/* vt8231.c - Part of lm_sensors, Linux kernel modules for hardware monitoring Copyright (c) 2005 Roger Lucas <roger@planbit.co.uk> Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com> Aaron M. Marsh <amarsh@sdf.lonestar.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Supports VIA VT8231 South Bridge embedded sensors */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/i2c-isa.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> #include <asm/io.h> static int force_addr; module_param(force_addr, int, 0); MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors"); /* Device address Note that we can't determine the ISA address until we have initialized our module */ static unsigned short isa_address; #define VT8231_EXTENT 0x80 #define VT8231_BASE_REG 0x70 #define VT8231_ENABLE_REG 0x74 /* The VT8231 registers The reset value for the input channel configuration is used (Reg 0x4A=0x07) which sets the selected inputs marked with '*' below if multiple options are possible: Voltage Mode Temperature Mode Sensor Linux Id Linux Id VIA Id -------- -------- -------- ------ CPU Diode N/A temp1 0 UIC1 in0 temp2 * 1 UIC2 in1 * temp3 2 UIC3 in2 * temp4 3 UIC4 in3 * temp5 4 UIC5 in4 * temp6 5 3.3V in5 N/A Note that the BIOS may set the configuration register to a different value to match the motherboard configuration. */ /* fans numbered 0-1 */ #define VT8231_REG_FAN_MIN(nr) (0x3b + (nr)) #define VT8231_REG_FAN(nr) (0x29 + (nr)) /* Voltage inputs numbered 0-5 */ static const u8 regvolt[] = { 0x21, 0x22, 0x23, 0x24, 0x25, 0x26 }; static const u8 regvoltmax[] = { 0x3d, 0x2b, 0x2d, 0x2f, 0x31, 0x33 }; static const u8 regvoltmin[] = { 0x3e, 0x2c, 0x2e, 0x30, 0x32, 0x34 }; /* Temperatures are numbered 1-6 according to the Linux kernel specification. ** ** In the VIA datasheet, however, the temperatures are numbered from zero. ** Since it is important that this driver can easily be compared to the VIA ** datasheet, we will use the VIA numbering within this driver and map the ** kernel sysfs device name to the VIA number in the sysfs callback. */ #define VT8231_REG_TEMP_LOW01 0x49 #define VT8231_REG_TEMP_LOW25 0x4d static const u8 regtemp[] = { 0x1f, 0x21, 0x22, 0x23, 0x24, 0x25 }; static const u8 regtempmax[] = { 0x39, 0x3d, 0x2b, 0x2d, 0x2f, 0x31 }; static const u8 regtempmin[] = { 0x3a, 0x3e, 0x2c, 0x2e, 0x30, 0x32 }; #define TEMP_FROM_REG(reg) (((253 * 4 - (reg)) * 550 + 105) / 210) #define TEMP_MAXMIN_FROM_REG(reg) (((253 - (reg)) * 2200 + 105) / 210) #define TEMP_MAXMIN_TO_REG(val) (253 - ((val) * 210 + 1100) / 2200) #define VT8231_REG_CONFIG 0x40 #define VT8231_REG_ALARM1 0x41 #define VT8231_REG_ALARM2 0x42 #define VT8231_REG_FANDIV 0x47 #define VT8231_REG_UCH_CONFIG 0x4a #define VT8231_REG_TEMP1_CONFIG 0x4b #define VT8231_REG_TEMP2_CONFIG 0x4c /* temps 0-5 as numbered in VIA datasheet - see later for mapping to Linux ** numbering */ #define ISTEMP(i, ch_config) ((i) == 0 ? 1 : \ ((ch_config) >> ((i)+1)) & 0x01) /* voltages 0-5 */ #define ISVOLT(i, ch_config) ((i) == 5 ? 1 : \ !(((ch_config) >> ((i)+2)) & 0x01)) #define DIV_FROM_REG(val) (1 << (val)) /* NB The values returned here are NOT temperatures. The calibration curves ** for the thermistor curves are board-specific and must go in the ** sensors.conf file. Temperature sensors are actually ten bits, but the ** VIA datasheet only considers the 8 MSBs obtained from the regtemp[] ** register. The temperature value returned should have a magnitude of 3, ** so we use the VIA scaling as the "true" scaling and use the remaining 2 ** LSBs as fractional precision. ** ** All the on-chip hardware temperature comparisons for the alarms are only ** 8-bits wide, and compare against the 8 MSBs of the temperature. The bits ** in the registers VT8231_REG_TEMP_LOW01 and VT8231_REG_TEMP_LOW25 are ** ignored. */ /******** FAN RPM CONVERSIONS ******** ** This chip saturates back at 0, not at 255 like many the other chips. ** So, 0 means 0 RPM */ static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 0; return SENSORS_LIMIT(1310720 / (rpm * div), 1, 255); } #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : 1310720 / ((val) * (div))) struct vt8231_data { struct i2c_client client; struct mutex update_lock; struct class_device *class_dev; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[6]; /* Register value */ u8 in_max[6]; /* Register value */ u8 in_min[6]; /* Register value */ u16 temp[6]; /* Register value 10 bit, right aligned */ u8 temp_max[6]; /* Register value */ u8 temp_min[6]; /* Register value */ u8 fan[2]; /* Register value */ u8 fan_min[2]; /* Register