/* * Copyright (c) 2006, 2007 QLogic Corporation. All rights reserved. * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * This file contains all of the code that is specific to the * InfiniPath PCIe chip. */ #include #include #include #include "ipath_kernel.h" #include "ipath_registers.h" static void ipath_setup_pe_setextled(struct ipath_devdata *, u64, u64); /* * This file contains all the chip-specific register information and * access functions for the QLogic InfiniPath PCI-Express chip. * * This lists the InfiniPath registers, in the actual chip layout. * This structure should never be directly accessed. */ struct _infinipath_do_not_use_kernel_regs { unsigned long long Revision; unsigned long long Control; unsigned long long PageAlign; unsigned long long PortCnt; unsigned long long DebugPortSelect; unsigned long long Reserved0; unsigned long long SendRegBase; unsigned long long UserRegBase; unsigned long long CounterRegBase; unsigned long long Scratch; unsigned long long Reserved1; unsigned long long Reserved2; unsigned long long IntBlocked; unsigned long long IntMask; unsigned long long IntStatus; unsigned long long IntClear; unsigned long long ErrorMask; unsigned long long ErrorStatus; unsigned long long ErrorClear; unsigned long long HwErrMask; unsigned long long HwErrStatus; unsigned long long HwErrClear; unsigned long long HwDiagCtrl; unsigned long long MDIO; unsigned long long IBCStatus; unsigned long long IBCCtrl; unsigned long long ExtStatus; unsigned long long ExtCtrl; unsigned long long GPIOOut; unsigned long long GPIOMask; unsigned long long GPIOStatus; unsigned long long GPIOClear; unsigned long long RcvCtrl; unsigned long long RcvBTHQP; unsigned long long RcvHdrSize; unsigned long long RcvHdrCnt; unsigned long long RcvHdrEntSize; unsigned long long RcvTIDBase; unsigned long long RcvTIDCnt; unsigned long long RcvEgrBase; unsigned long long RcvEgrCnt; unsigned long long RcvBufBase; unsigned long long RcvBufSize; unsigned long long RxIntMemBase; unsigned long long RxIntMemSize; unsigned long long RcvPartitionKey; unsigned long long Reserved3; unsigned long long RcvPktLEDCnt; unsigned long long Reserved4[8]; unsigned long long SendCtrl; unsigned long long SendPIOBufBase; unsigned long long SendPIOSize; unsigned long long SendPIOBufCnt; unsigned long long SendPIOAvailAddr; unsigned long long TxIntMemBase; unsigned long long TxIntMemSize; unsigned long long Reserved5; unsigned long long PCIeRBufTestReg0; unsigned long long PCIeRBufTestReg1; unsigned long long Reserved51[6]; unsigned long long SendBufferError; unsigned long long SendBufferErrorCONT1; unsigned long long Reserved6SBE[6]; unsigned long long RcvHdrAddr0; unsigned long long RcvHdrAddr1; unsigned long long RcvHdrAddr2; unsigned long long RcvHdrAddr3; unsigned long long RcvHdrAddr4; unsigned long long Reserved7RHA[11]; unsigned long long RcvHdrTailAddr0; unsigned long long RcvHdrTailAddr1; unsigned long long RcvHdrTailAddr2; unsigned long long RcvHdrTailAddr3; unsigned long long RcvHdrTailAddr4; unsigned long long Reserved8RHTA[11]; unsigned long long Reserved9SW[8]; unsigned long long SerdesConfig0; unsigned long long SerdesConfig1; unsigned long long SerdesStatus; unsigned long long XGXSConfig; unsigned long long IBPLLCfg; unsigned long long Reserved10SW2[3]; unsigned long long PCIEQ0SerdesConfig0; unsigned long long PCIEQ0SerdesConfig1; unsigned long long PCIEQ0SerdesStatus; unsigned long long Reserved11; unsigned long long PCIEQ1SerdesConfig0; unsigned long long PCIEQ1SerdesConfig1; unsigned long long PCIEQ1SerdesStatus; unsigned long long Reserved12; }; struct _infinipath_do_not_use_counters { __u64 LBIntCnt; __u64 LBFlowStallCnt; __u64 Reserved1; __u64 TxUnsupVLErrCnt; __u64 TxDataPktCnt; __u64 TxFlowPktCnt; __u64 TxDwordCnt; __u64 TxLenErrCnt; __u64 TxMaxMinLenErrCnt; __u64 TxUnderrunCnt; __u64 TxFlowStallCnt; __u64 TxDroppedPktCnt; __u64 