// SPDX-License-Identifier: GPL-2.0+ /* * HWMON driver for ASUS motherboards that publish some sensor values * via the embedded controller registers. * * Copyright (C) 2021 Eugene Shalygin * EC provides: * - Chipset temperature * - CPU temperature * - Motherboard temperature * - T_Sensor temperature * - VRM temperature * - Water In temperature * - Water Out temperature * - CPU Optional fan RPM * - Chipset fan RPM * - VRM Heat Sink fan RPM * - Water Flow fan RPM * - CPU current * - CPU core voltage */ #include #include #include #include #include #include #include #include #include #include #include #include #include static char *mutex_path_override; /* Writing to this EC register switches EC bank */ #define ASUS_EC_BANK_REGISTER 0xff #define SENSOR_LABEL_LEN 16 /* * Arbitrary set max. allowed bank number. Required for sorting banks and * currently is overkill with just 2 banks used at max, but for the sake * of alignment let's set it to a higher value. */ #define ASUS_EC_MAX_BANK 3 #define ACPI_LOCK_DELAY_MS 500 /* ACPI mutex for locking access to the EC for the firmware */ #define ASUS_HW_ACCESS_MUTEX_ASMX "\\AMW0.ASMX" #define ASUS_HW_ACCESS_MUTEX_RMTW_ASMX "\\RMTW.ASMX" #define MAX_IDENTICAL_BOARD_VARIATIONS 3 /* Moniker for the ACPI global lock (':' is not allowed in ASL identifiers) */ #define ACPI_GLOBAL_LOCK_PSEUDO_PATH ":GLOBAL_LOCK" typedef union { u32 value; struct { u8 index; u8 bank; u8 size; u8 dummy; } components; } sensor_address; #define MAKE_SENSOR_ADDRESS(size, bank, index) { \ .value = (size << 16) + (bank << 8) + index \ } static u32 hwmon_attributes[hwmon_max] = { [hwmon_chip] = HWMON_C_REGISTER_TZ, [hwmon_temp] = HWMON_T_INPUT | HWMON_T_LABEL, [hwmon_in] = HWMON_I_INPUT | HWMON_I_LABEL, [hwmon_curr] = HWMON_C_INPUT | HWMON_C_LABEL, [hwmon_fan] = HWMON_F_INPUT | HWMON_F_LABEL, }; struct ec_sensor_info { char label[SENSOR_LABEL_LEN]; enum hwmon_sensor_types type; sensor_address addr; }; #define EC_SENSOR(sensor_label, sensor_type, size, bank, index) { \ .label = sensor_label, .type = sensor_type, \ .addr = MAKE_SENSOR_ADDRESS(size, bank, index), \ } enum ec_sensors { /* chipset temperature [℃] */ ec_sensor_temp_chipset, /* CPU temperature [℃] */ ec_sensor_temp_cpu, /* motherboard temperature [℃] */ ec_sensor_temp_mb, /* "T_Sensor" temperature sensor reading [℃] */ ec_sensor_temp_t_sensor, /* VRM temperature [℃] */ ec_sensor_temp_vrm, /* CPU Core voltage [mV] */ ec_sensor_in_cpu_core, /* CPU_Opt fan [RPM] */ ec_sensor_fan_cpu_opt, /* VRM heat sink fan [RPM] */ ec_sensor_fan_vrm_hs, /* Chipset fan [RPM] */ ec_sensor_fan_chipset, /* Water flow sensor reading [RPM] */ ec_sensor_fan_water_flow, /* CPU current [A] */ ec_sensor_curr_cpu, /* "Water_In" temperature sensor reading [℃] */ ec_sensor_temp_water_in, /* "Water_Out" temperature sensor reading [℃] */ ec_sensor_temp_water_out, }; #define SENSOR_TEMP_CHIPSET BIT(ec_sensor_temp_chipset) #define SENSOR_TEMP_CPU BIT(ec_sensor_temp_cpu) #define SENSOR_TEMP_MB BIT(ec_sensor_temp_mb) #define SENSOR_TEMP_T_SENSOR BIT(ec_sensor_temp_t_sensor) #define SENSOR_TEMP_VRM BIT(ec_sensor_temp_vrm) #define SENSOR_IN_CPU_CORE BIT(ec_sensor_in_cpu_core) #define SENSOR_FAN_CPU_OPT BIT(ec_sensor_fan_cpu_opt) #define SENSOR_FAN_VRM_HS BIT(ec_sensor_fan_vrm_hs) #define SENSOR_FAN_CHIPSET BIT(ec_sensor_fan_chipset) #define SENSOR_FAN_WATER_FLOW