/* * * TWL4030 MADC module driver-This driver monitors the real time * conversion of analog signals like battery temperature, * battery type, battery level etc. * * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ * J Keerthy * * Based on twl4030-madc.c * Copyright (C) 2008 Nokia Corporation * Mikko Ylinen * * Amit Kucheria * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TWL4030_MADC_MAX_CHANNELS 16 #define TWL4030_MADC_CTRL1 0x00 #define TWL4030_MADC_CTRL2 0x01 #define TWL4030_MADC_RTSELECT_LSB 0x02 #define TWL4030_MADC_SW1SELECT_LSB 0x06 #define TWL4030_MADC_SW2SELECT_LSB 0x0A #define TWL4030_MADC_RTAVERAGE_LSB 0x04 #define TWL4030_MADC_SW1AVERAGE_LSB 0x08 #define TWL4030_MADC_SW2AVERAGE_LSB 0x0C #define TWL4030_MADC_CTRL_SW1 0x12 #define TWL4030_MADC_CTRL_SW2 0x13 #define TWL4030_MADC_RTCH0_LSB 0x17 #define TWL4030_MADC_GPCH0_LSB 0x37 #define TWL4030_MADC_MADCON (1 << 0) /* MADC power on */ #define TWL4030_MADC_BUSY (1 << 0) /* MADC busy */ /* MADC conversion completion */ #define TWL4030_MADC_EOC_SW (1 << 1) /* MADC SWx start conversion */ #define TWL4030_MADC_SW_START (1 << 5) #define TWL4030_MADC_ADCIN0 (1 << 0) #define TWL4030_MADC_ADCIN1 (1 << 1) #define TWL4030_MADC_ADCIN2 (1 << 2) #define TWL4030_MADC_ADCIN3 (1 << 3) #define TWL4030_MADC_ADCIN4 (1 << 4) #define TWL4030_MADC_ADCIN5 (1 << 5) #define TWL4030_MADC_ADCIN6 (1 << 6) #define TWL4030_MADC_ADCIN7 (1 << 7) #define TWL4030_MADC_ADCIN8 (1 << 8) #define TWL4030_MADC_ADCIN9 (1 << 9) #define TWL4030_MADC_ADCIN10 (1 << 10) #define TWL4030_MADC_ADCIN11 (1 << 11) #define TWL4030_MADC_ADCIN12 (1 << 12) #define TWL4030_MADC_ADCIN13 (1 << 13) #define TWL4030_MADC_ADCIN14 (1 << 14) #define TWL4030_MADC_ADCIN15 (1 << 15) /* Fixed channels */ #define TWL4030_MADC_BTEMP TWL4030_MADC_ADCIN1 #define TWL4030_MADC_VBUS TWL4030_MADC_ADCIN8 #define TWL4030_MADC_VBKB TWL4030_MADC_ADCIN9 #define TWL4030_MADC_ICHG TWL4030_MADC_ADCIN10 #define TWL4030_MADC_VCHG TWL4030_MADC_ADCIN11 #define TWL4030_MADC_VBAT TWL4030_MADC_ADCIN12 /* Step size and prescaler ratio */ #define TEMP_STEP_SIZE 147 #define TEMP_PSR_R 100 #define CURR_STEP_SIZE 147 #define CURR_PSR_R1 44 #define CURR_PSR_R2 88 #define TWL4030_BCI_BCICTL1 0x23 #define TWL4030_BCI_CGAIN 0x020 #define TWL4030_BCI_MESBAT (1 << 1) #define TWL4030_BCI_TYPEN (1 << 4) #define TWL4030_BCI_ITHEN (1 << 3) #define REG_BCICTL2 0x024 #define TWL4030_BCI_ITHSENS 0x007 /* Register and bits for GPBR1 register */ #define TWL4030_REG_GPBR1 0x0c #define TWL4030_GPBR1_MADC_HFCLK_EN (1 << 7) #define TWL4030_USB_SEL_MADC_MCPC (1<<3) #define TWL4030_USB_CARKIT_ANA_CTRL 0xBB struct twl4030_madc_conversion_method { u8 sel; u8 avg; u8 rbase; u8 ctrl; }; /** * struct twl4030_madc_request - madc request packet for channel conversion * @channels: 16 bit bitmap for individual channels * @do_avg: sample the input channel for 4 consecutive cycles * @method: RT, SW1, SW2 * @type: Polling or interrupt based method * @active: Flag if request is active * @result_pending: Flag from irq handler, that result is ready * @raw: Return raw value, do not convert it * @rbuf: Result buffer */ struct twl4030_madc_request { unsigned long channels; bool do_avg; u16 method; u16 type; bool active; bool result_pending; bool raw; int rbuf[TWL4030_MADC_MAX_CHANNELS]; }; enum conversion_methods { TWL4030_MADC_RT, TWL4030_MADC_SW1, TWL4030_MADC_SW2, TWL4030_MADC_NUM_METHODS }; enum sample_type { TWL4030_MADC_WAIT, TWL4030_MADC_IRQ_ONESHOT, TWL4030_MADC_IRQ_REARM }; /** * struct twl4030_madc_data - a container for madc info * @dev: Pointer to device structure for madc * @lock: Mutex protecting this data structure * @regulator: Pointer to bias regulator for madc * @requests: Array of request struct corresponding to SW1, SW2 and RT * @use_second_irq: IRQ selection (main or co-processor) * @imr: Interrupt mask register of MADC * @isr: Interrupt status register of MADC */ struct twl4030_madc_data { struct device *dev; struct mutex lock; /* mutex protecting this data structure */ struct regulator *usb3v1; struct twl4030_madc_request requests[TWL4030_MADC_NUM_METHODS]; bool use_second_irq; u8 imr; u8 isr; }; static int twl4030_madc_conversion(struct twl4030_madc_request *req); static int twl4030_madc_read(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long mask) { struct twl4030_madc_data *madc = iio_priv(iio_dev); struct twl4030_madc_request req; int ret; req.method = madc->use_second_irq ? TWL4030_MADC_SW2 : TWL4030_MADC_SW1; req.channels = BIT(chan->channel); req.active = false; req.type = TWL4030_MADC_WAIT; req.raw = !(mask == IIO_CHAN_INFO_PROCESSED); req.do_avg = (mask == IIO_CHAN_INFO_AVERAGE_RAW); ret = twl4030_madc_conversion(&req); if (ret < 0) return ret; *val = req.rbuf[chan->channel]; return IIO_VAL_INT; } static const struct iio_info twl4030_madc_iio_info = { .read_raw = &twl4030_madc_read, }; #define TWL4030_ADC_CHANNEL(_channel, _type, _name) { \ .type = _type, \ .channel = _channel, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_AVERAGE_RAW) | \ BIT(IIO_CHAN_INFO_PROCESSED), \ .datasheet_name = _name, \ .indexed = 1, \ } static const struct iio_chan_spec twl4030_madc_iio_channels[] = { TWL4030_ADC_CHANNEL(0, IIO_VOLTAGE, "ADCIN0"), TWL4030_ADC_CHANNEL(1, IIO_TEMP, "ADCIN1"), TWL4030_ADC_CHANNEL(2, IIO_VOLTAGE, "ADCIN2"), TWL4030_ADC_CHANNEL(3, IIO_VOLTAGE, "ADCIN3"), TWL4030_ADC_CHANNEL(4, IIO_VOLTAGE, "ADCIN4"), TWL4030_ADC_CHANNEL(5, IIO_VOLTAGE, "ADCIN5"), TWL4030_ADC_CHANNEL(6, IIO_VOLTAGE, "ADCIN6"), TWL4030_ADC_CHANNEL(7, IIO_VOLTAGE, "ADCIN7"), TWL4030_ADC_CHANNEL(8, IIO_VOLTAGE, "ADCIN8"), TWL4030_ADC_CHANNEL(9, IIO_VOLTAGE, "ADCIN9"), TWL4030_ADC_CHANNEL(10, IIO_CURRENT, "ADCIN10"), TWL4030_ADC_CHANNEL(11, IIO_VOLTAGE, "ADCIN11"), TWL4030_ADC_CHANNEL(12, IIO_VOLTAGE, "ADCIN12"), TWL4030_ADC_CHANNEL(13, IIO_VOLTAGE, "ADCIN13"), TWL4030_ADC_CHANNEL(14, IIO_VOLTAGE, "ADCIN14"), TWL4030_ADC_CHANNEL(15, IIO_VOLTAGE, "ADCIN15"), }; static struct twl4030_madc_data *twl4030_madc; struct twl4030_prescale_divider_ratios { s16 numerator; s16 denominator; }; static const struct twl4030_prescale_divider_ratios twl4030_divider_ratios[16] = { {1, 1}, /* CHANNEL 0 No Prescaler */ {1, 1}, /* CHANNEL 1 No Prescaler */ {6, 10}, /* CHANNEL 2 */ {6, 10}, /* CHANNEL 3 */ {6, 10}, /* CHANNEL 4 */ {6, 10}, /* CHANNEL 5 */ {6, 10}, /* CHANNEL 6 */ {6, 10}, /* CHANNEL 7 */ {3, 14}, /* CHANNEL 8 */ {1, 3}, /* CHANNEL 9 */ {1, 1}, /* CHANNEL 10 No Prescaler */ {15, 100}, /* CHANNEL 11 */ {1, 4}, /* CHANNEL 12 */ {1, 1}, /* CHANNEL 13 Reserved channels */ {1, 1}, /* CHANNEL 14 Reseved channels */ {5, 11}, /* CHANNEL 15 */ }; /* Conversion table from -3 to 55 degrees Celcius */ static int twl4030_therm_tbl[] = { 30800, 29500, 28300, 27100, 26000, 24900, 23900, 22900, 22000, 21100, 20300, 19400, 18700, 