RxDroppedPktCnt; __u64 RxDataPktCnt; __u64 RxFlowPktCnt; __u64 RxDwordCnt; __u64 RxLenErrCnt; __u64 RxMaxMinLenErrCnt; __u64 RxICRCErrCnt; __u64 RxVCRCErrCnt; __u64 RxFlowCtrlErrCnt; __u64 RxBadFormatCnt; __u64 RxLinkProblemCnt; __u64 RxEBPCnt; __u64 RxLPCRCErrCnt; __u64 RxBufOvflCnt; __u64 RxTIDFullErrCnt; __u64 RxTIDValidErrCnt; __u64 RxPKeyMismatchCnt; __u64 RxP0HdrEgrOvflCnt; __u64 RxP1HdrEgrOvflCnt; __u64 RxP2HdrEgrOvflCnt; __u64 RxP3HdrEgrOvflCnt; __u64 RxP4HdrEgrOvflCnt; __u64 RxP5HdrEgrOvflCnt; __u64 RxP6HdrEgrOvflCnt; __u64 RxP7HdrEgrOvflCnt; __u64 RxP8HdrEgrOvflCnt; __u64 Reserved6; __u64 Reserved7; __u64 IBStatusChangeCnt; __u64 IBLinkErrRecoveryCnt; __u64 IBLinkDownedCnt; __u64 IBSymbolErrCnt; }; #define IPATH_KREG_OFFSET(field) (offsetof( \ struct _infinipath_do_not_use_kernel_regs, field) / sizeof(u64)) #define IPATH_CREG_OFFSET(field) (offsetof( \ struct _infinipath_do_not_use_counters, field) / sizeof(u64)) static const struct ipath_kregs ipath_pe_kregs = { .kr_control = IPATH_KREG_OFFSET(Control), .kr_counterregbase = IPATH_KREG_OFFSET(CounterRegBase), .kr_debugportselect = IPATH_KREG_OFFSET(DebugPortSelect), .kr_errorclear = IPATH_KREG_OFFSET(ErrorClear), .kr_errormask = IPATH_KREG_OFFSET(ErrorMask), .kr_errorstatus = IPATH_KREG_OFFSET(ErrorStatus), .kr_extctrl = IPATH_KREG_OFFSET(ExtCtrl), .kr_extstatus = IPATH_KREG_OFFSET(ExtStatus), .kr_gpio_clear = IPATH_KREG_OFFSET(GPIOClear), .kr_gpio_mask = IPATH_KREG_OFFSET(GPIOMask), .kr_gpio_out = IPATH_KREG_OFFSET(GPIOOut), .kr_gpio_status = IPATH_KREG_OFFSET(GPIOStatus), .kr_hwdiagctrl = IPATH_KREG_OFFSET(HwDiagCtrl), .kr_hwerrclear = IPATH_KREG_OFFSET(HwErrClear), .kr_hwerrmask = IPATH_KREG_OFFSET(HwErrMask), .kr_hwerrstatus = IPATH_KREG_OFFSET(HwErrStatus), .kr_ibcctrl = IPATH_KREG_OFFSET(IBCCtrl), .kr_ibcstatus = IPATH_KREG_OFFSET(IBCStatus), .kr_intblocked = IPATH_KREG_OFFSET(IntBlocked), .kr_intclear = IPATH_KREG_OFFSET(IntClear), .kr_intmask = IPATH_KREG_OFFSET(IntMask), .kr_intstatus = IPATH_KREG_OFFSET(IntStatus), .kr_mdio = IPATH_KREG_OFFSET(MDIO), .kr_pagealign = IPATH_KREG_OFFSET(PageAlign), .kr_partitionkey = IPATH_KREG_OFFSET(RcvPartitionKey), .kr_portcnt = IPATH_KREG_OFFSET(PortCnt), .kr_rcvbthqp = IPATH_KREG_OFFSET(RcvBTHQP), .kr_rcvbufbase = IPATH_KREG_OFFSET(RcvBufBase), .kr_rcvbufsize = IPATH_KREG_OFFSET(RcvBufSize), .kr_rcvctrl = IPATH_KREG_OFFSET(RcvCtrl), .kr_rcvegrbase = IPATH_KREG_OFFSET(RcvEgrBase), .kr_rcvegrcnt = IPATH_KREG_OFFSET(RcvEgrCnt), .kr_rcvhdrcnt = IPATH_KREG_OFFSET(RcvHdrCnt), .kr_rcvhdrentsize = IPATH_KREG_OFFSET(RcvHdrEntSize), .kr_rcvhdrsize = IPATH_KREG_OFFSET(RcvHdrSize), .kr_rcvintmembase = IPATH_KREG_OFFSET(RxIntMemBase), .kr_rcvintmemsize = IPATH_KREG_OFFSET(RxIntMemSize), .kr_rcvtidbase = IPATH_KREG_OFFSET(RcvTIDBase), .kr_rcvtidcnt = IPATH_KREG_OFFSET(RcvTIDCnt), .kr_revision = IPATH_KREG_OFFSET(Revision), .kr_scratch = IPATH_KREG_OFFSET(Scratch), .kr_sendbuffererror = IPATH_KREG_OFFSET(SendBufferError), .kr_sendctrl = IPATH_KREG_OFFSET(SendCtrl), .kr_sendpioavailaddr = IPATH_KREG_OFFSET(SendPIOAvailAddr), .kr_sendpiobufbase = IPATH_KREG_OFFSET(SendPIOBufBase), .kr_sendpiobufcnt = IPATH_KREG_OFFSET(SendPIOBufCnt), .kr_sendpiosize = IPATH_KREG_OFFSET(SendPIOSize), .kr_sendregbase = IPATH_KREG_OFFSET(SendRegBase), .kr_txintmembase = IPATH_KREG_OFFSET(TxIntMemBase), .kr_txintmemsize = IPATH_KREG_OFFSET(TxIntMemSize), .kr_userregbase = IPATH_KREG_OFFSET(UserRegBase), .kr_serdesconfig0 = IPATH_KREG_OFFSET(SerdesConfig0), .kr_serdesconfig1 = IPATH_KREG_OFFSET(SerdesConfig1), .kr_serdesstatus = IPATH_KREG_OFFSET(SerdesStatus), .kr_xgxsconfig = IPATH_KREG_OFFSET(XGXSConfig), .kr_ibpllcfg = IPATH_KREG_OFFSET(IBPLLCfg), /* * These should not be used directly via ipath_write_kreg64(), * use them with ipath_write_kreg64_port(), */ .kr_rcvhdraddr = IPATH_KREG_OFFSET(RcvHdrAddr0), .kr_rcvhdrtailaddr = IPATH_KREG_OFFSET(RcvHdrTailAddr0), /* The