/* * linux/drivers/ide/setup-pci.c Version 1.10 2002/08/19 * * Copyright (c) 1998-2000 Andre Hedrick * * Copyright (c) 1995-1998 Mark Lord * May be copied or modified under the terms of the GNU General Public License */ #include #include #include #include #include #include #include #include #include #include #include #include /** * ide_match_hwif - match a PCI IDE against an ide_hwif * @io_base: I/O base of device * @bootable: set if its bootable * @name: name of device * * Match a PCI IDE port against an entry in ide_hwifs[], * based on io_base port if possible. Return the matching hwif, * or a new hwif. If we find an error (clashing, out of devices, etc) * return NULL * * FIXME: we need to handle mmio matches here too */ static ide_hwif_t *ide_match_hwif(unsigned long io_base, u8 bootable, const char *name) { int h; ide_hwif_t *hwif; /* * Look for a hwif with matching io_base specified using * parameters to ide_setup(). */ for (h = 0; h < MAX_HWIFS; ++h) { hwif = &ide_hwifs[h]; if (hwif->io_ports[IDE_DATA_OFFSET] == io_base) { if (hwif->chipset == ide_forced) return hwif; /* a perfect match */ } } /* * Look for a hwif with matching io_base default value. * If chipset is "ide_unknown", then claim that hwif slot. * Otherwise, some other chipset has already claimed it.. :( */ for (h = 0; h < MAX_HWIFS; ++h) { hwif = &ide_hwifs[h]; if (hwif->io_ports[IDE_DATA_OFFSET] == io_base) { if (hwif->chipset == ide_unknown) return hwif; /* match */ printk(KERN_ERR "%s: port 0x%04lx already claimed by %s\n", name, io_base, hwif->name); return NULL; /* already claimed */ } } /* * Okay, there is no hwif matching our io_base, * so we'll just claim an unassigned slot. * Give preference to claiming other slots before claiming ide0/ide1, * just in case there's another interface yet-to-be-scanned * which uses ports 1f0/170 (the ide0/ide1 defaults). * * Unless there is a bootable card that does not use the standard * ports 1f0/170 (the ide0/ide1 defaults). The (bootable) flag. */ if (bootable) { for (h = 0; h < MAX_HWIFS; ++h) { hwif = &ide_hwifs[h]; if (hwif->chipset == ide_unknown) return hwif; /* pick an unused entry */ } } else { for (h = 2; h < MAX_HWIFS; ++h) { hwif = ide_hwifs + h; if (hwif->chipset == ide_unknown) return hwif; /* pick an unused entry */ } } for (h = 0; h < 2 && h < MAX_HWIFS; ++h) { hwif = ide_hwifs + h; if (hwif->chipset == ide_unknown) return hwif; /* pick an unused entry */ } printk(KERN_ERR "%s: too many IDE interfaces, no room in table\n", name); return NULL; } /** * ide_setup_pci_baseregs - place a PCI IDE controller native * @dev: PCI device of interface to switch native * @name: Name of interface * * We attempt to place the PCI interface into PCI native mode. If * we succeed the BARs are ok and the controller is in PCI mode. * Returns 0 on success or an errno code. * * FIXME: if we program the interface and then fail to set the BARS * we don't switch it back to legacy mode. Do we actually care ?? */ static int ide_setup_pci_baseregs (struct pci_dev *dev, const char *name) { u8 progif = 0; /* * Place both IDE interfaces into PCI "native" mode: */ if (pci_read_config_byte(dev, PCI_CLASS_PROG, &progif) || (progif & 5) != 5) { if ((progif & 0xa) != 0xa) { printk(KERN_INFO "%s: device not capable of full " "native PCI mode\n", name); return -EOPNOTSUPP; } printk("%s: placing both ports into native PCI