17900, 17200, 16500, 15900, 15300, 14700, 14100, 13600, 13100, 12600, 12100, 11600, 11200, 10800, 10400, 10000, 9630, 9280, 8950, 8620, 8310, 8020, 7730, 7460, 7200, 6950, 6710, 6470, 6250, 6040, 5830, 5640, 5450, 5260, 5090, 4920, 4760, 4600, 4450, 4310, 4170, 4040, 3910, 3790, 3670, 3550 }; /* * Structure containing the registers * of different conversion methods supported by MADC. * Hardware or RT real time conversion request initiated by external host * processor for RT Signal conversions. * External host processors can also request for non RT conversions * SW1 and SW2 software conversions also called asynchronous or GPC request. */ static const struct twl4030_madc_conversion_method twl4030_conversion_methods[] = { [TWL4030_MADC_RT] = { .sel = TWL4030_MADC_RTSELECT_LSB, .avg = TWL4030_MADC_RTAVERAGE_LSB, .rbase = TWL4030_MADC_RTCH0_LSB, }, [TWL4030_MADC_SW1] = { .sel = TWL4030_MADC_SW1SELECT_LSB, .avg = TWL4030_MADC_SW1AVERAGE_LSB, .rbase = TWL4030_MADC_GPCH0_LSB, .ctrl = TWL4030_MADC_CTRL_SW1, }, [TWL4030_MADC_SW2] = { .sel = TWL4030_MADC_SW2SELECT_LSB, .avg = TWL4030_MADC_SW2AVERAGE_LSB, .rbase = TWL4030_MADC_GPCH0_LSB, .ctrl = TWL4030_MADC_CTRL_SW2, }, }; /** * twl4030_madc_channel_raw_read() - Function to read a particular channel value * @madc: pointer to struct twl4030_madc_data * @reg: lsb of ADC Channel * * Return: 0 on success, an error code otherwise. */ static int twl4030_madc_channel_raw_read(struct twl4030_madc_data *madc, u8 reg) { u16 val; int ret; /* * For each ADC channel, we have MSB and LSB register pair. MSB address * is always LSB address+1. reg parameter is the address of LSB register */ ret = twl_i2c_read_u16(TWL4030_MODULE_MADC, &val, reg); if (ret) { dev_err(madc->dev, "unable to read register 0x%X\n", reg); return ret; } return (int)(val >> 6); } /* * Return battery temperature in degrees Celsius * Or < 0 on failure. */ static int twl4030battery_temperature(int raw_volt) { u8 val; int temp, curr, volt, res, ret; volt = (raw_volt * TEMP_STEP_SIZE) / TEMP_PSR_R; /* Getting and calculating the supply current in micro amperes */ ret = twl_i2c_read_u8(TWL_MODULE_MAIN_CHARGE, &val, REG_BCICTL2); if (ret < 0) return ret; curr = ((val & TWL4030_BCI_ITHSENS) + 1) * 10; /* Getting and calculating the thermistor resistance in ohms */ res = volt * 1000 / curr; /* calculating temperature */ for (temp = 58; temp >= 0; temp--) { int actual = twl4030_therm_tbl[temp]; if ((actual - res) >= 0) break; } return temp + 1; } static int twl4030battery_current(int raw_volt) { int ret; u8 val; ret = twl_i2c_read_u8(TWL_MODULE_MAIN_CHARGE, &val, TWL4030_BCI_BCICTL1); if (ret) return ret; if (val & TWL4030_BCI_CGAIN) /* slope of 0.44 mV/mA */ return (raw_volt * CURR_STEP_SIZE) / CURR_PSR_R1; else /* slope of 0.88 mV/mA */ return (raw_volt * CURR_STEP_SIZE) / CURR_PSR_R2; } /* * Function to read channel values * @madc - pointer to twl4030_madc_data struct * @reg_base - Base address of the first channel * @Channels - 16 bit bitmap. If the bit is set, channel's value is read * @buf - The channel values are stored here. if read fails error * @raw - Return raw values without conversion * value is stored * Returns the number of successfully read channels. */ static int twl4030_madc_read_channels(struct twl4030_madc_data *madc, u8 reg_base, unsigned long channels, int *buf, bool raw) { int count = 0; int i; u8 