rcvpktled register controls one of the debug port signals, so * a packet activity LED can be connected to it. */ .kr_rcvpktledcnt = IPATH_KREG_OFFSET(RcvPktLEDCnt), .kr_pcierbuftestreg0 = IPATH_KREG_OFFSET(PCIeRBufTestReg0), .kr_pcierbuftestreg1 = IPATH_KREG_OFFSET(PCIeRBufTestReg1), .kr_pcieq0serdesconfig0 = IPATH_KREG_OFFSET(PCIEQ0SerdesConfig0), .kr_pcieq0serdesconfig1 = IPATH_KREG_OFFSET(PCIEQ0SerdesConfig1), .kr_pcieq0serdesstatus = IPATH_KREG_OFFSET(PCIEQ0SerdesStatus), .kr_pcieq1serdesconfig0 = IPATH_KREG_OFFSET(PCIEQ1SerdesConfig0), .kr_pcieq1serdesconfig1 = IPATH_KREG_OFFSET(PCIEQ1SerdesConfig1), .kr_pcieq1serdesstatus = IPATH_KREG_OFFSET(PCIEQ1SerdesStatus) }; static const struct ipath_cregs ipath_pe_cregs = { .cr_badformatcnt = IPATH_CREG_OFFSET(RxBadFormatCnt), .cr_erricrccnt = IPATH_CREG_OFFSET(RxICRCErrCnt), .cr_errlinkcnt = IPATH_CREG_OFFSET(RxLinkProblemCnt), .cr_errlpcrccnt = IPATH_CREG_OFFSET(RxLPCRCErrCnt), .cr_errpkey = IPATH_CREG_OFFSET(RxPKeyMismatchCnt), .cr_errrcvflowctrlcnt = IPATH_CREG_OFFSET(RxFlowCtrlErrCnt), .cr_err_rlencnt = IPATH_CREG_OFFSET(RxLenErrCnt), .cr_errslencnt = IPATH_CREG_OFFSET(TxLenErrCnt), .cr_errtidfull = IPATH_CREG_OFFSET(RxTIDFullErrCnt), .cr_errtidvalid = IPATH_CREG_OFFSET(RxTIDValidErrCnt), .cr_errvcrccnt = IPATH_CREG_OFFSET(RxVCRCErrCnt), .cr_ibstatuschange = IPATH_CREG_OFFSET(IBStatusChangeCnt), .cr_intcnt = IPATH_CREG_OFFSET(LBIntCnt), .cr_invalidrlencnt = IPATH_CREG_OFFSET(RxMaxMinLenErrCnt), .cr_invalidslencnt = IPATH_CREG_OFFSET(TxMaxMinLenErrCnt), .cr_lbflowstallcnt = IPATH_CREG_OFFSET(LBFlowStallCnt), .cr_pktrcvcnt = IPATH_CREG_OFFSET(RxDataPktCnt), .cr_pktrcvflowctrlcnt = IPATH_CREG_OFFSET(RxFlowPktCnt), .cr_pktsendcnt = IPATH_CREG_OFFSET(TxDataPktCnt), .cr_pktsendflowcnt = IPATH_CREG_OFFSET(TxFlowPktCnt), .cr_portovflcnt = IPATH_CREG_OFFSET(RxP0HdrEgrOvflCnt), .cr_rcvebpcnt = IPATH_CREG_OFFSET(RxEBPCnt), .cr_rcvovflcnt = IPATH_CREG_OFFSET(RxBufOvflCnt), .cr_senddropped = IPATH_CREG_OFFSET(TxDroppedPktCnt), .cr_sendstallcnt = IPATH_CREG_OFFSET(TxFlowStallCnt), .cr_sendunderruncnt = IPATH_CREG_OFFSET(TxUnderrunCnt), .cr_wordrcvcnt = IPATH_CREG_OFFSET(RxDwordCnt), .cr_wordsendcnt = IPATH_CREG_OFFSET(TxDwordCnt), .cr_unsupvlcnt = IPATH_CREG_OFFSET(TxUnsupVLErrCnt), .cr_rxdroppktcnt = IPATH_CREG_OFFSET(RxDroppedPktCnt), .cr_iblinkerrrecovcnt = IPATH_CREG_OFFSET(IBLinkErrRecoveryCnt), .cr_iblinkdowncnt = IPATH_CREG_OFFSET(IBLinkDownedCnt), .cr_ibsymbolerrcnt = IPATH_CREG_OFFSET(IBSymbolErrCnt) }; /* kr_intstatus, kr_intclear, kr_intmask bits */ #define INFINIPATH_I_RCVURG_MASK ((1U<<5)-1) #define INFINIPATH_I_RCVAVAIL_MASK ((1U<<5)-1) /* kr_hwerrclear, kr_hwerrmask, kr_hwerrstatus, bits */ #define INFINIPATH_HWE_PCIEMEMPARITYERR_MASK 0x000000000000003fULL #define INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT 0 #define INFINIPATH_HWE_PCIEPOISONEDTLP 0x0000000010000000ULL #define INFINIPATH_HWE_PCIECPLTIMEOUT 0x0000000020000000ULL #define INFINIPATH_HWE_PCIEBUSPARITYXTLH 0x0000000040000000ULL #define INFINIPATH_HWE_PCIEBUSPARITYXADM 0x0000000080000000ULL #define INFINIPATH_HWE_PCIEBUSPARITYRADM 0x0000000100000000ULL #define INFINIPATH_HWE_COREPLL_FBSLIP 0x0080000000000000ULL #define INFINIPATH_HWE_COREPLL_RFSLIP 0x0100000000000000ULL #define INFINIPATH_HWE_PCIE1PLLFAILED 0x0400000000000000ULL #define INFINIPATH_HWE_PCIE0PLLFAILED 0x0800000000000000ULL #define INFINIPATH_HWE_SERDESPLLFAILED 0x1000000000000000ULL /* kr_extstatus bits */ #define INFINIPATH_EXTS_FREQSEL 0x2 #define INFINIPATH_EXTS_SERDESSEL 0x4 #define INFINIPATH_EXTS_MEMBIST_ENDTEST 0x0000000000004000 #define INFINIPATH_EXTS_MEMBIST_FOUND 0x0000000000008000 #define _IPATH_GPIO_SDA_NUM 1 #define _IPATH_GPIO_SCL_NUM 0 #define IPATH_GPIO_SDA (1ULL << \ (_IPATH_GPIO_SDA_NUM+INFINIPATH_EXTC_GPIOOE_SHIFT)) #define IPATH_GPIO_SCL (1ULL << \ (_IPATH_GPIO_SCL_NUM+INFINIPATH_EXTC_GPIOOE_SHIFT)) #define