mode\n", name); (void) pci_write_config_byte(dev, PCI_CLASS_PROG, progif|5); if (pci_read_config_byte(dev, PCI_CLASS_PROG, &progif) || (progif & 5) != 5) { printk(KERN_ERR "%s: rewrite of PROGIF failed, wanted " "0x%04x, got 0x%04x\n", name, progif|5, progif); return -EOPNOTSUPP; } } return 0; } #ifdef CONFIG_BLK_DEV_IDEDMA_PCI /** * ide_get_or_set_dma_base - setup BMIBA * @d: IDE port info * @hwif: IDE interface * * Fetch the DMA Bus-Master-I/O-Base-Address (BMIBA) from PCI space. * Where a device has a partner that is already in DMA mode we check * and enforce IDE simplex rules. */ static unsigned long ide_get_or_set_dma_base(const struct ide_port_info *d, ide_hwif_t *hwif) { unsigned long dma_base = 0; struct pci_dev *dev = hwif->pci_dev; if (hwif->mmio) return hwif->dma_base; if (hwif->mate && hwif->mate->dma_base) { dma_base = hwif->mate->dma_base - (hwif->channel ? 0 : 8); } else { u8 baridx = (d->host_flags & IDE_HFLAG_CS5520) ? 2 : 4; dma_base = pci_resource_start(dev, baridx); if (dma_base == 0) printk(KERN_ERR "%s: DMA base is invalid\n", d->name); } if ((d->host_flags & IDE_HFLAG_CS5520) == 0 && dma_base) { u8 simplex_stat = 0; dma_base += hwif->channel ? 8 : 0; switch(dev->device) { case PCI_DEVICE_ID_AL_M5219: case PCI_DEVICE_ID_AL_M5229: case PCI_DEVICE_ID_AMD_VIPER_7409: case PCI_DEVICE_ID_CMD_643: case PCI_DEVICE_ID_SERVERWORKS_CSB5IDE: case PCI_DEVICE_ID_REVOLUTION: simplex_stat = inb(dma_base + 2); outb(simplex_stat & 0x60, dma_base + 2); simplex_stat = inb(dma_base + 2); if (simplex_stat & 0x80) { printk(KERN_INFO "%s: simplex device: " "DMA forced\n", d->name); } break; default: /* * If the device claims "simplex" DMA, * this means only one of the two interfaces * can be trusted with DMA at any point in time. * So we should enable DMA only on one of the * two interfaces. */ simplex_stat = hwif->INB(dma_base + 2); if (simplex_stat & 0x80) { /* simplex device? */ /* * At this point we haven't probed the drives so we can't make the * appropriate decision. Really we should defer this problem * until we tune the drive then try to grab DMA ownership if we want * to be the DMA end. This has to be become dynamic to handle hot * plug. */ if (hwif->mate && hwif->mate->dma_base) { printk(KERN_INFO "%s: simplex device: " "DMA disabled\n", d->name); dma_base = 0; } } } } return dma_base; } #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */ void ide_setup_pci_noise(struct pci_dev *dev, const struct ide_port_info *d) { printk(KERN_INFO "%s: IDE controller (0x%04x:0x%04x rev 0x%02x) at " " PCI slot %s\n", d->name, dev->vendor, dev->device, dev->revision, pci_name(dev)); } EXPORT_SYMBOL_GPL(ide_setup_pci_noise); /** * ide_pci_enable - do PCI enables * @dev: PCI device * @d: IDE port info * * Enable the IDE PCI device. We attempt to enable the device in full * but if that fails then we only need BAR4 so we will enable that. * * Returns zero on success or an error code */ static int ide_pci_enable(struct pci_dev *dev, const struct ide_port_info *d) { int ret; if (pci_enable_device(dev)) { ret = pci_enable_device_bars(dev, 1 << 4); if (ret < 0) { printk(KERN_WARNING "%s: (ide_setup_pci_device:) " "Could not enable device.\n", d->name); goto out; } printk(KERN_WARNING "%s: BIOS configuration fixed.