/* * Copyright 2009 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Jerome Glisse * Thomas Hellstrom * Dave Airlie */ #include #include #include #include #include #include #include #include #include #include "radeon_reg.h" #include "radeon.h" #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) static int radeon_ttm_debugfs_init(struct radeon_device *rdev); static struct radeon_device *radeon_get_rdev(struct ttm_bo_device *bdev) { struct radeon_mman *mman; struct radeon_device *rdev; mman = container_of(bdev, struct radeon_mman, bdev); rdev = container_of(mman, struct radeon_device, mman); return rdev; } /* * Global memory. */ static int radeon_ttm_mem_global_init(struct drm_global_reference *ref) { return ttm_mem_global_init(ref->object); } static void radeon_ttm_mem_global_release(struct drm_global_reference *ref) { ttm_mem_global_release(ref->object); } static int radeon_ttm_global_init(struct radeon_device *rdev) { struct drm_global_reference *global_ref; int r; rdev->mman.mem_global_referenced = false; global_ref = &rdev->mman.mem_global_ref; global_ref->global_type = DRM_GLOBAL_TTM_MEM; global_ref->size = sizeof(struct ttm_mem_global); global_ref->init = &radeon_ttm_mem_global_init; global_ref->release = &radeon_ttm_mem_global_release; r = drm_global_item_ref(global_ref); if (r != 0) { DRM_ERROR("Failed setting up TTM memory accounting " "subsystem.\n"); return r; } rdev->mman.bo_global_ref.mem_glob = rdev->mman.mem_global_ref.object; global_ref = &rdev->mman.bo_global_ref.ref; global_ref->global_type = DRM_GLOBAL_TTM_BO; global_ref->size = sizeof(struct ttm_bo_global); global_ref->init = &ttm_bo_global_init; global_ref->release = &ttm_bo_global_release; r = drm_global_item_ref(global_ref); if (r != 0) { DRM_ERROR("Failed setting up TTM BO subsystem.\n"); drm_global_item_unref(&rdev->mman.mem_global_ref); return r; } rdev->mman.mem_global_referenced = true; return 0; } static void radeon_ttm_global_fini(struct radeon_device *rdev) { if (rdev->mman.mem_global_referenced) { drm_global_item_unref(&rdev->mman.bo_global_ref.ref); drm_global_item_unref(&rdev->mman.mem_global_ref); rdev->mman.mem_global_referenced = false; } } static int radeon_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) { return 0; } static int radeon_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, struct ttm_mem_type_manager *man) { struct radeon_device *rdev; rdev = radeon_get_rdev(bdev); switch (type) { case TTM_PL_SYSTEM: /* System memory */ man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; break; case TTM_PL_TT: man->func = &ttm_bo_manager_func; man->gpu_offset = rdev->mc.gtt_start; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; #if __OS_HAS_AGP if (rdev->flags & RADEON_IS_AGP) { if (!(drm_core_has_AGP(rdev->ddev) && rdev->ddev->agp)) { DRM_ERROR("AGP is not enabled for memory type %u\n", (unsigned)type); return -EINVAL; } if (!rdev->ddev->agp->cant_use_aperture) man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; man->default_caching = TTM_PL_FLAG_WC; } #endif break; case TTM_PL_VRAM: /* "On-card" video ram */ man->func = &ttm_bo_manager_func; man->gpu_offset = rdev->mc.vram_start; man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; man->default_caching = TTM_PL_FLAG_WC; break; default: DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); return -EINVAL; } return 0; } static void radeon_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { struct radeon_bo *rbo; static u32 placements = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM; if (!radeon_ttm_bo_is_radeon_bo(bo)) { placement->fpfn = 0; placement->lpfn = 0; placement->placement = &placements; placement->busy_placement = &placements; placement->num_placement = 1; placement->num_busy_placement = 1; return; } rbo = container_of(bo, struct radeon_bo, tbo); switch (bo->mem.mem_type) { case TTM_PL_VRAM: if (rbo->rdev->cp[RADEON_RING_TYPE_GFX_INDEX].ready == false) radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_CPU); else radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_GTT); break; case TTM_PL_TT: default: radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_CPU); } *placement = rbo->placement; } static int radeon_verify_access(struct ttm_buffer_object *bo, struct file *filp) { return 0; } static void radeon_move_null(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem) { struct ttm_mem_reg *old_mem = &bo->mem; BUG_ON(old_mem->mm_node != NULL); *old_mem = *new_mem; new_mem->mm_node = NULL; } static int radeon_move_blit(struct ttm_buffer_object *bo, bool evict, int no_wait_reserve, bool no_wait_gpu, struct ttm_mem_reg *new_mem, struct ttm_mem_reg *old_mem) { struct radeon_device *rdev; uint64_t old_start, new_start; struct radeon_fence *fence; int r; rdev = radeon_get_rdev(bo->bdev); r = radeon_fence_create(rdev, &fence, RADEON_RING_TYPE_GFX_INDEX); if (unlikely(r)) { return r; } old_start = old_mem->start << PAGE_SHIFT; new_start = new_mem->start << PAGE_SHIFT; switch (old_mem->mem_type) { case TTM_PL_VRAM: old_start += rdev->mc.vram_start; break; case TTM_PL_TT: old_start += rdev->mc.gtt_start; break; default: DRM_ERROR("Unknown placement %d\n", old_mem->mem_type); return -EINVAL; } switch (new_mem->mem_type) { case TTM_PL_VRAM: new_start += rdev->mc.vram_start; break; case TTM_PL_TT: new_start += rdev->mc.gtt_start; break; default: DRM_ERROR("Unknown placement %d\n", old_mem->mem_type); return -EINVAL; } if (!rdev->cp[RADEON_RING_TYPE_GFX_INDEX].ready) { DRM_ERROR("Trying to move memory with CP turned off.\n"); return -EINVAL; } BUILD_BUG_ON((PAGE_SIZE % RADEON_GPU_PAGE_SIZE) != 0); r = radeon_copy(rdev, old_start, new_start, new_mem->num_pages * (PAGE_SIZE / RADEON_GPU_PAGE_SIZE), /* GPU pages */ fence); /* FIXME: handle copy error */ r = ttm_bo_move_accel_cleanup(bo, (void *)fence, NULL, evict, no_wait_reserve, no_wait_gpu, new_mem); radeon_fence_unref(&fence); return r; } static int radeon_move_vram_ram(struct ttm_buffer_object *bo, bool evict, bool interruptible, bool no_wait_reserve, bool no_wait_gpu, struct ttm_mem_reg *new_mem) { struct radeon_device *rdev; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg tmp_mem; u32 placements; struct ttm_placement placement; int r; rdev = radeon_get_rdev(bo->bdev); tmp_mem = *new_mem; tmp_mem.mm_node = NULL; placement.fpfn = 0; placement.lpfn = 0; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp_mem, interruptible, no_wait_reserve, no_wait_gpu); if (unlikely(r)) { return r; } r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); if (unlikely(r)) { goto out_cleanup; } r = ttm_tt_bind(bo->ttm, &tmp_mem); if (unlikely(r)) { goto out_cleanup; } r = radeon_move_blit(bo, true, no_wait_reserve, no_wait_gpu, &tmp_mem, old_mem); if (unlikely(r)) { goto out_cleanup; } r = ttm_bo_move_ttm(bo, true, no_wait_reserve, no_wait_gpu, new_mem); out_cleanup: ttm_bo_mem_put(bo, &tmp_mem); return r; } static int radeon_move_ram_vram(struct ttm_buffer_object *bo, bool evict, bool interruptible, bool no_wait_reserve, bool no_wait_gpu, struct ttm_mem_reg *new_mem) { struct radeon_device *rdev; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg tmp_mem; struct ttm_placement placement; u32 placements; int r; rdev = radeon_get_rdev(bo->bdev); tmp_mem = *new_mem; tmp_mem.mm_node = NULL; placement.fpfn = 0; placement.lpfn = 0; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp_mem, interruptible, no_wait_reserve, no_wait_gpu); if (unlikely(r)) { return r; } r = ttm_bo_move_ttm(bo, true, no_wait_reserve, no_wait_gpu, &tmp_mem); if (unlikely(r)) { goto out_cleanup; } r = radeon_move_blit(bo, true, no_wait_reserve, no_wait_gpu, new_mem, old_mem); if (unlikely(r)) { goto out_cleanup; } out_cleanup: ttm_bo_mem_put(bo, &tmp_mem); return r; } static int radeon_bo_move(struct ttm_buffer_object *bo, bool evict, bool interruptible, bool no_wait_reserve, bool no_wait_gpu, struct ttm_mem_reg *new_mem) { struct radeon_device *rdev; struct ttm_mem_reg *old_mem = &bo->mem; int r; rdev = radeon_get_rdev(bo->bdev); if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { radeon_move_null(bo, new_mem); return 0; } if ((old_mem->mem_type == TTM_PL_TT && new_mem->mem_type == TTM_PL_SYSTEM) || (old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_TT)) { /* bind is enough */ radeon_move_null(bo, new_mem); return 0; } if (!rdev->cp[RADEON_RING_TYPE_GFX_INDEX].ready || rdev->asic->copy == NULL) { /* use memcpy */ goto memcpy; } if (old_mem->mem_type == TTM_PL_VRAM && new_mem->mem_type == TTM_PL_SYSTEM) { r = radeon_move_vram_ram(bo, evict, interruptible, no_wait_reserve, no_wait_gpu, new_mem); } else if (old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_VRAM) { r = radeon_move_ram_vram(bo, evict, interruptible, no_wait_reserve, no_wait_gpu, new_mem); } else { r = radeon_move_blit(bo, evict, no_wait_reserve, no_wait_gpu, new_mem, old_mem); } if (r) { memcpy: r = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, new_mem); } return r; } static int radeon_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; struct radeon_device *rdev = radeon_get_rdev(bdev); mem->bus.addr = NULL; mem->bus.offset = 0; mem->bus.size = mem->num_pages << PAGE_SHIFT; mem->bus.base = 0; mem->bus.is_iomem = false; if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) return -EINVAL; switch (mem->mem_type) { case TTM_PL_SYSTEM: /* system memory */ return 0; case TTM_PL_TT: #if __OS_HAS_AGP if (rdev->flags & RADEON_IS_AGP) { /* RADEON_IS_AGP is set only if AGP is active */ mem->bus.offset = mem->start << PAGE_SHIFT; mem->bus.base = rdev->mc.agp_base; mem->bus.is_iomem = !rdev->ddev->agp->cant_use_aperture; } #endif break; case TTM_PL_VRAM: mem->bus.offset = mem->start << PAGE_SHIFT; /* check if it's visible */ if ((mem->bus.offset + mem->bus.size) > rdev->mc.visible_vram_size) return -EINVAL; mem->bus.base = rdev->mc.aper_base; mem->bus.is_iomem = true; #ifdef __alpha__ /* * Alpha: use bus.addr to hold the ioremap() return, * so we can modify bus.base below. */ if (mem->placement & TTM_PL_FLAG_WC) mem->bus.addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size); else mem->bus.addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size); /* * Alpha: Use just the bus offset plus * the hose/domain memory base