INFINIPATH_R_INTRAVAIL_SHIFT 16 #define INFINIPATH_R_TAILUPD_SHIFT 31 /* 6120 specific hardware errors... */ static const struct ipath_hwerror_msgs ipath_6120_hwerror_msgs[] = { INFINIPATH_HWE_MSG(PCIEPOISONEDTLP, "PCIe Poisoned TLP"), INFINIPATH_HWE_MSG(PCIECPLTIMEOUT, "PCIe completion timeout"), /* * In practice, it's unlikely wthat we'll see PCIe PLL, or bus * parity or memory parity error failures, because most likely we * won't be able to talk to the core of the chip. Nonetheless, we * might see them, if they are in parts of the PCIe core that aren't * essential. */ INFINIPATH_HWE_MSG(PCIE1PLLFAILED, "PCIePLL1"), INFINIPATH_HWE_MSG(PCIE0PLLFAILED, "PCIePLL0"), INFINIPATH_HWE_MSG(PCIEBUSPARITYXTLH, "PCIe XTLH core parity"), INFINIPATH_HWE_MSG(PCIEBUSPARITYXADM, "PCIe ADM TX core parity"), INFINIPATH_HWE_MSG(PCIEBUSPARITYRADM, "PCIe ADM RX core parity"), INFINIPATH_HWE_MSG(RXDSYNCMEMPARITYERR, "Rx Dsync"), INFINIPATH_HWE_MSG(SERDESPLLFAILED, "SerDes PLL"), }; #define TXE_PIO_PARITY ((INFINIPATH_HWE_TXEMEMPARITYERR_PIOBUF | \ INFINIPATH_HWE_TXEMEMPARITYERR_PIOPBC) \ << INFINIPATH_HWE_TXEMEMPARITYERR_SHIFT) static int ipath_pe_txe_recover(struct ipath_devdata *); static void ipath_pe_put_tid_2(struct ipath_devdata *, u64 __iomem *, u32, unsigned long); /** * ipath_pe_handle_hwerrors - display hardware errors. * @dd: the infinipath device * @msg: the output buffer * @msgl: the size of the output buffer * * Use same msg buffer as regular errors to avoid excessive stack * use. Most hardware errors are catastrophic, but for right now, * we'll print them and continue. We reuse the same message buffer as * ipath_handle_errors() to avoid excessive stack usage. */ static void ipath_pe_handle_hwerrors(struct ipath_devdata *dd, char *msg, size_t msgl) { ipath_err_t hwerrs; u32 bits, ctrl; int isfatal = 0; char bitsmsg[64]; int log_idx; hwerrs = ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus); if (!hwerrs) { /* * better than printing cofusing messages * This seems to be related to clearing the crc error, or * the pll error during init. */ ipath_cdbg(VERBOSE, "Called but no hardware errors set\n"); return; } else if (hwerrs == ~0ULL) { ipath_dev_err(dd, "Read of hardware error status failed " "(all bits set); ignoring\n"); return; } ipath_stats.sps_hwerrs++; /* Always clear the error status register, except MEMBISTFAIL, * regardless of whether we continue or stop using the chip. * We want that set so we know it failed, even across driver reload. * We'll still ignore it in the hwerrmask. We do this partly for * diagnostics, but also for support */ ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, hwerrs&~INFINIPATH_HWE_MEMBISTFAILED); hwerrs &= dd->ipath_hwerrmask; /* We log some errors to EEPROM, check if we have any of those. */ for (log_idx = 0; log_idx < IPATH_EEP_LOG_CNT; ++log_idx) if (hwerrs & dd->ipath_eep_st_masks[log_idx].hwerrs_to_log) ipath_inc_eeprom_err(dd, log_idx, 1); /* * make sure we get this much out, unless told to be quiet, * or it's occurred within the last 5 seconds */ if ((hwerrs & ~(dd->ipath_lasthwerror | ((INFINIPATH_HWE_TXEMEMPARITYERR_PIOBUF | INFINIPATH_HWE_TXEMEMPARITYERR_PIOPBC) << INFINIPATH_HWE_TXEMEMPARITYERR_SHIFT))) || (ipath_debug & __IPATH_VERBDBG)) dev_info(&dd->pcidev->dev, "Hardware error: hwerr=0x%llx " "(cleared)\n", (unsigned long long) hwerrs); dd->ipath_lasthwerror |= hwerrs; if (hwerrs & ~dd->ipath_hwe_bitsextant) ipath_dev_err(dd, "hwerror interrupt with unknown errors " "%llx set\n", (unsigned long long) (hwerrs & ~dd->ipath_hwe_bitsextant)); ctrl = ipath_read_kreg32(dd, dd->ipath_kregs->kr_control); if (ctrl & INFINIPATH_C_FREEZEMODE) { /* * parity errors in send memory are recoverable, * just cancel the send (if indicated in * sendbuffererror), * count the occurrence, unfreeze (if no other handled * hardware error bits are set), and continue. They can * occur if a