// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 ROHM Semiconductors * * ROHM/KIONIX KX022A accelerometer driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kionix-kx022a.h" /* * The KX022A has FIFO which can store 43 samples of HiRes data from 2 * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to * 258 bytes of sample data. The quirk to know is that the amount of bytes in * the FIFO is advertised via 8 bit register (max value 255). The thing to note * is that full 258 bytes of data is indicated using the max value 255. */ #define KX022A_FIFO_LENGTH 43 #define KX022A_FIFO_FULL_VALUE 255 #define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC) #define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC) /* 3 axis, 2 bytes of data for each of the axis */ #define KX022A_FIFO_SAMPLES_SIZE_BYTES 6 #define KX022A_FIFO_MAX_BYTES \ (KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES) enum { KX022A_STATE_SAMPLE, KX022A_STATE_FIFO, }; /* Regmap configs */ static const struct regmap_range kx022a_volatile_ranges[] = { { .range_min = KX022A_REG_XHP_L, .range_max = KX022A_REG_COTR, }, { .range_min = KX022A_REG_TSCP, .range_max = KX022A_REG_INT_REL, }, { /* The reset bit will be cleared by sensor */ .range_min = KX022A_REG_CNTL2, .range_max = KX022A_REG_CNTL2, }, { .range_min = KX022A_REG_BUF_STATUS_1, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_volatile_regs = { .yes_ranges = &kx022a_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges), }; static const struct regmap_range kx022a_precious_ranges[] = { { .range_min = KX022A_REG_INT_REL, .range_max = KX022A_REG_INT_REL, }, }; static const struct regmap_access_table kx022a_precious_regs = { .yes_ranges = &kx022a_precious_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges), }; /* * The HW does not set WHO_AM_I reg as read-only but we don't want to write it * so we still include it in the read-only ranges. */ static const struct regmap_range kx022a_read_only_ranges[] = { { .range_min = KX022A_REG_XHP_L, .range_max = KX022A_REG_INT_REL, }, { .range_min = KX022A_REG_BUF_STATUS_1, .range_max = KX022A_REG_BUF_STATUS_2, }, { .range_min = KX022A_REG_BUF_READ, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_ro_regs = { .no_ranges = &kx022a_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges), }; static const struct regmap_range kx022a_write_only_ranges[] = { { .range_min = KX022A_REG_BTS_WUF_TH, .range_max = KX022A_REG_BTS_WUF_TH, }, { .range_min = KX022A_REG_MAN_WAKE, .range_max = KX022A_REG_MAN_WAKE, }, { .range_min = KX022A_REG_SELF_TEST, .range_max = KX022A_REG_SELF_TEST, }, { .range_min = KX022A_REG_BUF_CLEAR, .range_max = KX022A_REG_BUF_CLEAR, }, }; static const struct regmap_access_table kx022a_wo_regs = { .no_ranges = &kx022a_write_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges), }; static const struct regmap_range kx022a_noinc_read_ranges[] = { { .range_min = KX022A_REG_BUF_READ, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_nir_regs = { .yes_ranges = &kx022a_noinc_read_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges), }; const struct regmap_config kx022a_regmap = { .reg_bits = 8, .val_bits = 8, .volatile_table = &kx022a_volatile_regs, .rd_table = &kx022a_wo_regs, .wr_table = &kx022a_ro_regs, .rd_noinc_table = &kx022a_nir_regs, .precious_table = &kx022a_precious_regs, .max_register = KX022A_MAX_REGISTER, .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_NS_GPL(kx022a_regmap, IIO_KX022A); struct kx022a_data { struct regmap *regmap; struct iio_trigger *trig; struct device *dev; struct iio_mount_matrix orientation; int64_t timestamp, old_timestamp; int irq; int inc_reg; int ien_reg; unsigned int state; unsigned int odr_ns; bool trigger_enabled; /* * Prevent toggling the sensor stby/active state (PC1 bit) in the * middle of a configuration, or when the fifo is enabled. Also, * protect the data stored/retrieved from this structure from * concurrent accesses. */ struct mutex mutex; u8 watermark; /* 3 x 16bit accel data + timestamp */ __le16 buffer[8] __aligned(IIO_DMA_MINALIGN); struct { __le16 channels[3]; s64 ts __aligned(8); } scan; }; static const struct iio_mount_matrix * kx022a_get_mount_matrix(const struct iio_dev *idev, const struct iio_chan_spec *chan) { struct kx022a_data *data = iio_priv(idev); return &data->orientation; } enum { AXIS_X, AXIS_Y, AXIS_Z, AXIS_MAX }; static const unsigned long kx022a_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; static const struct iio_chan_spec_ext_info kx022a_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix), { } }; #define KX022A_ACCEL_CHAN(axis, index) \ { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .ext_info = kx022a_ext_info, \ .address = KX022A_REG_##axis##OUT_L, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } static const struct iio_chan_spec kx022a_channels[] = { KX022A_ACCEL_CHAN(X, 0), KX022A_ACCEL_CHAN(Y, 1), KX022A_ACCEL_CHAN(Z, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; /* * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the * Linux CPUs can handle without dropping samples. Also, the low power mode is * not available for higher sample rates. Thus, the driver only supports 200 Hz * and slower ODRs. The slowest is 0.78 Hz. */ static const int kx022a_accel_samp_freq_table[][2] = { { 0, 780000 }, { 1, 563000 }, { 3, 125000 }, { 6, 250000 }, { 12, 500000 }, { 25, 0 }, { 50, 0 }, { 100, 0 }, { 200, 0 }, }; static const unsigned int kx022a_odrs[] = { 1282051282, 639795266, 320 * MEGA, 160 * MEGA, 80 * MEGA, 40 * MEGA, 20 * MEGA, 10 * MEGA, 5 * MEGA, }; /* * range is typically +-2G/4G/8G/16G, distributed over the amount of bits. * The scale table can be calculated using * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 * => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed * in low-power mode(?) ) * => +/-2G => 4 / 2^16 * 9,80665 * 10^6 (to scale to micro) * => +/-2G - 598.550415 * +/-4G - 1197.10083 * +/-8G - 2394.20166 * +/-16G - 4788.40332 */ static const int kx022a_scale_table[][2] = { { 598, 550415 }, { 1197, 100830 }, { 2394, 201660 }, { 4788, 403320 }, }; static int kx022a_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (const int *)kx022a_accel_samp_freq_table; *length = ARRAY_SIZE(kx022a_accel_samp_freq_table) * ARRAY_SIZE(kx022a_accel_samp_freq_table[0]); *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *vals = (const int *)kx022a_scale_table; *length = ARRAY_SIZE(kx022a_scale_table) * ARRAY_SIZE(kx022a_scale_table[0]); *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; default: return -EINVAL; } } #define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC) static void kx022a_reg2freq(unsigned int val, int *val1, int *val2) { *val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0]; *val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1]; } static void kx022a_reg2scale(unsigned int val, unsigned int *val1, unsigned int *val2) { val &= KX022A_MASK_GSEL; val >>= KX022A_GSEL_SHIFT; *val1 = kx022a_scale_table[val][0]; *val2 = kx022a_scale_table[val][1]; } static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on) { int ret; if (on) ret = regmap_set_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_PC1); else ret = regmap_clear_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_PC1); if (ret) dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret); return ret; } static int kx022a_turn_off_lock(struct kx022a_data *data) { int ret; mutex_lock(&data->mutex); ret = kx022a_turn_on_off_unlocked(data, false); if (ret) mutex_unlock(&data->mutex); return ret; } static int kx022a_turn_on_unlock(struct kx022a_data *data) { int ret; ret = kx022a_turn_on_off_unlocked(data, true); mutex_unlock(&data->mutex); return ret; } static int kx022a_write_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct kx022a_data *data = iio_priv(idev); int ret, n; /* * We should not allow changing scale or frequency when FIFO is running * as it will mess the timestamp/scale for samples existing in the * buffer. If this turns out to be an issue we can later change logic * to internally flush the fifo before reconfiguring so the samples in * fifo keep matching the freq/scale settings. (Such setup could cause * issues if users trust the watermark to be reached within known * time-limit). */ ret = iio_device_claim_direct_mode(idev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: n = ARRAY_SIZE(kx022a_accel_samp_freq_table); while (n--) if (val == kx022a_accel_samp_freq_table[n][0] && val2 == kx022a_accel_samp_freq_table[n][1]) break; if (n < 0) { ret = -EINVAL; goto unlock_out; } ret = kx022a_turn_off_lock(data); if (ret) break; ret = regmap_update_bits(data->regmap, KX022A_REG_ODCNTL, KX022A_MASK_ODR, n); data->odr_ns = kx022a_odrs[n]; kx022a_turn_on_unlock(data); break; case IIO_CHAN_INFO_SCALE: n = ARRAY_SIZE(kx022a_scale_table); while (n-- > 0) if (val == kx022a_scale_table[n][0] && val2 == kx022a_scale_table[n][1]) break; if (n < 0) { ret = -EINVAL; goto unlock_out; } ret = kx022a_turn_off_lock(data); if (ret) break; ret = regmap_update_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_GSEL, n << KX022A_GSEL_SHIFT); kx022a_turn_on_unlock(data); break; default: ret = -EINVAL; break; } unlock_out: iio_device_release_direct_mode(idev); return ret; } static int kx022a_fifo_set_wmi(struct kx022a_data *data) { u8 threshold; threshold = data->watermark; return regmap_update_bits(data->regmap, KX022A_REG_BUF_CNTL1, KX022A_MASK_WM_TH, threshold); } static int kx022a_get_axis(struct kx022a_data *data, struct iio_chan_spec const *chan, int *val) { int ret; ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0], sizeof(__le16)); if (ret) return ret; *val = le16_to_cpu(data->buffer[0]); return IIO_VAL_INT; } static int kx022a_read_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct kx022a_data *data = iio_priv(idev); unsigned int regval; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(idev); if (ret) return ret; mutex_lock(&data->mutex); ret = kx022a_get_axis(data, chan, val); mutex_unlock(&data->mutex); iio_device_release_direct_mode(idev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(data->regmap, KX022A_REG_ODCNTL, ®val); if (ret) return ret; if ((regval & KX022A_MASK_ODR) > ARRAY_SIZE(kx022a_accel_samp_freq_table)) { dev_err(data->dev, "Invalid ODR\n"); return -EINVAL; } kx022a_reg2freq(regval, val, val2); return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SCALE: ret = regmap_read(data->regmap, KX022A_REG_CNTL, ®val); if (ret < 0) return ret; kx022a_reg2scale(regval, val, val2); return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; }; static int kx022a_validate_trigger(struct iio_dev *idev, struct iio_trigger *trig) { struct kx022a_data *data = iio_priv(idev); if (data->trig != trig) return -EINVAL; return 0; } static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val) { struct kx022a_data *data = iio_priv(idev); if (val > KX022A_FIFO_LENGTH) val = KX022A_FIFO_LENGTH; mutex_lock(&data->mutex); data->watermark = val; mutex_unlock(&data->mutex); return 0; } static ssize_t hwfifo_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *idev = dev_to_iio_dev(dev); struct kx022a_data *data = iio_priv(idev); bool state; mutex_lock(&data->mutex); state = data->state; mutex_unlock(&data->mutex); return sysfs_emit(buf, "%d\n", state); } static ssize_t hwfifo_watermark_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *idev = dev_to_iio_dev(dev); struct kx022a_data *data = iio_priv(idev); int wm; mutex_lock(&data->mutex); wm = data->watermark; mutex_unlock(&data->mutex); return sysfs_emit(buf, "%d\n", wm); } static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0); static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0); static const struct iio_dev_attr *kx022a_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL }; static int kx022a_drop_fifo_contents(struct kx022a_data *data) { /* * We must clear the old time-stamp to avoid computing the timestamps * based on samples acquired when buffer was last enabled. * * We don't need to protect the timestamp as long as we are only * called from fifo-disable where we can guarantee the sensor is not * triggering interrupts and where the mutex is locked to prevent the * user-space access. */ data->timestamp = 0; return regmap_write(data->regmap, KX022A_REG_BUF_CLEAR, 0x0); } static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples, bool irq) { struct kx022a_data *data = iio_priv(idev); struct device *dev = regmap_get_device(data->regmap); __le16 