for bus.base. * It then can be used to build PTEs for VRAM * access, as done in ttm_bo_vm_fault(). */ mem->bus.base = (mem->bus.base & 0x0ffffffffUL) + rdev->ddev->hose->dense_mem_base; #endif break; default: return -EINVAL; } return 0; } static void radeon_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { } static int radeon_sync_obj_wait(void *sync_obj, void *sync_arg, bool lazy, bool interruptible) { return radeon_fence_wait((struct radeon_fence *)sync_obj, interruptible); } static int radeon_sync_obj_flush(void *sync_obj, void *sync_arg) { return 0; } static void radeon_sync_obj_unref(void **sync_obj) { radeon_fence_unref((struct radeon_fence **)sync_obj); } static void *radeon_sync_obj_ref(void *sync_obj) { return radeon_fence_ref((struct radeon_fence *)sync_obj); } static bool radeon_sync_obj_signaled(void *sync_obj, void *sync_arg) { return radeon_fence_signaled((struct radeon_fence *)sync_obj); } /* * TTM backend functions. */ struct radeon_ttm_tt { struct ttm_dma_tt ttm; struct radeon_device *rdev; u64 offset; }; static int radeon_ttm_backend_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem) { struct radeon_ttm_tt *gtt = (void*)ttm; int r; gtt->offset = (unsigned long)(bo_mem->start << PAGE_SHIFT); if (!ttm->num_pages) { WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", ttm->num_pages, bo_mem, ttm); } r = radeon_gart_bind(gtt->rdev, gtt->offset, ttm->num_pages, ttm->pages, gtt->ttm.dma_address); if (r) { DRM_ERROR("failed to bind %lu pages at 0x%08X\n", ttm->num_pages, (unsigned)gtt->offset); return r; } return 0; } static int radeon_ttm_backend_unbind(struct ttm_tt *ttm) { struct radeon_ttm_tt *gtt = (void *)ttm; radeon_gart_unbind(gtt->rdev, gtt->offset, ttm->num_pages); return 0; } static void radeon_ttm_backend_destroy(struct ttm_tt *ttm) { struct radeon_ttm_tt *gtt = (void *)ttm; ttm_dma_tt_fini(>t->ttm); kfree(gtt); } static struct ttm_backend_func radeon_backend_func = { .bind = &radeon_ttm_backend_bind, .unbind = &radeon_ttm_backend_unbind, .destroy = &radeon_ttm_backend_destroy, }; struct ttm_tt *radeon_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size, uint32_t page_flags, struct page *dummy_read_page) { struct radeon_device *rdev; struct radeon_ttm_tt *gtt; rdev = radeon_get_rdev(bdev); #if __OS_HAS_AGP if (rdev->flags & RADEON_IS_AGP) { return ttm_agp_tt_create(bdev, rdev->ddev->agp->bridge, size, page_flags, dummy_read_page); } #endif gtt = kzalloc(sizeof(struct radeon_ttm_tt), GFP_KERNEL); if (gtt == NULL) { return NULL; } gtt->ttm.ttm.func = &radeon_backend_func; gtt->rdev = rdev; if (ttm_dma_tt_init(>t->ttm, bdev, size, page_flags, dummy_read_page)) { kfree(gtt); return NULL; } return >t->ttm.ttm; } static int radeon_ttm_tt_populate(struct ttm_tt *ttm) { struct radeon_device *rdev; struct radeon_ttm_tt *gtt = (void *)ttm; unsigned i; int r; if (ttm->state != tt_unpopulated) return 0; rdev = radeon_get_rdev(ttm->bdev); #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) { return ttm_dma_populate(>t->ttm, rdev->dev); } #endif r = ttm_pool_populate(ttm); if (r) { return r; } for (i = 0; i < ttm->num_pages; i++) { gtt->ttm.dma_address[i] = pci_map_page(rdev->pdev, ttm->pages[i], 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(rdev->pdev, gtt->ttm.dma_address[i])) { while (--i) { pci_unmap_page(rdev->pdev, gtt->ttm.dma_address[i], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); gtt->ttm.dma_address[i] = 