\n", d->name); } /* * assume all devices can do 32-bit DMA for now, we can add * a DMA mask field to the struct ide_port_info if we need it * (or let lower level driver set the DMA mask) */ ret = pci_set_dma_mask(dev, DMA_32BIT_MASK); if (ret < 0) { printk(KERN_ERR "%s: can't set dma mask\n", d->name); goto out; } /* FIXME: Temporary - until we put in the hotplug interface logic Check that the bits we want are not in use by someone else. */ ret = pci_request_region(dev, 4, "ide_tmp"); if (ret < 0) goto out; pci_release_region(dev, 4); out: return ret; } /** * ide_pci_configure - configure an unconfigured device * @dev: PCI device * @d: IDE port info * * Enable and configure the PCI device we have been passed. * Returns zero on success or an error code. */ static int ide_pci_configure(struct pci_dev *dev, const struct ide_port_info *d) { u16 pcicmd = 0; /* * PnP BIOS was *supposed* to have setup this device, but we * can do it ourselves, so long as the BIOS has assigned an IRQ * (or possibly the device is using a "legacy header" for IRQs). * Maybe the user deliberately *disabled* the device, * but we'll eventually ignore it again if no drives respond. */ if (ide_setup_pci_baseregs(dev, d->name) || pci_write_config_word(dev, PCI_COMMAND, pcicmd|PCI_COMMAND_IO)) { printk(KERN_INFO "%s: device disabled (BIOS)\n", d->name); return -ENODEV; } if (pci_read_config_word(dev, PCI_COMMAND, &pcicmd)) { printk(KERN_ERR "%s: error accessing PCI regs\n", d->name); return -EIO; } if (!(pcicmd & PCI_COMMAND_IO)) { printk(KERN_ERR "%s: unable to enable IDE controller\n", d->name); return -ENXIO; } return 0; } /** * ide_pci_check_iomem - check a register is I/O * @dev: PCI device * @d: IDE port info * @bar: BAR number * * Checks if a BAR is configured and points to MMIO space. If so * print an error and return an error code. Otherwise return 0 */ static int ide_pci_check_iomem(struct pci_dev *dev, const struct ide_port_info *d, int bar) { ulong flags = pci_resource_flags(dev, bar); /* Unconfigured ? */ if (!flags || pci_resource_len(dev, bar) == 0) return 0; /* I/O space */ if(flags & PCI_BASE_ADDRESS_IO_MASK) return 0; /* Bad */ printk(KERN_ERR "%s: IO baseregs (BIOS) are reported " "as MEM, report to " ".\n", d->name); return -EINVAL; } /** * ide_hwif_configure - configure an IDE interface * @dev: PCI device holding interface * @d: IDE port info * @mate: Paired interface if any * * Perform the initial set up for the hardware interface structure. This * is done per interface port rather than per PCI device. There may be * more than one port per device. * * Returns the new hardware interface structure, or NULL on a failure */ static ide_hwif_t *ide_hwif_configure(struct pci_dev *dev, const struct ide_port_info *d, ide_hwif_t *mate, int port, int irq) { unsigned long ctl = 0, base = 0; ide_hwif_t *hwif; u8 bootable = (d->host_flags & IDE_HFLAG_BOOTABLE) ? 1 : 0; if ((d->host_flags & IDE_HFLAG_ISA_PORTS) == 0) { /* Possibly we should fail if these checks report true */ ide_pci_check_iomem(dev, d, 2*port); ide_pci_check_iomem(dev, d, 2*port+1); ctl = pci_resource_start(dev, 2*port+1); base = pci_resource_start(dev, 2*port); if ((ctl && !base) || (base && !ctl)) { printk(KERN_ERR "%s: inconsistent baseregs (BIOS) " "for port %d, skipping\n", d->name, port); return NULL; } } if (!ctl) { /* Use default values */ ctl = port ? 0x374 : 0x3f4; base = port ? 