BIT(ec_sensor_fan_water_flow) #define SENSOR_CURR_CPU BIT(ec_sensor_curr_cpu) #define SENSOR_TEMP_WATER_IN BIT(ec_sensor_temp_water_in) #define SENSOR_TEMP_WATER_OUT BIT(ec_sensor_temp_water_out) enum board_family { family_unknown, family_amd_400_series, family_amd_500_series, family_intel_300_series, family_intel_600_series }; /* All the known sensors for ASUS EC controllers */ static const struct ec_sensor_info sensors_family_amd_400[] = { [ec_sensor_temp_chipset] = EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a), [ec_sensor_temp_cpu] = EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b), [ec_sensor_temp_mb] = EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c), [ec_sensor_temp_t_sensor] = EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d), [ec_sensor_temp_vrm] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e), [ec_sensor_in_cpu_core] = EC_SENSOR("CPU Core", hwmon_in, 2, 0x00, 0xa2), [ec_sensor_fan_cpu_opt] = EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xbc), [ec_sensor_fan_vrm_hs] = EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2), [ec_sensor_fan_chipset] = /* no chipset fans in this generation */ EC_SENSOR("Chipset", hwmon_fan, 0, 0x00, 0x00), [ec_sensor_fan_water_flow] = EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xb4), [ec_sensor_curr_cpu] = EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4), [ec_sensor_temp_water_in] = EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x0d), [ec_sensor_temp_water_out] = EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x0b), }; static const struct ec_sensor_info sensors_family_amd_500[] = { [ec_sensor_temp_chipset] = EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a), [ec_sensor_temp_cpu] = EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b), [ec_sensor_temp_mb] = EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c), [ec_sensor_temp_t_sensor] = EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d), [ec_sensor_temp_vrm] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e), [ec_sensor_in_cpu_core] = EC_SENSOR("CPU Core", hwmon_in, 2, 0x00, 0xa2), [ec_sensor_fan_cpu_opt] = EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xb0), [ec_sensor_fan_vrm_hs] = EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2), [ec_sensor_fan_chipset] = EC_SENSOR("Chipset", hwmon_fan, 2, 0x00, 0xb4), [ec_sensor_fan_water_flow] = EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xbc), [ec_sensor_curr_cpu] = EC_SENSOR("CPU", hwmon_curr, 1, 0x00, 0xf4), [ec_sensor_temp_water_in] = EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x00), [ec_sensor_temp_water_out] = EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x01), }; static const struct ec_sensor_info sensors_family_intel_300[] = { [ec_sensor_temp_chipset] = EC_SENSOR("Chipset", hwmon_temp, 1, 0x00, 0x3a), [ec_sensor_temp_cpu] = EC_SENSOR("CPU", hwmon_temp, 1, 0x00, 0x3b), [ec_sensor_temp_mb] = EC_SENSOR("Motherboard", hwmon_temp, 1, 0x00, 0x3c), [ec_sensor_temp_t_sensor] = EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d), [ec_sensor_temp_vrm] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e), [ec_sensor_fan_cpu_opt] = EC_SENSOR("CPU_Opt", hwmon_fan, 2, 0x00, 0xb0), [ec_sensor_fan_vrm_hs] = EC_SENSOR("VRM HS", hwmon_fan, 2, 0x00, 0xb2), [ec_sensor_fan_water_flow] = EC_SENSOR("Water_Flow", hwmon_fan, 2, 0x00, 