processor speculative read is done to the PIO * buffer while we are sending a packet, for example. */ if ((hwerrs & TXE_PIO_PARITY) && ipath_pe_txe_recover(dd)) hwerrs &= ~TXE_PIO_PARITY; if (hwerrs) { /* * if any set that we aren't ignoring only make the * complaint once, in case it's stuck or recurring, * and we get here multiple times * Force link down, so switch knows, and * LEDs are turned off */ if (dd->ipath_flags & IPATH_INITTED) { ipath_set_linkstate(dd, IPATH_IB_LINKDOWN); ipath_setup_pe_setextled(dd, INFINIPATH_IBCS_L_STATE_DOWN, INFINIPATH_IBCS_LT_STATE_DISABLED); ipath_dev_err(dd, "Fatal Hardware Error (freeze " "mode), no longer usable, SN %.16s\n", dd->ipath_serial); isfatal = 1; } /* * Mark as having had an error for driver, and also * for /sys and status word mapped to user programs. * This marks unit as not usable, until reset */ *dd->ipath_statusp &= ~IPATH_STATUS_IB_READY; *dd->ipath_statusp |= IPATH_STATUS_HWERROR; dd->ipath_flags &= ~IPATH_INITTED; } else { static u32 freeze_cnt; freeze_cnt++; ipath_dbg("Clearing freezemode on ignored or recovered " "hardware error (%u)\n", freeze_cnt); ipath_clear_freeze(dd); } } *msg = '\0'; if (hwerrs & INFINIPATH_HWE_MEMBISTFAILED) { strlcat(msg, "[Memory BIST test failed, InfiniPath hardware unusable]", msgl); /* ignore from now on, so disable until driver reloaded */ *dd->ipath_statusp |= IPATH_STATUS_HWERROR; dd->ipath_hwerrmask &= ~INFINIPATH_HWE_MEMBISTFAILED; ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, dd->ipath_hwerrmask); } ipath_format_hwerrors(hwerrs, ipath_6120_hwerror_msgs, sizeof(ipath_6120_hwerror_msgs)/ sizeof(ipath_6120_hwerror_msgs[0]), msg, msgl); if (hwerrs & (INFINIPATH_HWE_PCIEMEMPARITYERR_MASK << INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT)) { bits = (u32) ((hwerrs >> INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT) & INFINIPATH_HWE_PCIEMEMPARITYERR_MASK); snprintf(bitsmsg, sizeof bitsmsg, "[PCIe Mem Parity Errs %x] ", bits); strlcat(msg, bitsmsg, msgl); } #define _IPATH_PLL_FAIL (INFINIPATH_HWE_COREPLL_FBSLIP | \ INFINIPATH_HWE_COREPLL_RFSLIP ) if (hwerrs & _IPATH_PLL_FAIL) { snprintf(bitsmsg, sizeof bitsmsg, "[PLL failed (%llx), InfiniPath hardware unusable]", (unsigned long long) hwerrs & _IPATH_PLL_FAIL); strlcat(msg, bitsmsg, msgl); /* ignore from now on, so disable until driver reloaded */ dd->ipath_hwerrmask &= ~(hwerrs & _IPATH_PLL_FAIL); ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, dd->ipath_hwerrmask); } if (hwerrs & INFINIPATH_HWE_SERDESPLLFAILED) { /* * If it occurs, it is left masked since the external * interface is unused */ dd->ipath_hwerrmask &= ~INFINIPATH_HWE_SERDESPLLFAILED; ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, dd->ipath_hwerrmask); } if (*msg) ipath_dev_err(dd, "%s hardware error\n", msg); if (isfatal && !ipath_diag_inuse && dd->ipath_freezemsg) { /* * for /sys status file ; if no trailing } is copied, we'll * know it was truncated. */ snprintf(dd->ipath_freezemsg, dd->ipath_freezelen, "{%s}", msg); } } /** * ipath_pe_boardname - fill in the board name * @dd: the infinipath device * @name: the output buffer * @namelen: the size of the output buffer * * info is based on the board revision register */ static int ipath_pe_boardname(struct ipath_devdata *dd, char *name, size_t namelen) { char *n = NULL; u8 boardrev = dd->ipath_boardrev; int ret; switch (boardrev) { case 0: n = "InfiniPath_Emulation"; break; case 1: n = "InfiniPath_QLE7140-Bringup"; break; case 2: n = "InfiniPath_QLE7140"; break; case 3: n = "InfiniPath_QMI7140"; break; case 4: n = "InfiniPath_QEM7140"; break; case 5: n = "InfiniPath_QMH7140"; break; case 6: n = "InfiniPath_QLE7142"; break; default: ipath_dev_err(dd, "Don't yet know about board with ID %u\n", boardrev); snprintf(name, namelen, "Unknown_InfiniPath_PCIe_%u", boardrev); break; } if (n) snprintf(name, namelen, "%s", n); if (dd->ipath_majrev != 4 || !dd->ipath_minrev || dd->ipath_minrev>2) { ipath_dev_err(dd, "Unsupported InfiniPath hardware revision %u.