECTABLE_DEEMPHASIS) return; } speed_cntl &= ~LC_SPEED_CHANGE_ATTEMPTS_ALLOWED_MASK; speed_cntl |= (0x3 << LC_SPEED_CHANGE_ATTEMPTS_ALLOWED_SHIFT); speed_cntl &= ~LC_VOLTAGE_TIMER_SEL_MASK; speed_cntl &= ~LC_FORCE_DIS_HW_SPEED_CHANGE; speed_cntl |= LC_FORCE_EN_HW_SPEED_CHANGE; WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl); tmp = RREG32(0x541c); WREG32(0x541c, tmp | 0x8); WREG32(MM_CFGREGS_CNTL, MM_WR_TO_CFG_EN); link_cntl2 = RREG16(0x4088); link_cntl2 &= ~TARGET_LINK_SPEED_MASK; link_cntl2 |= 0x2; WREG16(0x4088, link_cntl2); WREG32(MM_CFGREGS_CNTL, 0); if ((rdev->family == CHIP_RV670) || (rdev->family == CHIP_RV620) || (rdev->family == CHIP_RV635)) { training_cntl = RREG32_PCIE_P(PCIE_LC_TRAINING_CNTL); training_cntl &= ~LC_POINT_7_PLUS_EN; WREG32_PCIE_P(PCIE_LC_TRAINING_CNTL, training_cntl); } else { speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL); speed_cntl &= ~LC_TARGET_LINK_SPEED_OVERRIDE_EN; WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl); } speed_cntl = RREG32_PCIE_P(PCIE_LC_SPEED_CNTL); speed_cntl |= LC_GEN2_EN_STRAP; WREG32_PCIE_P(PCIE_LC_SPEED_CNTL, speed_cntl); } else { link_width_cntl = RREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL); /* XXX: only disable it if gen1 bridge vendor == 0x111d or 0x1106 */ if (1) link_width_cntl |= LC_UPCONFIGURE_DIS; else link_width_cntl &= ~LC_UPCONFIGURE_DIS; WREG32_PCIE_P(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); } } /** * r600_get_gpu_clock - return GPU clock counter snapshot * * @rdev: radeon_device pointer * * Fetches a GPU clock counter snapshot (R6xx-cayman). * Returns the 64 bit clock counter snapshot. */ uint64_t r600_get_gpu_clock(struct radeon_device *rdev) { uint64_t clock; mutex_lock(&rdev->gpu_clock_mutex); WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&rdev->gpu_clock_mutex); return clock; }