0; } ttm_pool_unpopulate(ttm); return -EFAULT; } } return 0; } static void radeon_ttm_tt_unpopulate(struct ttm_tt *ttm) { struct radeon_device *rdev; struct radeon_ttm_tt *gtt = (void *)ttm; unsigned i; rdev = radeon_get_rdev(ttm->bdev); #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) { ttm_dma_unpopulate(>t->ttm, rdev->dev); return; } #endif for (i = 0; i < ttm->num_pages; i++) { if (gtt->ttm.dma_address[i]) { pci_unmap_page(rdev->pdev, gtt->ttm.dma_address[i], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); } } ttm_pool_unpopulate(ttm); } static struct ttm_bo_driver radeon_bo_driver = { .ttm_tt_create = &radeon_ttm_tt_create, .ttm_tt_populate = &radeon_ttm_tt_populate, .ttm_tt_unpopulate = &radeon_ttm_tt_unpopulate, .invalidate_caches = &radeon_invalidate_caches, .init_mem_type = &radeon_init_mem_type, .evict_flags = &radeon_evict_flags, .move = &radeon_bo_move, .verify_access = &radeon_verify_access, .sync_obj_signaled = &radeon_sync_obj_signaled, .sync_obj_wait = &radeon_sync_obj_wait, .sync_obj_flush = &radeon_sync_obj_flush, .sync_obj_unref = &radeon_sync_obj_unref, .sync_obj_ref = &radeon_sync_obj_ref, .move_notify = &radeon_bo_move_notify, .fault_reserve_notify = &radeon_bo_fault_reserve_notify, .io_mem_reserve = &radeon_ttm_io_mem_reserve, .io_mem_free = &radeon_ttm_io_mem_free, }; int radeon_ttm_init(struct radeon_device *rdev) { int r; r = radeon_ttm_global_init(rdev); if (r) { return r; } /* No others user of address space so set it to 0 */ r = ttm_bo_device_init(&rdev->mman.bdev, rdev->mman.bo_global_ref.ref.object, &radeon_bo_driver, DRM_FILE_PAGE_OFFSET, rdev->need_dma32); if (r) { DRM_ERROR("failed initializing buffer object driver(%d).\n", r); return r; } rdev->mman.initialized = true; r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_VRAM, rdev->mc.real_vram_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing VRAM heap.\n"); return r; } r = radeon_bo_create(rdev, 256 * 1024, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, &rdev->stollen_vga_memory); if (r) { return r; } r = radeon_bo_reserve(rdev->stollen_vga_memory, false); if (r) return r; r = radeon_bo_pin(rdev->stollen_vga_memory, RADEON_GEM_DOMAIN_VRAM, NULL); radeon_bo_unreserve(rdev->stollen_vga_memory); if (r) { radeon_bo_unref(&rdev->stollen_vga_memory); return r; } DRM_INFO("radeon: %uM of VRAM memory ready\n", (unsigned)rdev->mc.real_vram_size / (1024 * 1024)); r = ttm_bo_init_mm(&rdev->mman.bdev, TTM_PL_TT, rdev->mc.gtt_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing GTT heap.\n"); return r; } DRM_INFO("radeon: %uM of GTT memory ready.\n", (unsigned)(rdev->mc.gtt_size / (1024 * 1024))); if (unlikely(rdev->mman.bdev.dev_mapping == NULL)) { rdev->mman.bdev.dev_mapping = rdev->ddev->dev_mapping; } r = radeon_ttm_debugfs_init(rdev); if (r) { DRM_ERROR("Failed to init debugfs\n"); return r; } return 0; } void radeon_ttm_fini(struct radeon_device *rdev) { int r; if (!rdev->mman.initialized) return; if (rdev->stollen_vga_memory) { r = radeon_bo_reserve(rdev->stollen_vga_memory, false); if (r == 0) { radeon_bo_unpin(rdev->stollen_vga_memory); radeon_bo_unreserve(rdev->stollen_vga_memory); } radeon_bo_unref(&rdev->stollen_vga_memory); } ttm_bo_clean_mm(&rdev->mman.bdev, TTM_PL_VRAM); ttm_bo_clean_mm(&rdev->mman.bdev, TTM_PL_TT); ttm_bo_device_release(&rdev->mman.bdev); radeon_gart_fini(rdev); radeon_ttm_global_fini(rdev); rdev->mman.initialized = false; DRM_INFO("radeon: ttm finalized\n"); } /* this should only be called at bootup or when userspace * isn't running */ void radeon_ttm_set_active_vram_size(struct radeon_device *rdev, u64 size) { struct ttm_mem_type_manager *man; if (!rdev->mman.initialized) return; man = &rdev->mman.bdev.man[TTM_PL_VRAM]; /* this just adjusts TTM size idea, which sets lpfn to the correct value */ man->size = size >> PAGE_SHIFT; } static struct vm_operations_struct radeon_ttm_vm_ops; static const struct vm_operations_struct *ttm_vm_ops = NULL; static int radeon_ttm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct ttm_buffer_object *bo; struct radeon_device *rdev; int r; bo = (struct ttm_buffer_object *)vma->vm_private_data; if (bo == NULL) { return VM_FAULT_NOPAGE; } rdev = radeon_get_rdev(bo->bdev); mutex_lock(&rdev->vram_mutex); r = ttm_vm_ops->fault(vma, vmf); mutex_unlock(&rdev->vram_mutex); return r; } int radeon_mmap(struct file *filp, struct vm_area_struct *vma) { struct drm_file *file_priv; struct radeon_device *rdev; int r; if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) { return drm_mmap(filp, vma); } file_priv = filp->private_data; rdev = file_priv->minor->dev->dev_private; if (rdev == NULL) { return -EINVAL; } r = ttm_bo_mmap(filp, vma, &rdev->mman.bdev); if (unlikely(r != 0)) { return r; } if (unlikely(ttm_vm_ops == NULL)) { ttm_vm_ops = vma->vm_ops; radeon_ttm_vm_ops = *ttm_vm_ops; radeon_ttm_vm_ops.fault = &radeon_ttm_fault; } vma->vm_ops = &radeon_ttm_vm_ops; return 0; } #define RADEON_DEBUGFS_MEM_TYPES 2 #if defined(CONFIG_DEBUG_FS) static int radeon_mm_dump_table(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_mm *mm = (struct drm_mm *)node->info_ent->data; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; int ret; struct ttm_bo_global *glob = rdev->mman.bdev.glob; spin_lock(&glob->lru_lock); ret = drm_mm_dump_table(m, mm); spin_unlock(&glob->lru_lock); return ret; } #endif static int radeon_ttm_debugfs_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) static struct drm_info_list radeon_mem_types_list[RADEON_DEBUGFS_MEM_TYPES+2]; static char radeon_mem_types_names[RADEON_DEBUGFS_MEM_TYPES+2][32]; unsigned i; for (i = 0; i < RADEON_DEBUGFS_MEM_TYPES; i++) { if (i == 0) sprintf(radeon_mem_types_names[i], "radeon_vram_mm"); else sprintf(radeon_mem_types_names[i], "radeon_gtt_mm"); radeon_mem_types_list[i].name = radeon_mem_types_names[i]; radeon_mem_types_list[i].show = &radeon_mm_dump_table; radeon_mem_types_list[i].driver_features = 0; if (i == 0) radeon_mem_types_list[i].data = rdev->mman.bdev.man[TTM_PL_VRAM].priv; else radeon_mem_types_list[i].data = rdev->mman.bdev.man[TTM_PL_TT].priv; } /* Add ttm page pool to debugfs */ sprintf(radeon_mem_types_names[i], "ttm_page_pool"); radeon_mem_types_list[i].name = radeon_mem_types_names[i]; radeon_mem_types_list[i].show = &ttm_page_alloc_debugfs; radeon_mem_types_list[i].driver_features = 0; radeon_mem_types_list[i++].data = NULL; #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) { sprintf(radeon_mem_types_names[i], "ttm_dma_page_pool"); radeon_mem_types_list[i].name = radeon_mem_types_names[i]; radeon_mem_types_list[i].show = &ttm_dma_page_alloc_debugfs; radeon_mem_types_list[i].driver_features = 0; radeon_mem_types_list[i++].data = NULL; } #endif return radeon_debugfs_add_files(rdev, radeon_mem_types_list, i); #endif return 0; }