buffer[KX022A_FIFO_LENGTH * 3]; uint64_t sample_period; int count, fifo_bytes; bool renable = false; int64_t tstamp; int ret, i; ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes); if (ret) { dev_err(dev, "Error reading buffer status\n"); return ret; } /* Let's not overflow if we for some reason get bogus value from i2c */ if (fifo_bytes == KX022A_FIFO_FULL_VALUE) fifo_bytes = KX022A_FIFO_MAX_BYTES; if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES) dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n"); count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES; if (!count) return 0; /* * If we are being called from IRQ handler we know the stored timestamp * is fairly accurate for the last stored sample. Otherwise, if we are * called as a result of a read operation from userspace and hence * before the watermark interrupt was triggered, take a timestamp * now. We can fall anywhere in between two samples so the error in this * case is at most one sample period. */ if (!irq) { /* * We need to have the IRQ disabled or we risk of messing-up * the timestamps. If we are ran from IRQ, then the * IRQF_ONESHOT has us covered - but if we are ran by the * user-space read we need to disable the IRQ to be on a safe * side. We do this usng synchronous disable so that if the * IRQ thread is being ran on other CPU we wait for it to be * finished. */ disable_irq(data->irq); renable = true; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(idev); } /* * Approximate timestamps for each of the sample based on the sampling * frequency, timestamp for last sample and number of samples. * * We'd better not use the current bandwidth settings to compute the * sample period. The real sample rate varies with the device and * small variation adds when we store a large number of samples. * * To avoid this issue we compute the actual sample period ourselves * based on the timestamp delta between the last two flush operations. */ if (data->old_timestamp) { sample_period = data->timestamp - data->old_timestamp; do_div(sample_period, count); } else { sample_period = data->odr_ns; } tstamp = data->timestamp - (count - 1) * sample_period; if (samples && count > samples) { /* * Here we leave some old samples to the buffer. We need to * adjust the timestamp to match the first sample in the buffer * or we will miscalculate the sample_period at next round. */ data->timestamp -= (count - samples) * sample_period; count = samples; } fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES; ret = regmap_noinc_read(data->regmap, KX022A_REG_BUF_READ, &buffer[0], fifo_bytes); if (ret) goto renable_out; for (i = 0; i < count; i++) { __le16 *sam = &buffer[i * 3]; __le16 *chs; int bit; chs = &data->scan.channels[0]; for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX) chs[bit] = sam[bit]; iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); tstamp += sample_period; } ret = count; renable_out: if (renable) enable_irq(data->irq); return ret; } static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples) { struct kx022a_data *data = iio_priv(idev); int ret; mutex_lock(&data->mutex); ret = __kx022a_fifo_flush(idev, samples, false); mutex_unlock(&data->mutex); return ret; } static const struct iio_info kx022a_info = { .read_raw = &kx022a_read_raw, .write_raw = &kx022a_write_raw, .read_avail = &kx022a_read_avail, .validate_trigger = kx022a_validate_trigger, .hwfifo_set_watermark = kx022a_set_watermark, .hwfifo_flush_to_buffer = kx022a_fifo_flush, }; static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en) { if (en) return regmap_set_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_DRDY); return regmap_clear_bits(data->regmap, KX022A_REG_CNTL, KX022A_MASK_DRDY); } static int kx022a_prepare_irq_pin(struct kx022a_data *data) { /* Enable IRQ1 pin. Set polarity to active low */ int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL | KX022A_MASK_ITYP; int val = KX022A_MASK_IEN | KX022A_IPOL_LOW | KX022A_ITYP_LEVEL; int ret; ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val); if (ret) return ret; /* We enable WMI to IRQ pin only at buffer_enable */ mask = KX022A_MASK_INS2_DRDY; return