%u!\n", dd->ipath_majrev, dd->ipath_minrev); ret = 1; } else { ret = 0; if (dd->ipath_minrev >= 2) dd->ipath_f_put_tid = ipath_pe_put_tid_2; } /* * set here, not in ipath_init_*_funcs because we have to do * it after we can read chip registers. */ dd->ipath_ureg_align = ipath_read_kreg32(dd, dd->ipath_kregs->kr_pagealign); return ret; } /** * ipath_pe_init_hwerrors - enable hardware errors * @dd: the infinipath device * * now that we have finished initializing everything that might reasonably * cause a hardware error, and cleared those errors bits as they occur, * we can enable hardware errors in the mask (potentially enabling * freeze mode), and enable hardware errors as errors (along with * everything else) in errormask */ static void ipath_pe_init_hwerrors(struct ipath_devdata *dd) { ipath_err_t val; u64 extsval; extsval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus); if (!(extsval & INFINIPATH_EXTS_MEMBIST_ENDTEST)) ipath_dev_err(dd, "MemBIST did not complete!\n"); if (extsval & INFINIPATH_EXTS_MEMBIST_FOUND) ipath_dbg("MemBIST corrected\n"); val = ~0ULL; /* barring bugs, all hwerrors become interrupts, */ if (!dd->ipath_boardrev) // no PLL for Emulator val &= ~INFINIPATH_HWE_SERDESPLLFAILED; if (dd->ipath_minrev < 2) { /* workaround bug 9460 in internal interface bus parity * checking. Fixed (HW bug 9490) in Rev2. */ val &= ~INFINIPATH_HWE_PCIEBUSPARITYRADM; } dd->ipath_hwerrmask = val; } /** * ipath_pe_bringup_serdes - bring up the serdes * @dd: the infinipath device */ static int ipath_pe_bringup_serdes(struct ipath_devdata *dd) { u64 val, config1, prev_val; int ret = 0; ipath_dbg("Trying to bringup serdes\n"); if (ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus) & INFINIPATH_HWE_SERDESPLLFAILED) { ipath_dbg("At start, serdes PLL failed bit set " "in hwerrstatus, clearing and continuing\n"); ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, INFINIPATH_HWE_SERDESPLLFAILED); } val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig0); config1 = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig1); ipath_cdbg(VERBOSE, "SerDes status config0=%llx config1=%llx, " "xgxsconfig %llx\n", (unsigned long long) val, (unsigned long long) config1, (unsigned long long) ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig)); /* * Force reset on, also set rxdetect enable. Must do before reading * serdesstatus at least for simulation, or some of the bits in * serdes status will come back as undefined and cause simulation * failures */ val |= INFINIPATH_SERDC0_RESET_PLL | INFINIPATH_SERDC0_RXDETECT_EN | INFINIPATH_SERDC0_L1PWR_DN; ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val); /* be sure chip saw it */ ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); udelay(5); /* need pll reset set at least for a bit */ /* * after PLL is reset, set the per-lane Resets and TxIdle and * clear the PLL reset and rxdetect (to get falling edge). * Leave L1PWR bits set (permanently) */ val &= ~(INFINIPATH_SERDC0_RXDETECT_EN | INFINIPATH_SERDC0_RESET_PLL | INFINIPATH_SERDC0_L1PWR_DN); val |= INFINIPATH_SERDC0_RESET_MASK | INFINIPATH_SERDC0_TXIDLE; ipath_cdbg(VERBOSE, "Clearing pll reset and setting lane resets " "and txidle (%llx)\n", (unsigned long long) val); ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val); /* be sure chip saw it */ ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); /* need PLL reset clear for at least 11 usec before lane * resets cleared; give it a few more to be sure */ udelay(15); val &= ~(INFINIPATH_SERDC0_RESET_MASK | INFINIPATH_SERDC0_TXIDLE); ipath_cdbg(VERBOSE, "Clearing lane resets and txidle " "(writing %llx)\n", (unsigned long long) val); ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val); /* be sure chip saw it */ val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig); prev_val = val; if (((val >> INFINIPATH_XGXS_MDIOADDR_SHIFT) & INFINIPATH_XGXS_MDIOADDR_MASK) != 3) { val &= ~(INFINIPATH_XGXS_MDIOADDR_MASK << INFINIPATH_XGXS_MDIOADDR_SHIFT); /* MDIO address 3 */ val |= 3ULL << INFINIPATH_XGXS_MDIOADDR_SHIFT; } if (val & INFINIPATH_XGXS_RESET) { val &= ~INFINIPATH_XGXS_RESET; } if (((val >> INFINIPATH_XGXS_RX_POL_SHIFT) & INFINIPATH_XGXS_RX_POL_MASK) != dd->ipath_rx_pol_inv ) { /* need to compensate for Tx inversion in partner */ val &= ~(INFINIPATH_XGXS_RX_POL_MASK << INFINIPATH_XGXS_RX_POL_SHIFT); val |= dd->ipath_rx_pol_inv << INFINIPATH_XGXS_RX_POL_SHIFT; } if (val != prev_val) ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val); val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig0); /* clear current and de-emphasis bits */ config1 &= ~0x0ffffffff00ULL; /* set current to 20ma */ config1 |= 0x00000000000ULL; /* set de-emphasis to -5.68dB */ config1 |= 0x0cccc000000ULL; ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig1, config1); ipath_cdbg(VERBOSE, "done: SerDes status config0=%llx " "config1=%llx, sstatus=%llx xgxs=%llx\n", (unsigned long long) val, (unsigned long long) config1, (unsigned long long) ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesstatus), (unsigned long long) ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig)); if (!ipath_waitfor_mdio_cmdready(dd)) { ipath_write_kreg( dd, dd->ipath_kregs->kr_mdio, ipath_mdio_req(IPATH_MDIO_CMD_READ, 31, IPATH_MDIO_CTRL_XGXS_REG_8, 0)); if (ipath_waitfor_complete(dd, dd->ipath_kregs->kr_mdio, IPATH_MDIO_DATAVALID, &val)) ipath_dbg("Never got MDIO data for XGXS " "status read\n"); else ipath_cdbg(VERBOSE, "MDIO Read reg8, " "'bank' 31 %x\n", (u32) val); } else ipath_dbg("Never got MDIO cmdready for XGXS status read\n"); return ret; } /** * ipath_pe_quiet_serdes - set serdes to txidle * @dd: the infinipath device * Called when driver is being unloaded */ static void ipath_pe_quiet_serdes(struct ipath_devdata *dd) { u64 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_serdesconfig0); val |= INFINIPATH_SERDC0_TXIDLE; ipath_dbg("Setting TxIdleEn on serdes (config0 = %llx)\n", (unsigned long long) val); ipath_write_kreg(dd, dd->ipath_kregs->kr_serdesconfig0, val); } static int ipath_pe_intconfig(struct ipath_devdata *dd) { u32 chiprev; /* * If the chip supports added error indication via GPIO pins, * enable interrupts on those bits so the interrupt routine * can count the events. Also set flag so interrupt routine * can know they are expected. */ chiprev = dd->ipath_revision >> INFINIPATH_R_CHIPREVMINOR_SHIFT; if ((chiprev & INFINIPATH_R_CHIPREVMINOR_MASK) > 1) { /* Rev2+ reports extra errors via internal GPIO pins */ dd->ipath_flags |= IPATH_GPIO_ERRINTRS; dd->ipath_gpio_mask |= IPATH_GPIO_ERRINTR_MASK; ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_mask, dd->ipath_gpio_mask); } return 0; } /** * ipath_setup_pe_setextled - set the state of the two external LEDs * @dd: the infinipath device * @lst: the L state * @ltst: the LT state * These LEDs indicate the physical and logical state of IB link. * For this chip (at least with recommended board pinouts), LED1 * is Yellow (logical state) and LED2 is Green (physical state), * * Note: We try to match the Mellanox HCA LED behavior as best * we can. Green indicates physical link state is OK (something is * plugged in, and we can train). * Amber indicates the link is logically up (ACTIVE). * Mellanox further blinks the amber LED to indicate data packet * activity, but we have no hardware support for that, so it would * require waking up every 10-20 msecs and checking the counters * on the chip, and then turning the LED off if appropriate. That's * visible overhead, so not something we will do. * */ static void ipath_setup_pe_setextled(struct ipath_devdata *dd, u64 lst, u64 ltst) { u64 extctl; unsigned long flags = 0; /* the