0xbc), [ec_sensor_temp_water_in] = EC_SENSOR("Water_In", hwmon_temp, 1, 0x01, 0x00), [ec_sensor_temp_water_out] = EC_SENSOR("Water_Out", hwmon_temp, 1, 0x01, 0x01), }; static const struct ec_sensor_info sensors_family_intel_600[] = { [ec_sensor_temp_t_sensor] = EC_SENSOR("T_Sensor", hwmon_temp, 1, 0x00, 0x3d), [ec_sensor_temp_vrm] = EC_SENSOR("VRM", hwmon_temp, 1, 0x00, 0x3e), }; /* Shortcuts for common combinations */ #define SENSOR_SET_TEMP_CHIPSET_CPU_MB \ (SENSOR_TEMP_CHIPSET | SENSOR_TEMP_CPU | SENSOR_TEMP_MB) #define SENSOR_SET_TEMP_WATER (SENSOR_TEMP_WATER_IN | SENSOR_TEMP_WATER_OUT) struct ec_board_info { const char *board_names[MAX_IDENTICAL_BOARD_VARIATIONS]; unsigned long sensors; /* * Defines which mutex to use for guarding access to the state and the * hardware. Can be either a full path to an AML mutex or the * pseudo-path ACPI_GLOBAL_LOCK_PSEUDO_PATH to use the global ACPI lock, * or left empty to use a regular mutex object, in which case access to * the hardware is not guarded. */ const char *mutex_path; enum board_family family; }; static const struct ec_board_info board_info[] = { { .board_names = {"PRIME X470-PRO"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_FAN_CPU_OPT | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ACPI_GLOBAL_LOCK_PSEUDO_PATH, .family = family_amd_400_series, }, { .board_names = {"PRIME X570-PRO"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM | SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ProArt X570-CREATOR WIFI"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM | SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CPU_OPT | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, }, { .board_names = {"Pro WS X570-ACE"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_VRM | SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG CROSSHAIR VIII DARK HERO"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER | SENSOR_FAN_CPU_OPT | SENSOR_FAN_WATER_FLOW | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = { "ROG CROSSHAIR VIII FORMULA", "ROG CROSSHAIR VIII HERO", "ROG CROSSHAIR VIII HERO (WI-FI)", }, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER | SENSOR_FAN_CPU_OPT | SENSOR_FAN_CHIPSET | SENSOR_FAN_WATER_FLOW | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = { "ROG MAXIMUS XI HERO", "ROG MAXIMUS XI HERO (WI-FI)", }, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_SET_TEMP_WATER | SENSOR_FAN_CPU_OPT | SENSOR_FAN_WATER_FLOW, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_intel_300_series, }, { .board_names = {"ROG CROSSHAIR VIII IMPACT"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX B550-E GAMING"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_FAN_CPU_OPT, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX B550-I GAMING"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_FAN_VRM_HS | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX X570-E GAMING"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM | SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX X570-E GAMING WIFI II"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX X570-F GAMING"}, .sensors = SENSOR_SET_TEMP_CHIPSET_CPU_MB | SENSOR_TEMP_T_SENSOR | SENSOR_FAN_CHIPSET, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX X570-I GAMING"}, .sensors = SENSOR_TEMP_CHIPSET | SENSOR_TEMP_VRM | SENSOR_TEMP_T_SENSOR | SENSOR_FAN_VRM_HS | SENSOR_FAN_CHIPSET | SENSOR_CURR_CPU | SENSOR_IN_CPU_CORE, .mutex_path = ASUS_HW_ACCESS_MUTEX_ASMX, .family = family_amd_500_series, }, { .board_names = {"ROG STRIX Z690-A GAMING WIFI D4"}, .sensors = SENSOR_TEMP_T_SENSOR | SENSOR_TEMP_VRM, .mutex_path = ASUS_HW_ACCESS_MUTEX_RMTW_ASMX, .family = family_intel_600_series, }, {} }; struct ec_sensor { unsigned int info_index; s32 cached_value; }; struct lock_data { union { acpi_handle aml; /* global lock handle */ u32 glk; } mutex; bool (*lock)(struct lock_data *data); bool (*unlock)(struct lock_data *data); }; /* * The next function pairs implement options for locking access to the * state and the EC */ static bool lock_via_acpi_mutex(struct lock_data *data) { /* * ASUS DSDT does not specify that access to the EC has to be guarded, * but firmware does access it via ACPI */ return ACPI_SUCCESS(acpi_acquire_mutex(data->mutex.aml, NULL, ACPI_LOCK_DELAY_MS)); } static bool unlock_acpi_mutex(struct lock_data *data) { return ACPI_SUCCESS(acpi_release_mutex(data->mutex.aml, NULL)); } static bool lock_via_global_acpi_lock(struct lock_data *data) { return ACPI_SUCCESS(acpi_acquire_global_lock(ACPI_LOCK_DELAY_MS, &data->mutex.glk)); } static bool unlock_global_acpi_lock(struct lock_data *data) { return ACPI_SUCCESS(acpi_release_global_lock(data->mutex.glk)); } struct ec_sensors_data { const struct ec_board_info *board_info; const struct ec_sensor_info *sensors_info; struct ec_sensor *sensors; /* EC registers to read from */ u16 *registers; u8 *read_buffer; /* sorted list of unique register banks */ u8 banks[ASUS_EC_MAX_BANK + 1]; /* in jiffies */ unsigned long last_updated; struct lock_data lock_data; /* number of board EC sensors */ u8 nr_sensors; /* * number of EC registers to read * (sensor might span more than 1 register) */ u8 nr_registers; /* number of unique register banks */ u8 nr_banks; }; static u8 register_bank(u16 reg) { return reg >> 8; } static u8 register_index(u16 reg) { return reg & 0x00ff; } static bool is_sensor_data_signed(const struct ec_sensor_info *si) { /* * guessed from WMI functions in DSDT code for boards * of the X470 generation */ return si->type == hwmon_temp; } static const struct ec_sensor_info * get_sensor_info(const struct ec_sensors_data *state, int index) { return state->sensors_info + state->sensors[index].info_index; } static int find_ec_sensor_index(const struct ec_sensors_data *ec, enum hwmon_sensor_types type, int channel) { unsigned int i; for (i = 0; i < ec->nr_sensors; i++) { if (get_sensor_info(ec, i)->type == type) { if (channel == 0) return i; channel--; } } return -ENOENT; } static int __init bank_compare(const void *a, const void *b) { return *((const s8 *)a) - *((const s8 *)b); } static void __init setup_sensor_data(struct ec_sensors_data *ec) { struct ec_sensor *s = ec->sensors; bool bank_found; int i, j; u8 bank; ec->nr_banks = 0; ec->nr_registers = 0; for_each_set_bit(i, &ec->board_info->sensors, BITS_PER_TYPE(ec->board_info->sensors)) { s->info_index = i; s->cached_value = 0; ec->nr_registers += ec->sensors_info[s->info_index].addr.components.size; bank_found = false; bank = ec->sensors_info[s->info_index].addr.components.bank; for (j = 0; j < ec->nr_banks; j++) { if (ec->banks[j] == bank) { bank_found = true; break; } } if (!bank_found) { ec->banks[ec->nr_banks++] = bank; } s++; } sort(ec->banks, ec->nr_banks, 