0x170 : 0x1f0; } if ((hwif = ide_match_hwif(base, bootable, d->name)) == NULL) return NULL; /* no room in ide_hwifs[] */ if (hwif->io_ports[IDE_DATA_OFFSET] != base || hwif->io_ports[IDE_CONTROL_OFFSET] != (ctl | 2)) { hw_regs_t hw; memset(&hw, 0, sizeof(hw)); #ifndef CONFIG_IDE_ARCH_OBSOLETE_INIT ide_std_init_ports(&hw, base, ctl | 2); #else ide_init_hwif_ports(&hw, base, ctl | 2, NULL); #endif memcpy(hwif->io_ports, hw.io_ports, sizeof(hwif->io_ports)); hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET]; } hwif->chipset = d->chipset ? d->chipset : ide_pci; hwif->pci_dev = dev; hwif->cds = d; hwif->channel = port; if (!hwif->irq) hwif->irq = irq; if (mate) { hwif->mate = mate; mate->mate = hwif; } return hwif; } /** * ide_hwif_setup_dma - configure DMA interface * @dev: PCI device * @d: IDE port info * @hwif: IDE interface * * Set up the DMA base for the interface. Enable the master bits as * necessary and attempt to bring the device DMA into a ready to use * state */ static void ide_hwif_setup_dma(struct pci_dev *dev, const struct ide_port_info *d, ide_hwif_t *hwif) { #ifdef CONFIG_BLK_DEV_IDEDMA_PCI u16 pcicmd; pci_read_config_word(dev, PCI_COMMAND, &pcicmd); if ((d->host_flags & IDE_HFLAG_NO_AUTODMA) == 0 || ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE && (dev->class & 0x80))) { unsigned long dma_base = ide_get_or_set_dma_base(d, hwif); if (dma_base && !(pcicmd & PCI_COMMAND_MASTER)) { /* * Set up BM-DMA capability * (PnP BIOS should have done this) */ pci_set_master(dev); if (pci_read_config_word(dev, PCI_COMMAND, &pcicmd) || !(pcicmd & PCI_COMMAND_MASTER)) { printk(KERN_ERR "%s: %s error updating PCICMD\n", hwif->name, d->name); dma_base = 0; } } if (dma_base) { if (d->init_dma) { d->init_dma(hwif, dma_base); } else { ide_setup_dma(hwif, dma_base, 8); } } else { printk(KERN_INFO "%s: %s Bus-Master DMA disabled " "(BIOS)\n", hwif->name, d->name); } } #endif /* CONFIG_BLK_DEV_IDEDMA_PCI*/ } /** * ide_setup_pci_controller - set up IDE PCI * @dev: PCI device * @d: IDE port info * @noisy: verbose flag * @config: returned as 1 if we configured the hardware * * Set up the PCI and controller side of the IDE interface. This brings * up the PCI side of the device, checks that the device is enabled * and enables it if need be */ static int ide_setup_pci_controller(struct pci_dev *dev, const struct ide_port_info *d, int noisy, int *config) { int ret; u16 pcicmd; if (noisy) ide_setup_pci_noise(dev, d); ret = ide_pci_enable(dev, d); if (ret < 0) goto out; ret = pci_read_config_word(dev, PCI_COMMAND, &pcicmd); if (ret < 0) { printk(KERN_ERR "%s: error accessing PCI regs\n", d->name); goto out; } if (!(pcicmd & PCI_COMMAND_IO)) { /* is device disabled? */ ret = ide_pci_configure(dev, d); if (ret < 0) goto out; *config = 1; printk(KERN_INFO "%s: device enabled (Linux)\n", d->name); } out: return ret; } /** * ide_pci_setup_ports - configure ports/devices on PCI IDE * @dev: PCI device * @d: IDE port info * @pciirq: IRQ line * @idx: ATA index table to update * * Scan the interfaces attached to this device and do any * necessary per port setup. Attach the devices and ask the * generic DMA layer to do its work for us. * * Normally called automaticall from do_ide_pci_setup_device, * but is also used directly as a helper function by some controllers * where the chipset setup is not the default PCI IDE one. */ void ide_pci_setup_ports(struct pci_dev *dev, const struct ide_port_info *d, int pciirq, u8 *idx) { int channels = (d->host_flags & IDE_HFLAG_SINGLE) ? 