regmap_set_bits(data->regmap, data->ien_reg, mask); } static int kx022a_fifo_disable(struct kx022a_data *data) { int ret = 0; ret = kx022a_turn_off_lock(data); if (ret) return ret; ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); if (ret) goto unlock_out; ret = regmap_clear_bits(data->regmap, KX022A_REG_BUF_CNTL2, KX022A_MASK_BUF_EN); if (ret) goto unlock_out; data->state &= ~KX022A_STATE_FIFO; kx022a_drop_fifo_contents(data); return kx022a_turn_on_unlock(data); unlock_out: mutex_unlock(&data->mutex); return ret; } static int kx022a_buffer_predisable(struct iio_dev *idev) { struct kx022a_data *data = iio_priv(idev); if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) return 0; return kx022a_fifo_disable(data); } static int kx022a_fifo_enable(struct kx022a_data *data) { int ret; ret = kx022a_turn_off_lock(data); if (ret) return ret; /* Update watermark to HW */ ret = kx022a_fifo_set_wmi(data); if (ret) goto unlock_out; /* Enable buffer */ ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, KX022A_MASK_BUF_EN); if (ret) goto unlock_out; data->state |= KX022A_STATE_FIFO; ret = regmap_set_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); if (ret) goto unlock_out; return kx022a_turn_on_unlock(data); unlock_out: mutex_unlock(&data->mutex); return ret; } static int kx022a_buffer_postenable(struct iio_dev *idev) { struct kx022a_data *data = iio_priv(idev); /* * If we use data-ready trigger, then the IRQ masks should be handled by * trigger enable and the hardware buffer is not used but we just update * results to the IIO fifo when data-ready triggers. */ if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) return 0; return kx022a_fifo_enable(data); } static const struct iio_buffer_setup_ops kx022a_buffer_ops = { .postenable = kx022a_buffer_postenable, .predisable = kx022a_buffer_predisable, }; static irqreturn_t kx022a_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *idev = pf->indio_dev; struct kx022a_data *data = iio_priv(idev); int ret; ret = regmap_bulk_read(data->regmap, KX022A_REG_XOUT_L, data->buffer, KX022A_FIFO_SAMPLES_SIZE_BYTES); if (ret < 0) goto err_read; iio_push_to_buffers_with_timestamp(idev, data->buffer, pf->timestamp); err_read: iio_trigger_notify_done(idev->trig); return IRQ_HANDLED; } /* Get timestamps and wake the thread if we need to read data */ static irqreturn_t kx022a_irq_handler(int irq, void *private) { struct iio_dev *idev = private; struct kx022a_data *data = iio_priv(idev); data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(idev); if (data->state & KX022A_STATE_FIFO || data->trigger_enabled) return IRQ_WAKE_THREAD; return IRQ_NONE; } /* * WMI and data-ready IRQs are acked when results are read. If we add * TILT/WAKE or other IRQs - then we may need to implement the acking * (which is racy). */ static irqreturn_t kx022a_irq_thread_handler(int irq, void *private) { struct iio_dev *idev = private; struct kx022a_data *data = iio_priv(idev); irqreturn_t ret = IRQ_NONE; mutex_lock(&data->mutex); if (data->trigger_enabled) { iio_trigger_poll_nested(data->trig); ret = IRQ_HANDLED; } if (data->state & KX022A_STATE_FIFO) { int ok; ok = __kx022a_fifo_flush(idev, KX022A_FIFO_LENGTH, true); if (ok > 0) ret = IRQ_HANDLED; } mutex_unlock(&data->mutex); return ret; } static int kx022a_trigger_set_state(struct iio_trigger *trig, bool state) { struct kx022a_data *data = iio_trigger_get_drvdata(trig); int ret = 0; mutex_lock(&data->mutex); if (data->trigger_enabled == state) goto unlock_out; if (data->state & KX022A_STATE_FIFO) { dev_warn(data->dev, "Can't set trigger when FIFO enabled\n"); ret = -EBUSY; goto unlock_out; } ret = kx022a_turn_on_off_unlocked(data, false); if (ret) goto unlock_out; data->trigger_enabled = state; ret = kx022a_set_drdy_irq(data, state); if (ret) goto unlock_out; ret = kx022a_turn_on_off_unlocked(data, true); unlock_out: mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops kx022a_trigger_ops = { .set_trigger_state = kx022a_trigger_set_state, }; static int kx022a_chip_init(struct kx022a_data *data) { int ret, val; /* Reset the senor */ ret = regmap_write(data->regmap, KX022A_REG_CNTL2, KX022A_MASK_SRST); if (ret) return ret; /* * I've seen I2C read failures if we poll too fast after the sensor * reset. Slight delay gives I2C block the time to recover. */ msleep(1); ret = regmap_read_poll_timeout(data->regmap, KX022A_REG_CNTL2, val, !