reg; for_each_set_bit(i, &channels, TWL4030_MADC_MAX_CHANNELS) { reg = reg_base + (2 * i); buf[i] = twl4030_madc_channel_raw_read(madc, reg); if (buf[i] < 0) { dev_err(madc->dev, "Unable to read register 0x%X\n", reg); return buf[i]; } if (raw) { count++; continue; } switch (i) { case 10: buf[i] = twl4030battery_current(buf[i]); if (buf[i] < 0) { dev_err(madc->dev, "err reading current\n"); return buf[i]; } else { count++; buf[i] = buf[i] - 750; } break; case 1: buf[i] = twl4030battery_temperature(buf[i]); if (buf[i] < 0) { dev_err(madc->dev, "err reading temperature\n"); return buf[i]; } else { buf[i] -= 3; count++; } break; default: count++; /* Analog Input (V) = conv_result * step_size / R * conv_result = decimal value of 10-bit conversion * result * step size = 1.5 / (2 ^ 10 -1) * R = Prescaler ratio for input channels. * Result given in mV hence multiplied by 1000. */ buf[i] = (buf[i] * 3 * 1000 * twl4030_divider_ratios[i].denominator) / (2 * 1023 * twl4030_divider_ratios[i].numerator); } } return count; } /* * Disables irq. * @madc - pointer to twl4030_madc_data struct * @id - irq number to be disabled * can take one of TWL4030_MADC_RT, TWL4030_MADC_SW1, TWL4030_MADC_SW2 * corresponding to RT, SW1, SW2 conversion requests. * Returns error if i2c read/write fails. */ static int twl4030_madc_disable_irq(struct twl4030_madc_data *madc, u8 id) { u8 val; int ret; ret = twl_i2c_read_u8(TWL4030_MODULE_MADC, &val, madc->imr); if (ret) { dev_err(madc->dev, "unable to read imr register 0x%X\n", madc->imr); return ret; } val |= (1 << id); ret = twl_i2c_write_u8(TWL4030_MODULE_MADC, val, madc->imr); if (ret) { dev_err(madc->dev, "unable to write imr register 0x%X\n", madc->imr); return ret; } return 0; } static irqreturn_t twl4030_madc_threaded_irq_handler(int irq, void *_madc) { struct twl4030_madc_data *madc = _madc; const struct twl4030_madc_conversion_method *method; u8 isr_val, imr_val; int i, len, ret; struct twl4030_madc_request *r; mutex_lock(&madc->lock); ret = twl_i2c_read_u8(TWL4030_MODULE_MADC, &isr_val, madc->isr); if (ret) { dev_err(madc->dev, "unable to read isr register 0x%X\n", madc->isr); goto err_i2c; } ret = twl_i2c_read_u8(TWL4030_MODULE_MADC, &imr_val, madc->imr); if (ret) { dev_err(madc->dev, "unable to read imr register 0x%X\n", madc->imr); goto err_i2c; } isr_val &= ~imr_val; for (i = 0; i < TWL4030_MADC_NUM_METHODS; i++) { if (!(isr_val & (1 << i))) continue; ret = twl4030_madc_disable_irq(madc, i); if (ret < 0) dev_dbg(madc->dev, "Disable interrupt failed %d\n", i); madc->requests[i].result_pending = 1; } for (i = 0; i < TWL4030_MADC_NUM_METHODS; i++) { r = &madc->requests[i]; /* No pending results for this method, move to next one */ if (!r->result_pending) continue; method = &twl4030_conversion_methods[r->method]; /* Read results */ len = twl4030_madc_read_channels(madc, method->rbase, r->channels, r->rbuf, r->raw); /* Free request */ r->result_pending = 0; r->active = 0; } mutex_unlock(&madc->lock); return IRQ_HANDLED; err_i2c: /* * In case of error check whichever request is active * and service the same. */ for (i = 0; i < TWL4030_MADC_NUM_METHODS; i++) { r = &madc->requests[i]; if (r->active == 0) continue; method = &twl4030_conversion_methods[r->method]; /* Read results */ len = twl4030_madc_read_channels(madc, method->rbase, r->channels, r->rbuf, r->raw); /* Free request */ r->result_pending = 0; r->active = 