value */ u8 fan_div[2]; /* Register encoding, shifted right */ u16 alarms; /* Register encoding */ u8 uch_config; }; static struct pci_dev *s_bridge; static int vt8231_detect(struct i2c_adapter *adapter); static int vt8231_detach_client(struct i2c_client *client); static struct vt8231_data *vt8231_update_device(struct device *dev); static void vt8231_init_client(struct i2c_client *client); static inline int vt8231_read_value(struct i2c_client *client, u8 reg) { return inb_p(client->addr + reg); } static inline void vt8231_write_value(struct i2c_client *client, u8 reg, u8 value) { outb_p(value, client->addr + reg); } /* following are the sysfs callback functions */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", ((data->in[nr] - 3) * 10000) / 958); } static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", ((data->in_min[nr] - 3) * 10000) / 958); } static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in_max[nr] - 3) * 10000) / 958)); } static ssize_t set_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255); vt8231_write_value(client, regvoltmin[nr], data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255); vt8231_write_value(client, regvoltmax[nr], data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } /* Special case for input 5 as this has 3.3V scaling built into the chip */ static ssize_t show_in5(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in[5] - 3) * 10000 * 54) / (958 * 34))); } static ssize_t show_in5_min(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in_min[5] - 3) * 10000 * 54) / (958 * 34))); } static ssize_t show_in5_max(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", (((data->in_max[5] - 3) * 10000 * 54) / (958 * 34))); } static ssize_t set_in5_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_min[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3, 0, 255); vt8231_write_value(client, regvoltmin[5], data->in_min[5]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_in5_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); unsigned long val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->in_max[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3, 0, 255); vt8231_write_value(client, regvoltmax[5], data->in_max[5]); mutex_unlock(&data->update_lock); return count; } #define define_voltage_sysfs(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset) define_voltage_sysfs(0); define_voltage_sysfs(1); define_voltage_sysfs(2); define_voltage_sysfs(3); define_voltage_sysfs(4); static DEVICE_ATTR(in5_input, S_IRUGO, show_in5, NULL); static DEVICE_ATTR(in5_min, S_IRUGO | S_IWUSR, show_in5_min, set_in5_min); static DEVICE_ATTR(in5_max, S_IRUGO | S_IWUSR, show_in5_max, set_in5_max); /* Temperatures */ static ssize_t show_temp0(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->temp[0] * 250); } static ssize_t show_temp0_max(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->temp_max[0] * 1000); } static ssize_t show_temp0_min(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->temp_min[0] * 1000); } static ssize_t set_temp0_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_max[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255); vt8231_write_value(client, regtempmax[0], data->temp_max[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp0_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_min[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255); vt8231_write_value(client, regtempmin[0], data->temp_min[0]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr])); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_max[nr])); } static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_min[nr])); } static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_max[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255); vt8231_write_value(client, regtempmax[nr], data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); int val = simple_strtol(buf, NULL, 10); mutex_lock(&data->update_lock); data->temp_min[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255); vt8231_write_value(client, regtempmin[nr], data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } /* Note that these map the Linux temperature sensor numbering (1-6) to the VIA ** temperature sensor numbering (0-5) */ #define define_temperature_sysfs(offset) \ static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \ show_temp, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, offset - 1); \ static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \ show_temp_min, set_temp_min, offset - 