(val & KX022A_MASK_SRST), KX022A_SOFT_RESET_WAIT_TIME_US, KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US); if (ret) { dev_err(data->dev, "Sensor reset %s\n", val & KX022A_MASK_SRST ? "timeout" : "fail#"); return ret; } ret = regmap_reinit_cache(data->regmap, &kx022a_regmap); if (ret) { dev_err(data->dev, "Failed to reinit reg cache\n"); return ret; } /* set data res 16bit */ ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, KX022A_MASK_BRES16); if (ret) { dev_err(data->dev, "Failed to set data resolution\n"); return ret; } return kx022a_prepare_irq_pin(data); } int kx022a_probe_internal(struct device *dev) { static const char * const regulator_names[] = {"io-vdd", "vdd"}; struct iio_trigger *indio_trig; struct fwnode_handle *fwnode; struct kx022a_data *data; struct regmap *regmap; unsigned int chip_id; struct iio_dev *idev; int ret, irq; char *name; regmap = dev_get_regmap(dev, NULL); if (!regmap) { dev_err(dev, "no regmap\n"); return -EINVAL; } fwnode = dev_fwnode(dev); if (!fwnode) return -ENODEV; idev = devm_iio_device_alloc(dev, sizeof(*data)); if (!idev) return -ENOMEM; data = iio_priv(idev); /* * VDD is the analog and digital domain voltage supply and * IO_VDD is the digital I/O voltage supply. */ ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names), regulator_names); if (ret && ret != -ENODEV) return dev_err_probe(dev, ret, "failed to enable regulator\n"); ret = regmap_read(regmap, KX022A_REG_WHO, &chip_id); if (ret) return dev_err_probe(dev, ret, "Failed to access sensor\n"); if (chip_id != KX022A_ID) { dev_err(dev, "unsupported device 0x%x\n", chip_id); return -EINVAL; } irq = fwnode_irq_get_byname(fwnode, "INT1"); if (irq > 0) { data->inc_reg = KX022A_REG_INC1; data->ien_reg = KX022A_REG_INC4; } else { irq = fwnode_irq_get_byname(fwnode, "INT2"); if (irq <= 0) return dev_err_probe(dev, irq, "No suitable IRQ\n"); data->inc_reg = KX022A_REG_INC5; data->ien_reg = KX022A_REG_INC6; } data->regmap = regmap; data->dev = dev; data->irq = irq; data->odr_ns = KX022A_DEFAULT_PERIOD_NS; mutex_init(&data->mutex); idev->channels = kx022a_channels; idev->num_channels = ARRAY_SIZE(kx022a_channels); idev->name = "kx022-accel"; idev->info = &kx022a_info; idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; idev->available_scan_masks = kx022a_scan_masks; /* Read the mounting matrix, if present */ ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; /* The sensor must be turned off for configuration */ ret = kx022a_turn_off_lock(data); if (ret) return ret; ret = kx022a_chip_init(data); if (ret) { mutex_unlock(&data->mutex); return ret; } ret = kx022a_turn_on_unlock(data); if (ret) return ret; ret = devm_iio_triggered_buffer_setup_ext(dev, idev, &iio_pollfunc_store_time, kx022a_trigger_handler, IIO_BUFFER_DIRECTION_IN, &kx022a_buffer_ops, kx022a_fifo_attributes); if (ret) return dev_err_probe(data->dev, ret, "iio_triggered_buffer_setup_ext FAIL\n"); indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name, iio_device_id(idev)); if (!indio_trig) return -ENOMEM; data->trig = indio_trig; indio_trig->ops = &kx022a_trigger_ops; iio_trigger_set_drvdata(indio_trig, data); /* * No need to check for NULL. request_threaded_irq() defaults to * dev_name() should the alloc fail. */ name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a", dev_name(data->dev)); ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler, &kx022a_irq_thread_handler, IRQF_ONESHOT, name, idev); if (ret) return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); ret = devm_iio_trigger_register(dev, indio_trig); if (ret) return dev_err_probe(data->dev, ret, "Trigger registration failed\n"); ret = devm_iio_device_register(data->dev, idev); if (ret < 0) return dev_err_probe(dev, ret, "Unable to register iio device\n"); return ret; } EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A); MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); MODULE_AUTHOR("Matti Vaittinen "); MODULE_LICENSE("GPL");