0; } mutex_unlock(&madc->lock); return IRQ_HANDLED; } /* * Function which enables the madc conversion * by writing to the control register. * @madc - pointer to twl4030_madc_data struct * @conv_method - can be TWL4030_MADC_RT, TWL4030_MADC_SW2, TWL4030_MADC_SW1 * corresponding to RT SW1 or SW2 conversion methods. * Returns 0 if succeeds else a negative error value */ static int twl4030_madc_start_conversion(struct twl4030_madc_data *madc, int conv_method) { const struct twl4030_madc_conversion_method *method; int ret = 0; if (conv_method != TWL4030_MADC_SW1 && conv_method != TWL4030_MADC_SW2) return -ENOTSUPP; method = &twl4030_conversion_methods[conv_method]; ret = twl_i2c_write_u8(TWL4030_MODULE_MADC, TWL4030_MADC_SW_START, method->ctrl); if (ret) { dev_err(madc->dev, "unable to write ctrl register 0x%X\n", method->ctrl); return ret; } return 0; } /* * Function that waits for conversion to be ready * @madc - pointer to twl4030_madc_data struct * @timeout_ms - timeout value in milliseconds * @status_reg - ctrl register * returns 0 if succeeds else a negative error value */ static int twl4030_madc_wait_conversion_ready(struct twl4030_madc_data *madc, unsigned int timeout_ms, u8 status_reg) { unsigned long timeout; int ret; timeout = jiffies + msecs_to_jiffies(timeout_ms); do { u8 reg; ret = twl_i2c_read_u8(TWL4030_MODULE_MADC, ®, status_reg); if (ret) { dev_err(madc->dev, "unable to read status register 0x%X\n", status_reg); return ret; } if (!(reg & TWL4030_MADC_BUSY) && (reg & TWL4030_MADC_EOC_SW)) return 0; usleep_range(500, 2000); } while (!time_after(jiffies, timeout)); dev_err(madc->dev, "conversion timeout!\n"); return -EAGAIN; } /* * An exported function which can be called from other kernel drivers. * @req twl4030_madc_request structure * req->rbuf will be filled with read values of channels based on the * channel index. If a particular channel reading fails there will * be a negative error value in the corresponding array element. * returns 0 if succeeds else error value */ static int twl4030_madc_conversion(struct twl4030_madc_request *req) { const struct twl4030_madc_conversion_method *method; int ret; if (!req || !twl4030_madc) return -EINVAL; mutex_lock(&twl4030_madc->lock); if (req->method < TWL4030_MADC_RT || req->method > TWL4030_MADC_SW2) { ret = -EINVAL; goto out; } /* Do we have a conversion request ongoing */ if (twl4030_madc->requests[req->method].active) { ret = -EBUSY; goto out; } method = &twl4030_conversion_methods[req->method]; /* Select channels to be converted */ ret = twl_i2c_write_u16(TWL4030_MODULE_MADC, req->channels, method->sel); if (ret) { dev_err(twl4030_madc->dev, "unable to write sel register 0x%X\n", method->sel); goto out; } /* Select averaging for all channels if do_avg is set */ if (req->do_avg) { ret = twl_i2c_write_u16(TWL4030_MODULE_MADC, req->channels, method->avg); if (ret) { dev_err(twl4030_madc->dev, "unable to write avg register 0x%X\n", method->avg); goto out; } } /* With RT method we should not be here anymore */ if (req->method == TWL4030_MADC_RT) { ret = -EINVAL; goto out; } ret = twl4030_madc_start_conversion(twl4030_madc, req->method); if (ret < 0) goto out; twl4030_madc->requests[req->method].active = 1; /* Wait until conversion is ready (ctrl register returns EOC) */ ret = twl4030_madc_wait_conversion_ready(twl4030_madc, 5, method->ctrl); if (ret) { twl4030_madc->requests[req->method].active = 0; goto out; } ret = twl4030_madc_read_channels(twl4030_madc, method->rbase, req->channels, req->rbuf, req->raw); twl4030_madc->requests[req->method].active = 0; out: mutex_unlock(&twl4030_madc->lock); return ret; } /** * twl4030_madc_set_current_generator() - setup bias current * * @madc: pointer to twl4030_madc_data struct * @chan: can be one of the two values: * 0 - Enables bias current for main battery type reading * 1 - Enables bias current for main battery temperature sensing * @on: enable or disable chan. * * Function to enable or disable bias current for * main battery type reading or temperature sensing */ static int twl4030_madc_set_current_generator(struct twl4030_madc_data *madc, int chan, int on) { int ret; int regmask; u8 regval; ret = twl_i2c_read_u8(TWL_MODULE_MAIN_CHARGE, ®val, TWL4030_BCI_BCICTL1); if (ret) { dev_err(madc->dev, "unable to read BCICTL1 reg 0x%X", TWL4030_BCI_BCICTL1); return ret; } regmask = chan ? TWL4030_BCI_ITHEN : TWL4030_BCI_TYPEN; if (on) regval |= regmask; else regval &= ~regmask; ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, regval, TWL4030_BCI_BCICTL1); if (ret) { dev_err(madc->dev, "unable to write BCICTL1 reg 0x%X\n", TWL4030_BCI_BCICTL1); return ret; } return 0; } /* * Function that sets MADC software power on bit to enable MADC * @madc - pointer to twl4030_madc_data struct * @on - Enable or disable MADC software power on bit. * returns error if i2c read/write fails else 0 */ static int twl4030_madc_set_power(struct twl4030_madc_data *madc, int on) { u8 regval; int ret; ret = twl_i2c_read_u8(TWL_MODULE_MAIN_CHARGE, ®val, TWL4030_MADC_CTRL1); if (ret) { dev_err(madc->dev, "unable to read madc ctrl1 reg 0x%X\n", TWL4030_MADC_CTRL1); return ret; } if (on) regval |= TWL4030_MADC_MADCON; else regval &= ~TWL4030_MADC_MADCON; ret = twl_i2c_write_u8(TWL4030_MODULE_MADC, regval, TWL4030_MADC_CTRL1); if (ret) { dev_err(madc->dev, "unable to write madc ctrl1 reg 0x%X\n", TWL4030_MADC_CTRL1); return ret; } return 0; } /* * Initialize MADC and request for threaded irq */ static int twl4030_madc_probe(struct platform_device *pdev) { struct twl4030_madc_data *madc; struct twl4030_madc_platform_data *pdata = dev_get_platdata(&pdev->dev); struct device_node *np = pdev->dev.of_node; int irq, ret; u8 regval; struct iio_dev *iio_dev = NULL; if (!pdata && !np) { dev_err(&pdev->dev, "neither platform data nor Device Tree node available\n"); return -EINVAL; } iio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*madc)); if (!iio_dev) { dev_err(&pdev->dev, "failed allocating iio device\n"); return -ENOMEM; } madc = iio_priv(iio_dev); madc->dev = &pdev->dev; iio_dev->name = dev_name(&pdev->dev); iio_dev->dev.parent = &pdev->dev; iio_dev->dev.of_node = pdev->dev.of_node; iio_dev->info = &twl4030_madc_iio_info; iio_dev->modes = INDIO_DIRECT_MODE; iio_dev->channels = twl4030_madc_iio_channels; iio_dev->num_channels = ARRAY_SIZE(twl4030_madc_iio_channels); /* * Phoenix provides 2 interrupt lines. The first one is connected to * the OMAP. The other one can be connected to the other processor such * as modem. Hence two separate ISR and IMR registers. */ if (pdata) madc->use_second_irq = (pdata->irq_line != 1); else madc->use_second_irq = of_property_read_bool(np, "ti,system-uses-second-madc-irq"); madc->imr = madc->use_second_irq ? TWL4030_MADC_IMR2 : TWL4030_MADC_IMR1; madc->isr = madc->use_second_irq ? TWL4030_MADC_ISR2 : TWL4030_MADC_ISR1; ret = twl4030_madc_set_power(madc, 1); if (ret < 0) return ret; ret = twl4030_madc_set_current_generator(madc, 0, 1); if (ret < 0) goto err_current_generator; ret = twl_i2c_read_u8(TWL_MODULE_MAIN_CHARGE, ®val, TWL4030_BCI_BCICTL1); if (ret) { dev_err(&pdev->dev, "unable to read reg BCI CTL1 0x%X\n", TWL4030_BCI_BCICTL1); goto err_i2c; } regval |= TWL4030_BCI_MESBAT; ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, regval, TWL4030_BCI_BCICTL1); if (ret) { dev_err(&pdev->dev, "unable to write reg BCI Ctl1 0x%X\n", TWL4030_BCI_BCICTL1); goto err_i2c; } /* Check that MADC clock is on */ ret = twl_i2c_read_u8(TWL4030_MODULE_INTBR, ®val, TWL4030_REG_GPBR1); if (ret) { dev_err(&pdev->dev, "unable to read reg GPBR1 0x%X\n", TWL4030_REG_GPBR1); goto err_i2c; } /* If MADC clk is not on, turn it on */ if (!(regval & TWL4030_GPBR1_MADC_HFCLK_EN)) { dev_info(&pdev->dev, "clk disabled, enabling\n"); regval |= TWL4030_GPBR1_MADC_HFCLK_EN; ret = twl_i2c_write_u8(TWL4030_MODULE_INTBR, regval, TWL4030_REG_GPBR1); if (ret) { dev_err(&pdev->dev, "unable to write reg GPBR1 0x%X\n", TWL4030_REG_GPBR1); goto err_i2c; } } platform_set_drvdata(pdev, iio_dev); mutex_init(&madc->lock); irq = platform_get_irq(pdev, 0); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, twl4030_madc_threaded_irq_handler, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "twl4030_madc", madc); if (ret) { dev_err(&pdev->dev, "could not request irq\n"); goto err_i2c; } twl4030_madc = madc; /* Configure MADC[3:6] */ ret = twl_i2c_read_u8(TWL_MODULE_USB, ®val, TWL4030_USB_CARKIT_ANA_CTRL); if (ret) { dev_err(&pdev->dev, "unable to read reg CARKIT_ANA_CTRL 0x%X\n", TWL4030_USB_CARKIT_ANA_CTRL); goto err_i2c; } regval |= TWL4030_USB_SEL_MADC_MCPC; ret = twl_i2c_write_u8(TWL_MODULE_USB, regval, TWL4030_USB_CARKIT_ANA_CTRL); if (ret) { dev_err(&pdev->dev, "unable to write reg CARKIT_ANA_CTRL 0x%X\n", TWL4030_USB_CARKIT_ANA_CTRL); goto err_i2c; } /* Enable 3v1 bias regulator for MADC[3:6] */ madc->usb3v1 = devm_regulator_get(madc->dev, "vusb3v1"); if (IS_ERR(madc->usb3v1)) return -ENODEV; ret = regulator_enable(madc->usb3v1); if (ret) dev_err(madc->dev, "could not enable 3v1 bias regulator\n"); ret = iio_device_register(iio_dev); if (ret) { dev_err(&pdev->dev, "could not register iio device\n"); goto err_i2c; } return 0; err_i2c: twl4030_madc_set_current_generator(madc, 0, 0); err_current_generator: twl4030_madc_set_power(madc, 0); return ret; } static int twl4030_madc_remove(struct platform_device *pdev) { struct iio_dev *iio_dev = platform_get_drvdata(pdev); struct twl4030_madc_data *madc = iio_priv(iio_dev); iio_device_unregister(iio_dev); twl4030_madc_set_current_generator(madc, 0, 0); twl4030_madc_set_power(madc, 0); regulator_disable(madc->usb3v1); return 0; } #ifdef CONFIG_OF static const struct of_device_id twl_madc_of_match[] = { { .compatible = "ti,twl4030-madc", }, { }, }; MODULE_DEVICE_TABLE(of, twl_madc_of_match); #endif static struct platform_driver twl4030_madc_driver = { .probe = twl4030_madc_probe, .remove = twl4030_madc_remove, .driver = { .name = "twl4030_madc", .of_match_table = of_match_ptr(twl_madc_of_match), }, }; module_platform_driver(twl4030_madc_driver); MODULE_DESCRIPTION("TWL4030 ADC driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("J Keerthy"); MODULE_ALIAS("platform:twl4030_madc");