1, bank_compare, NULL); } static void __init fill_ec_registers(struct ec_sensors_data *ec) { const struct ec_sensor_info *si; unsigned int i, j, register_idx = 0; for (i = 0; i < ec->nr_sensors; ++i) { si = get_sensor_info(ec, i); for (j = 0; j < si->addr.components.size; ++j, ++register_idx) { ec->registers[register_idx] = (si->addr.components.bank << 8) + si->addr.components.index + j; } } } static int __init setup_lock_data(struct device *dev) { const char *mutex_path; int status; struct ec_sensors_data *state = dev_get_drvdata(dev); mutex_path = mutex_path_override ? mutex_path_override : state->board_info->mutex_path; if (!mutex_path || !strlen(mutex_path)) { dev_err(dev, "Hardware access guard mutex name is empty"); return -EINVAL; } if (!strcmp(mutex_path, ACPI_GLOBAL_LOCK_PSEUDO_PATH)) { state->lock_data.mutex.glk = 0; state->lock_data.lock = lock_via_global_acpi_lock; state->lock_data.unlock = unlock_global_acpi_lock; } else { status = acpi_get_handle(NULL, (acpi_string)mutex_path, &state->lock_data.mutex.aml); if (ACPI_FAILURE(status)) { dev_err(dev, "Failed to get hardware access guard AML mutex '%s': error %d", mutex_path, status); return -ENOENT; } state->lock_data.lock = lock_via_acpi_mutex; state->lock_data.unlock = unlock_acpi_mutex; } return 0; } static int asus_ec_bank_switch(u8 bank, u8 *old) { int status = 0; if (old) { status = ec_read(ASUS_EC_BANK_REGISTER, old); } if (status || (old && (*old == bank))) return status; return ec_write(ASUS_EC_BANK_REGISTER, bank); } static int asus_ec_block_read(const struct device *dev, struct ec_sensors_data *ec) { int ireg, ibank, status; u8 bank, reg_bank, prev_bank; bank = 0; status = asus_ec_bank_switch(bank, &prev_bank); if (status) { dev_warn(dev, "EC bank switch failed"); return status; } if (prev_bank) { /* oops... somebody else is working with the EC too */ dev_warn(dev, "Concurrent access to the ACPI EC detected.\nRace condition possible."); } /* read registers minimizing bank switches. */ for (ibank = 0; ibank < ec->nr_banks; ibank++) { if (bank != ec->banks[ibank]) { bank = ec->banks[ibank]; if (asus_ec_bank_switch(bank, NULL)) { dev_warn(dev, "EC bank switch to %d failed", bank); break; } } for (ireg = 0; ireg < ec->nr_registers; ireg++) { reg_bank = register_bank(ec->registers[ireg]); if (reg_bank < bank) { continue; } ec_read(register_index(ec->registers[ireg]), ec->read_buffer + ireg); } } status = asus_ec_bank_switch(prev_bank, NULL); return status; } static inline s32 get_sensor_value(const struct ec_sensor_info *si, u8 *data) { if (is_sensor_data_signed(si)) { switch (si->addr.components.size) { case 1: return (s8)*data; case 2: return (s16)get_unaligned_be16(data); case 4: return (s32)get_unaligned_be32(data); default: return 0; } } else { switch (si->addr.components.size) { case 1: return *data; case 2: return get_unaligned_be16(data); case 4: return get_unaligned_be32(data); default: return 0; } } } static void update_sensor_values(struct ec_sensors_data *ec, u8 *data) { const struct ec_sensor_info *si; struct ec_sensor *s, *sensor_end; sensor_end = ec->sensors + ec->nr_sensors; for (s = ec->sensors; s != sensor_end; s++) { si = ec->sensors_info + s->info_index; s->cached_value = get_sensor_value(si, data); data += si->addr.components.size; } } static int update_ec_sensors(const struct device *dev, struct ec_sensors_data *ec) { int