1) static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp0, NULL); static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp0_max, set_temp0_max); static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp0_min, set_temp0_min); define_temperature_sysfs(2); define_temperature_sysfs(3); define_temperature_sysfs(4); define_temperature_sysfs(5); define_temperature_sysfs(6); #define CFG_INFO_TEMP(id) { &sensor_dev_attr_temp##id##_input.dev_attr, \ &sensor_dev_attr_temp##id##_max_hyst.dev_attr, \ &sensor_dev_attr_temp##id##_max.dev_attr } #define CFG_INFO_VOLT(id) { &sensor_dev_attr_in##id##_input.dev_attr, \ &sensor_dev_attr_in##id##_min.dev_attr, \ &sensor_dev_attr_in##id##_max.dev_attr } struct str_device_attr_table { struct device_attribute *input; struct device_attribute *min; struct device_attribute *max; }; static struct str_device_attr_table cfg_info_temp[] = { { &dev_attr_temp1_input, &dev_attr_temp1_max_hyst, &dev_attr_temp1_max }, CFG_INFO_TEMP(2), CFG_INFO_TEMP(3), CFG_INFO_TEMP(4), CFG_INFO_TEMP(5), CFG_INFO_TEMP(6) }; static struct str_device_attr_table cfg_info_volt[] = { CFG_INFO_VOLT(0), CFG_INFO_VOLT(1), CFG_INFO_VOLT(2), CFG_INFO_VOLT(3), CFG_INFO_VOLT(4), { &dev_attr_in5_input, &dev_attr_in5_min, &dev_attr_in5_max } }; /* Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); int val = simple_strtoul(buf, NULL, 10); mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); vt8231_write_value(client, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); unsigned long val = simple_strtoul(buf, NULL, 10); int nr = sensor_attr->index; int old = vt8231_read_value(client, VT8231_REG_FANDIV); long min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); mutex_lock(&data->update_lock); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: dev_err(&client->dev, "fan_div value %ld not supported." "Choose one of 1, 2, 4 or 8!\n", val); mutex_unlock(&data->update_lock); return -EINVAL; } /* Correct the fan minimum speed */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); vt8231_write_value(client, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]); old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4); vt8231_write_value(client, VT8231_REG_FANDIV, old); mutex_unlock(&data->update_lock); return count; } #define define_fan_sysfs(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1) define_fan_sysfs(1); define_fan_sysfs(2); /* Alarms */ static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct vt8231_data *data = vt8231_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static struct i2c_driver vt8231_driver = { .driver = { .name = "vt8231", }, .attach_adapter = vt8231_detect, .detach_client = vt8231_detach_client, }; static struct pci_device_id vt8231_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8231_4) }, { 0, } }; MODULE_DEVICE_TABLE(pci, vt8231_pci_ids); static int __devinit vt8231_pci_probe(struct pci_dev *dev, const struct pci_device_id *id); static struct pci_driver vt8231_pci_driver = { .name = "vt8231", .id_table = vt8231_pci_ids, .probe = vt8231_pci_probe, }; int vt8231_detect(struct i2c_adapter *adapter) { struct i2c_client *client; struct vt8231_data *data; int err = 0, i; u16 val; /* 8231 requires multiple of 256 */ if (force_addr) { isa_address = force_addr & 0xFF00; dev_warn(&adapter->dev, "forcing ISA address 0x%04X\n", isa_address); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(s_bridge, VT8231_BASE_REG, isa_address)) return -ENODEV; } if (PCIBIOS_SUCCESSFUL != pci_read_config_word(s_bridge, VT8231_ENABLE_REG, &val)) return -ENODEV; if (!(val & 0x0001)) { dev_warn(&adapter->dev, "enabling sensors\n"); if (PCIBIOS_SUCCESSFUL != pci_write_config_word(s_bridge, VT8231_ENABLE_REG, val | 0x0001)) return -ENODEV; } /* Reserve the ISA region */ if (!request_region(isa_address, VT8231_EXTENT, vt8231_pci_driver.name)) { dev_err(&adapter->dev, "region 0x%x already in use!\n", isa_address); return -ENODEV; } if (!