1 : 2, port; ide_hwif_t *hwif, *mate = NULL; u8 tmp; /* * Set up the IDE ports */ for (port = 0; port < channels; ++port) { const ide_pci_enablebit_t *e = &(d->enablebits[port]); if (e->reg && (pci_read_config_byte(dev, e->reg, &tmp) || (tmp & e->mask) != e->val)) { printk(KERN_INFO "%s: IDE port disabled\n", d->name); continue; /* port not enabled */ } if ((hwif = ide_hwif_configure(dev, d, mate, port, pciirq)) == NULL) continue; /* setup proper ancestral information */ hwif->gendev.parent = &dev->dev; *(idx + port) = hwif->index; if (d->init_iops) d->init_iops(hwif); if ((d->host_flags & IDE_HFLAG_NO_DMA) == 0) ide_hwif_setup_dma(dev, d, hwif); if ((!hwif->irq && (d->host_flags & IDE_HFLAG_LEGACY_IRQS)) || (d->host_flags & IDE_HFLAG_FORCE_LEGACY_IRQS)) hwif->irq = port ? 15 : 14; hwif->fixup = d->fixup; hwif->host_flags = d->host_flags; hwif->pio_mask = d->pio_mask; if ((d->host_flags & IDE_HFLAG_SERIALIZE) && hwif->mate) hwif->mate->serialized = hwif->serialized = 1; if (d->host_flags & IDE_HFLAG_IO_32BIT) { hwif->drives[0].io_32bit = 1; hwif->drives[1].io_32bit = 1; } if (d->host_flags & IDE_HFLAG_UNMASK_IRQS) { hwif->drives[0].unmask = 1; hwif->drives[1].unmask = 1; } if (hwif->dma_base) { hwif->swdma_mask = d->swdma_mask; hwif->mwdma_mask = d->mwdma_mask; hwif->ultra_mask = d->udma_mask; } hwif->drives[0].autotune = 1; hwif->drives[1].autotune = 1; if (d->host_flags & IDE_HFLAG_RQSIZE_256) hwif->rqsize = 256; if (d->init_hwif) /* Call chipset-specific routine * for each enabled hwif */ d->init_hwif(hwif); mate = hwif; } } EXPORT_SYMBOL_GPL(ide_pci_setup_ports); /* * ide_setup_pci_device() looks at the primary/secondary interfaces * on a PCI IDE device and, if they are enabled, prepares the IDE driver * for use with them. This generic code works for most PCI chipsets. * * One thing that is not standardized is the location of the * primary/secondary interface "enable/disable" bits. For chipsets that * we "know" about, this information is in the struct ide_port_info; * for all other chipsets, we just assume both interfaces are enabled. */ static int do_ide_setup_pci_device(struct pci_dev *dev, const struct ide_port_info *d, u8 *idx, u8 noisy) { int tried_config = 0; int pciirq, ret; ret = ide_setup_pci_controller(dev, d, noisy, &tried_config); if (ret < 0) goto out; /* * Can we trust the reported IRQ? */ pciirq = dev->irq; /* Is it an "IDE storage" device in non-PCI mode? */ if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE && (dev->class & 5) != 5) { if (noisy) printk(KERN_INFO "%s: not 100%% native mode: " "will probe irqs later\n", d->name); /* * This allows offboard ide-pci cards the enable a BIOS, * verify interrupt settings of split-mirror pci-config * space, place chipset into init-mode, and/or preserve * an interrupt if the card is not native ide support. */ ret = d->init_chipset ? d->init_chipset(dev, d->name) : 0; if (ret < 0) goto out; pciirq = ret; } else if (tried_config) { if (noisy) printk(KERN_INFO "%s: will probe irqs later\n", d->name); pciirq = 0; } else if (!pciirq) { if (noisy) printk(KERN_WARNING "%s: bad irq (%d): will probe later\n", d->name, pciirq); pciirq = 0; } else { if (d->init_chipset) { ret = d->init_chipset(dev, d->name); if (ret < 0) goto out; } if (noisy) printk(KERN_INFO "%s: 100%% native mode on irq %d\n", d->name, pciirq); } /* FIXME: silent failure can happen */ ide_pci_setup_ports(dev, d, pciirq, idx); out: return ret; } int ide_setup_pci_device(struct pci_dev *dev, const struct ide_port_info *d) { u8 idx[4] = { 0xff, 0xff, 0xff, 0xff }; int ret; ret = do_ide_setup_pci_device(dev, d, &idx[0], 1); if (ret >= 0) ide_device_add(idx); return ret; } EXPORT_SYMBOL_GPL(ide_setup_pci_device); int ide_setup_pci_devices(struct pci_dev *dev1, struct pci_dev *dev2, const struct ide_port_info *d) { struct pci_dev *pdev[] = { dev1, dev2 }; int ret, i; u8 idx[4] = { 0xff, 0xff, 0xff, 0xff }; for (i = 0; i < 2; i++) { ret = do_ide_setup_pci_device(pdev[i], d, &idx[i*2], !i); /* * FIXME: Mom, mom, they stole me the helper function to undo * do_ide_setup_pci_device() on the first device! */ if (ret < 0) goto out; } ide_device_add(idx); out: return ret; } EXPORT_SYMBOL_GPL(ide_setup_pci_devices); #ifdef CONFIG_IDEPCI_PCIBUS_ORDER /* * Module interfaces */ static int pre_init = 1; /* Before first ordered IDE scan */ static LIST_HEAD(ide_pci_drivers); /* * __ide_pci_register_driver - attach IDE driver * @driver: pci driver * @module: owner module of the driver * * Registers a driver with the IDE layer. The IDE layer arranges that * boot time setup is done in the expected device order and then * hands the controllers off to the core PCI code to do the rest of * the work. * * Returns are the same as for pci_register_driver */ int __ide_pci_register_driver(struct pci_driver *driver, struct module *module, const char *mod_name) { if(!pre_init) return __pci_register_driver(driver, module, mod_name); driver->driver.owner = module; list_add_tail(&driver->node, &ide_pci_drivers); return 0; } EXPORT_SYMBOL_GPL(__ide_pci_register_driver); /** * ide_scan_pcidev - find an IDE driver for a device * @dev: PCI device to check * * Look for an IDE driver to handle the device we are considering. * This is only used during boot up to get the ordering correct. After * boot up the pci layer takes over the job. */ static int __init ide_scan_pcidev(struct pci_dev *dev) { struct list_head *l; struct pci_driver *d; list_for_each(l, &ide_pci_drivers) { d = list_entry(l, struct pci_driver, node); if (d->id_table) { const struct pci_device_id *id = pci_match_id(d->id_table, dev); if (id != NULL && d->probe(dev, id) >= 0) { dev->driver = d; pci_dev_get(dev); return 1; } } } return 0; } /** * ide_scan_pcibus - perform the initial IDE driver scan * @scan_direction: set for reverse order scanning * * Perform the initial bus rather than driver ordered scan of the * PCI drivers. After this all IDE pci handling becomes standard * module ordering not traditionally ordered. */ void __init ide_scan_pcibus (int scan_direction) { struct pci_dev *dev = NULL; struct pci_driver *d; struct list_head *l, *n; pre_init = 0; if (!scan_direction) while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) ide_scan_pcidev(dev); else while ((dev = pci_get_device_reverse(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) ide_scan_pcidev(dev); /* * Hand the drivers over to the PCI layer now we * are post init. */ list_for_each_safe(l, n, &ide_pci_drivers) { list_del(l); d = list_entry(l, struct pci_driver, node); if (__pci_register_driver(d, d->driver.owner, d->driver.mod_name)) printk(KERN_ERR "%s: failed to register %s driver\n", __FUNCTION__, d->driver.mod_name); } } #endif