// SPDX-License-Identifier: GPL-2.0-or-later /* * adm1025.c * * Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com> * Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de> * * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6 * voltages (including its own power source) and up to two temperatures * (its own plus up to one external one). Voltages are scaled internally * (which is not the common way) with ratios such that the nominal value * of each voltage correspond to a register value of 192 (which means a * resolution of about 0.5% of the nominal value). Temperature values are * reported with a 1 deg resolution and a 3 deg accuracy. Complete * datasheet can be obtained from Analog's website at: * https://www.onsemi.com/PowerSolutions/product.do?id=ADM1025 * * This driver also supports the ADM1025A, which differs from the ADM1025 * only in that it has "open-drain VID inputs while the ADM1025 has * on-chip 100k pull-ups on the VID inputs". It doesn't make any * difference for us. * * This driver also supports the NE1619, a sensor chip made by Philips. * That chip is similar to the ADM1025A, with a few differences. The only * difference that matters to us is that the NE1619 has only two possible * addresses while the ADM1025A has a third one. Complete datasheet can be * obtained from Philips's website at: * http://www.semiconductors.philips.com/pip/NE1619DS.html * * Since the ADM1025 was the first chipset supported by this driver, most * comments will refer to this chipset, but are actually general and * concern all supported chipsets, unless mentioned otherwise. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> /* * Addresses to scan * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e. * NE1619 has two possible addresses: 0x2c and 0x2d. */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; enum chips { adm1025, ne1619 }; /* * The ADM1025 registers */ #define ADM1025_REG_MAN_ID 0x3E #define ADM1025_REG_CHIP_ID 0x3F #define ADM1025_REG_CONFIG 0x40 #define ADM1025_REG_STATUS1 0x41 #define ADM1025_REG_STATUS2 0x42 #define ADM1025_REG_IN(nr) (0x20 + (nr)) #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2) #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2) #define ADM1025_REG_TEMP(nr) (0x26 + (nr)) #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2) #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2) #define ADM1025_REG_VID 0x47 #define ADM1025_REG_VID4 0x49 /* * Conversions and various macros * The ADM1025 uses signed 8-bit values for temperatures. */ static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 }; #define IN_FROM_REG(reg, scale) (((reg) * (scale) + 96) / 192) #define IN_TO_REG(val, scale) ((val) <= 0 ? 0 : \ (val) >= (scale) * 255 / 192 ? 255 : \ ((val) * 192 + (scale) / 2) / (scale)) #define TEMP_FROM_REG(reg) ((reg) * 1000) #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \ (val) >= 126500 ? 127 : \ (((val) < 0 ? (val) - 500 : \ (val) + 500) / 1000)) /* * Client data (each client gets its own) */ struct adm1025_data { struct i2c_client *client; const struct attribute_group *groups[3]; struct mutex update_lock; bool valid; /* false until following fields are valid */ unsigned long last_updated; /* in jiffies */ u8 in[6]; /* register value */ u8 in_max[6]; /* register value */ u8 in_min[6]; /* register value */ s8 temp[2]; /* register value */ s8 temp_min[2]; /* register value */ s8 temp_max[2]; /* register value */ u16 alarms; /* register values, combined */ u8 vid; /* register values, combined */ u8 vrm; }; static struct adm1025_data *adm1025_update_device(struct device *dev) { struct adm1025_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) { int i; dev_dbg(&client->dev, "Updating data.\n"); for (i = 0; i < 6; i++) { data->in[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN(i)); data->in_min[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MIN(i)); data->in_max[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MAX(i)); } for (i = 0; i < 2; i++) { data->temp[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP(i)); data->temp_min[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_LOW(i)); data->temp_max[i] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_HIGH(i)); } data->alarms = i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) | (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) << 8); data->vid = (i2c_smbus_read_byte_data(client, ADM1025_REG_VID) & 0x0f) | ((i2c_smbus_read_byte_data(client, ADM1025_REG_VID4) & 0x01) << 4); data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } /* * Sysfs stuff */ static ssize_t in_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index], in_scale[index])); } static ssize_t in_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index], in_scale[index])); } static ssize_t in_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index], in_scale[index])); } static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index])); } static ssize_t temp_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index])); } static ssize_t temp_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index])); } static ssize_t in_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[index] = IN_TO_REG(val, in_scale[index]); i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index), data->in_min[index]); mutex_unlock(&data->update_lock); return count; } static ssize_t in_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[index] = IN_TO_REG(val, in_scale[index]); i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index), data->in_max[index]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0); static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0); static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0); static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1); static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2); static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3); static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4); static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5); static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5); static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5); static ssize_t temp_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_min[index] = TEMP_TO_REG(val); i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index), data->temp_min[index]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_max[index] = TEMP_TO_REG(val); i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index), data->temp_max[index]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2); static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9); static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14); static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1025_data *data = adm1025_update_device(dev); return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1025_data *data = dev_get_drvdata(dev); return sprintf(buf, "%u\n", data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1025_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } static DEVICE_ATTR_RW(vrm); /* * Real code */ static struct attribute *adm1025_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, NULL }; static const struct attribute_group adm1025_group = { .attrs = adm1025_attributes, }; static struct attribute *adm1025_attributes_in4[] = { &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, NULL }; static const struct attribute_group adm1025_group_in4 = { .attrs = adm1025_attributes_in4, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm1025_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; const char *name; u8 man_id, chip_id; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* Check for unused bits */ if ((i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG) & 0x80) || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0xC0) || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0xBC)) { dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x\n", client->addr); return -ENODEV; } /* Identification */ chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID); if ((chip_id & 0xF0) != 0x20) return -ENODEV; man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID); if (man_id == 0x41) name = "adm1025"; else if (man_id == 0xA1 && client->addr != 0x2E) name = "ne1619"; else return -ENODEV; strscpy(info->type, name, I2C_NAME_SIZE); return 0; } static void adm1025_init_client(struct i2c_client *client) { u8 reg; struct adm1025_data *data = i2c_get_clientdata(client); int i; data->vrm = vid_which_vrm(); /* * Set high limits * Usually we avoid setting limits on driver init, but it happens * that the ADM1025 comes with stupid default limits (all registers * set to 0). In case the chip has not gone through any limit * setting yet, we better set the high limits to the max so that * no alarm triggers. */ for (i = 0; i < 6; i++) { reg = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MAX(i)); if (reg == 0) i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(i), 0xFF); } for (i = 0; i < 2; i++) { reg = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_HIGH(i)); if (reg == 0) i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(i), 0x7F); } /* * Start the conversions */ reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG); if (!(reg & 0x01)) i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG, (reg&0x7E)|0x01); } static int adm1025_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct device *hwmon_dev; struct adm1025_data *data; u8 config; data = devm_kzalloc(dev, sizeof(struct adm1025_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); data->client = client; mutex_init(&data->update_lock); /* Initialize the ADM1025 chip */ adm1025_init_client(client); /* sysfs hooks */ data->groups[0] = &adm1025_group; /* Pin 11 is either in4 (+12V) or VID4 */ config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG); if (!(config & 0x20)) data->groups[1] = &adm1025_group_in4; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id adm1025_id[] = { { "adm1025", adm1025 }, { "ne1619", ne1619 }, { } }; MODULE_DEVICE_TABLE(i2c, adm1025_id); static struct i2c_driver adm1025_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm1025", }, .probe_new = adm1025_probe, .id_table = adm1025_id, .detect = adm1025_detect, .address_list = normal_i2c, }; module_i2c_driver(adm1025_driver); MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("ADM1025 driver"); MODULE_LICENSE("GPL");