(data = kzalloc(sizeof(struct vt8231_data), GFP_KERNEL))) { err = -ENOMEM; goto exit_release; } client = &data->client; i2c_set_clientdata(client, data); client->addr = isa_address; client->adapter = adapter; client->driver = &vt8231_driver; client->dev.parent = &adapter->dev; /* Fill in the remaining client fields and put into the global list */ strlcpy(client->name, "vt8231", I2C_NAME_SIZE); mutex_init(&data->update_lock); /* Tell the I2C layer a new client has arrived */ if ((err = i2c_attach_client(client))) goto exit_free; vt8231_init_client(client); /* Register sysfs hooks */ data->class_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->class_dev)) { err = PTR_ERR(data->class_dev); goto exit_detach; } /* Must update device information to find out the config field */ data->uch_config = vt8231_read_value(client, VT8231_REG_UCH_CONFIG); for (i = 0; i < ARRAY_SIZE(cfg_info_temp); i++) { if (ISTEMP(i, data->uch_config)) { device_create_file(&client->dev, cfg_info_temp[i].input); device_create_file(&client->dev, cfg_info_temp[i].max); device_create_file(&client->dev, cfg_info_temp[i].min); } } for (i = 0; i < ARRAY_SIZE(cfg_info_volt); i++) { if (ISVOLT(i, data->uch_config)) { device_create_file(&client->dev, cfg_info_volt[i].input); device_create_file(&client->dev, cfg_info_volt[i].max); device_create_file(&client->dev, cfg_info_volt[i].min); } } device_create_file(&client->dev, &sensor_dev_attr_fan1_input.dev_attr); device_create_file(&client->dev, &sensor_dev_attr_fan2_input.dev_attr); device_create_file(&client->dev, &sensor_dev_attr_fan1_min.dev_attr); device_create_file(&client->dev, &sensor_dev_attr_fan2_min.dev_attr); device_create_file(&client->dev, &sensor_dev_attr_fan1_div.dev_attr); device_create_file(&client->dev, &sensor_dev_attr_fan2_div.dev_attr); device_create_file(&client->dev, &dev_attr_alarms); return 0; exit_detach: i2c_detach_client(client); exit_free: kfree(data); exit_release: release_region(isa_address, VT8231_EXTENT); return err; } static int vt8231_detach_client(struct i2c_client *client) { struct vt8231_data *data = i2c_get_clientdata(client); int err; hwmon_device_unregister(data->class_dev); if ((err = i2c_detach_client(client))) { return err; } release_region(client->addr, VT8231_EXTENT); kfree(data); return 0; } static void vt8231_init_client(struct i2c_client *client) { vt8231_write_value(client, VT8231_REG_TEMP1_CONFIG, 0); vt8231_write_value(client, VT8231_REG_TEMP2_CONFIG, 0); } static struct vt8231_data *vt8231_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct vt8231_data *data = i2c_get_clientdata(client); int i; u16 low; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { for (i = 0; i < 6; i++) { if (ISVOLT(i, data->uch_config)) { data->in[i] = vt8231_read_value(client, regvolt[i]); data->in_min[i] = vt8231_read_value(client, regvoltmin[i]); data->in_max[i] = vt8231_read_value(client, regvoltmax[i]); } } for (i = 0; i < 2; i++) { data->fan[i] = vt8231_read_value(client, VT8231_REG_FAN(i)); data->fan_min[i] = vt8231_read_value(client, VT8231_REG_FAN_MIN(i)); } low = vt8231_read_value(client, VT8231_REG_TEMP_LOW01); low = (low >> 6) | ((low & 0x30) >> 2) | (vt8231_read_value(client, VT8231_REG_TEMP_LOW25) << 4); for (i = 0; i < 6; i++) { if (ISTEMP(i, data->uch_config)) { data->temp[i] = (vt8231_read_value(client, regtemp[i]) << 2) | ((low >> (2 * i)) & 0x03); data->temp_max[i] = vt8231_read_value(client, regtempmax[i]); data->temp_min[i] = vt8231_read_value(client, regtempmin[i]); } } i = vt8231_read_value(client, VT8231_REG_FANDIV); data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = i >> 6; data->alarms = vt8231_read_value(client, VT8231_REG_ALARM1) | (vt8231_read_value(client, VT8231_REG_ALARM2) << 8); /* Set alarm flags correctly */ if (!data->fan[0] && data->fan_min[0]) { data->alarms |= 0x40; } else if (data->fan[0] && !data->fan_min[0]) { data->alarms &= ~0x40; } if (!data->fan[1] && data->fan_min[1]) { data->alarms |= 0x80; } else if (data->fan[1] && !data->fan_min[1]) { data->alarms &= ~0x80; } data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } static int __devinit vt8231_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { u16 val; if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_BASE_REG, &val)) return -ENODEV; isa_address = val & ~(VT8231_EXTENT - 1); if (isa_address == 0 && force_addr == 0) { dev_err(&dev->dev, "base address not set -\ upgrade BIOS or use force_addr=0xaddr\n"); return -ENODEV; } s_bridge = pci_dev_get(dev); if (i2c_isa_add_driver(&vt8231_driver)) { pci_dev_put(s_bridge); s_bridge = NULL; } /* Always return failure here. This is to allow other drivers to bind * to this pci device. We don't really want to have control over the * pci device, we only wanted to read as few register values from it. */ return -ENODEV; } static int __init sm_vt8231_init(void) { return pci_register_driver(&vt8231_pci_driver); } static void __exit sm_vt8231_exit(void) { pci_unregister_driver(&vt8231_pci_driver); if (s_bridge != NULL) { i2c_isa_del_driver(&vt8231_driver); pci_dev_put(s_bridge); s_bridge = NULL; } } MODULE_AUTHOR("Roger Lucas <roger@planbit.co.uk>"); MODULE_DESCRIPTION("VT8231 sensors"); MODULE_LICENSE("GPL"); module_init(sm_vt8231_init); module_exit(sm_vt8231_exit);