status; if (!ec->lock_data.lock(&ec->lock_data)) { dev_warn(dev, "Failed to acquire mutex"); return -EBUSY; } status = asus_ec_block_read(dev, ec); if (!status) { update_sensor_values(ec, ec->read_buffer); } if (!ec->lock_data.unlock(&ec->lock_data)) dev_err(dev, "Failed to release mutex"); return status; } static long scale_sensor_value(s32 value, int data_type) { switch (data_type) { case hwmon_curr: case hwmon_temp: return value * MILLI; default: return value; } } static int get_cached_value_or_update(const struct device *dev, int sensor_index, struct ec_sensors_data *state, s32 *value) { if (time_after(jiffies, state->last_updated + HZ)) { if (update_ec_sensors(dev, state)) { dev_err(dev, "update_ec_sensors() failure\n"); return -EIO; } state->last_updated = jiffies; } *value = state->sensors[sensor_index].cached_value; return 0; } /* * Now follow the functions that implement the hwmon interface */ static int asus_ec_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { int ret; s32 value = 0; struct ec_sensors_data *state = dev_get_drvdata(dev); int sidx = find_ec_sensor_index(state, type, channel); if (sidx < 0) { return sidx; } ret = get_cached_value_or_update(dev, sidx, state, &value); if (!ret) { *val = scale_sensor_value(value, get_sensor_info(state, sidx)->type); } return ret; } static int asus_ec_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct ec_sensors_data *state = dev_get_drvdata(dev); int sensor_index = find_ec_sensor_index(state, type, channel); *str = get_sensor_info(state, sensor_index)->label; return 0; } static umode_t asus_ec_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { const struct ec_sensors_data *state = drvdata; return find_ec_sensor_index(state, type, channel) >= 0 ? S_IRUGO : 0; } static int __init asus_ec_hwmon_add_chan_info(struct hwmon_channel_info *asus_ec_hwmon_chan, struct device *dev, int num, enum hwmon_sensor_types type, u32 config) { int i; u32 *cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL); if (!cfg) return -ENOMEM; asus_ec_hwmon_chan->type = type; asus_ec_hwmon_chan->config = cfg; for (i = 0; i < num; i++, cfg++) *cfg = config; return 0; } static const struct hwmon_ops asus_ec_hwmon_ops = { .is_visible = asus_ec_hwmon_is_visible, .read = asus_ec_hwmon_read, .read_string = asus_ec_hwmon_read_string, }; static struct hwmon_chip_info asus_ec_chip_info = { .ops = &asus_ec_hwmon_ops, }; static const struct ec_board_info * __init get_board_info(void) { const char *dmi_board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); const char *dmi_board_name = dmi_get_system_info(DMI_BOARD_NAME); const struct ec_board_info *board; if (!dmi_board_vendor || !dmi_board_name || strcasecmp(dmi_board_vendor, "ASUSTeK COMPUTER INC.")) return NULL; for (board = board_info; board->sensors; board++) { if (match_string(board->board_names, MAX_IDENTICAL_BOARD_VARIATIONS, dmi_board_name) >= 0) return board; } return NULL; } static int __init asus_ec_probe(struct platform_device *pdev) { const struct hwmon_channel_info **ptr_asus_ec_ci; int nr_count[hwmon_max] = { 0 }, nr_types = 0; struct hwmon_channel_info *asus_ec_hwmon_chan; const struct ec_board_info *pboard_info; const struct hwmon_chip_info *chip_info; struct device *dev = &pdev->dev; struct ec_sensors_data *ec_data; const struct ec_sensor_info *si; enum hwmon_sensor_types type; struct device *hwdev; unsigned int i; int status; pboard_info = get_board_info(); if (!pboard_info) return -ENODEV; ec_data = devm_kzalloc(dev, sizeof(struct ec_sensors_data), GFP_KERNEL); if (!ec_data) return -ENOMEM; dev_set_drvdata(dev, ec_data); ec_data->board_info = pboard_info; switch (ec_data->board_info->family) { case family_amd_400_series: ec_data->sensors_info = sensors_family_amd_400; break; case family_amd_500_series: ec_data->sensors_info = sensors_family_amd_500; break; case family_intel_300_series: ec_data->sensors_info = sensors_family_intel_300; break; case family_intel_600_series: ec_data->sensors_info = sensors_family_intel_600; break; default: dev_err(dev, "Unknown board family: %d", ec_data->board_info->family); return -EINVAL; } ec_data->nr_sensors = hweight_long(ec_data->board_info->sensors); ec_data->sensors = devm_kcalloc(dev, ec_data->nr_sensors, sizeof(struct ec_sensor), GFP_KERNEL); status = setup_lock_data(dev); if (status) { dev_err(dev, "Failed to setup state/EC locking: %d", status); return status; } setup_sensor_data(ec_data); ec_data->registers = devm_kcalloc(dev, ec_data->nr_registers, sizeof(u16), GFP_KERNEL); ec_data->read_buffer = devm_kcalloc(dev, ec_data->nr_registers, sizeof(u8), GFP_KERNEL); if (!ec_data->registers || !ec_data->read_buffer) return -ENOMEM; fill_ec_registers(ec_data); for (i = 0; i < ec_data->nr_sensors; ++i) { si = get_sensor_info(ec_data, i); if (!nr_count[si->type]) ++nr_types; ++nr_count[si->type]; } if (nr_count[hwmon_temp]) nr_count[hwmon_chip]++, nr_types++; asus_ec_hwmon_chan = devm_kcalloc( dev, nr_types, sizeof(*asus_ec_hwmon_chan), GFP_KERNEL); if (!asus_ec_hwmon_chan) return -ENOMEM; ptr_asus_ec_ci = devm_kcalloc(dev, nr_types + 1, sizeof(*ptr_asus_ec_ci), GFP_KERNEL); if (!ptr_asus_ec_ci) return -ENOMEM; asus_ec_chip_info.info = ptr_asus_ec_ci; chip_info = &asus_ec_chip_info; for (type = 0; type < hwmon_max; ++type) { if (!nr_count[type]) continue; asus_ec_hwmon_add_chan_info(asus_ec_hwmon_chan, dev, nr_count[type], type, hwmon_attributes[type]); *ptr_asus_ec_ci++ = asus_ec_hwmon_chan++; } dev_info(dev, "board has %d EC sensors that span %d registers", ec_data->nr_sensors, ec_data->nr_registers); hwdev = devm_hwmon_device_register_with_info(dev, "asusec", ec_data, chip_info, NULL); return PTR_ERR_OR_ZERO(hwdev); } static const struct acpi_device_id acpi_ec_ids[] = { /* Embedded Controller Device */ { "PNP0C09", 0 }, {} }; static struct platform_driver asus_ec_sensors_platform_driver = { .driver = { .name = "asus-ec-sensors", .acpi_match_table = acpi_ec_ids, }, }; MODULE_DEVICE_TABLE(acpi, acpi_ec_ids); /* * we use module_platform_driver_probe() rather than module_platform_driver() * because the probe function (and its dependants) are marked with __init, which * means we can't put it into the .probe member of the platform_driver struct * above, and we can't mark the asus_ec_sensors_platform_driver object as __init * because the object is referenced from the module exit code. */ module_platform_driver_probe(asus_ec_sensors_platform_driver, asus_ec_probe); module_param_named(mutex_path, mutex_path_override, charp, 0); MODULE_PARM_DESC(mutex_path, "Override ACPI mutex path used to guard access to hardware"); MODULE_AUTHOR("Eugene Shalygin "); MODULE_DESCRIPTION( "HWMON driver for sensors accessible via ACPI EC in ASUS motherboards"); MODULE_LICENSE("GPL");