diags use the LED to indicate diag info, so we leave * the external LED alone when the diags are running */ if (ipath_diag_inuse) return; /* Allow override of LED display for, e.g. Locating system in rack */ if (dd->ipath_led_override) { ltst = (dd->ipath_led_override & IPATH_LED_PHYS) ? INFINIPATH_IBCS_LT_STATE_LINKUP : INFINIPATH_IBCS_LT_STATE_DISABLED; lst = (dd->ipath_led_override & IPATH_LED_LOG) ? INFINIPATH_IBCS_L_STATE_ACTIVE : INFINIPATH_IBCS_L_STATE_DOWN; } spin_lock_irqsave(&dd->ipath_gpio_lock, flags); extctl = dd->ipath_extctrl & ~(INFINIPATH_EXTC_LED1PRIPORT_ON | INFINIPATH_EXTC_LED2PRIPORT_ON); if (ltst & INFINIPATH_IBCS_LT_STATE_LINKUP) extctl |= INFINIPATH_EXTC_LED2PRIPORT_ON; if (lst == INFINIPATH_IBCS_L_STATE_ACTIVE) extctl |= INFINIPATH_EXTC_LED1PRIPORT_ON; dd->ipath_extctrl = extctl; ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, extctl); spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); } /** * ipath_setup_pe_cleanup - clean up any per-chip chip-specific stuff * @dd: the infinipath device * * This is called during driver unload. * We do the pci_disable_msi here, not in generic code, because it * isn't used for the HT chips. If we do end up needing pci_enable_msi * at some point in the future for HT, we'll move the call back * into the main init_one code. */ static void ipath_setup_pe_cleanup(struct ipath_devdata *dd) { dd->ipath_msi_lo = 0; /* just in case unload fails */ pci_disable_msi(dd->pcidev); } /** * ipath_setup_pe_config - setup PCIe config related stuff * @dd: the infinipath device * @pdev: the PCI device * * The pci_enable_msi() call will fail on systems with MSI quirks * such as those with AMD8131, even if the device of interest is not * attached to that device, (in the 2.6.13 - 2.6.15 kernels, at least, fixed * late in 2.6.16). * All that can be done is to edit the kernel source to remove the quirk * check until that is fixed. * We do not need to call enable_msi() for our HyperTransport chip, * even though it uses MSI, and we want to avoid the quirk warning, so * So we call enable_msi only for PCIe. If we do end up needing * pci_enable_msi at some point in the future for HT, we'll move the * call back into the main init_one code. * We save the msi lo and hi values, so we can restore them after * chip reset (the kernel PCI infrastructure doesn't yet handle that * correctly). */ static int ipath_setup_pe_config(struct ipath_devdata *dd, struct pci_dev *pdev) { int pos, ret; dd->ipath_msi_lo = 0; /* used as a flag during reset processing */ ret = pci_enable_msi(dd->pcidev); if (ret) ipath_dev_err(dd, "pci_enable_msi failed: %d, " "interrupts may not work\n", ret); /* continue even if it fails, we may still be OK... */ dd->ipath_irq = pdev->irq; if ((pos = pci_find_capability(dd->pcidev, PCI_CAP_ID_MSI))) { u16 control; pci_read_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_LO, &dd->ipath_msi_lo); pci_read_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_HI, &dd->ipath_msi_hi); pci_read_config_word(dd->pcidev, pos + PCI_MSI_FLAGS, &control); /* now save the data (vector) info */ pci_read_config_word(dd->pcidev, pos + ((control & PCI_MSI_FLAGS_64BIT) ? 12 : 8), &dd->ipath_msi_data); ipath_cdbg(VERBOSE, "Read msi data 0x%x from config offset " "0x%x, control=0x%x\n", dd->ipath_msi_data, pos + ((control & PCI_MSI_FLAGS_64BIT) ? 12 : 8), control); /* we save the cachelinesize also, although it doesn't * really matter */ pci_read_config_byte(dd->pcidev, PCI_CACHE_LINE_SIZE, &dd->ipath_pci_cacheline); } else ipath_dev_err(dd, "Can't find MSI capability, " "can't save MSI settings for reset\n"); if ((pos = pci_find_capability(dd->pcidev, PCI_CAP_ID_EXP))) { u16 linkstat; pci_read_config_word(dd->pcidev, pos + PCI_EXP_LNKSTA, &linkstat); linkstat >>= 4; linkstat &= 0x1f; if (linkstat != 8) ipath_dev_err(dd, "PCIe width %u, " "performance reduced\n", linkstat); } else ipath_dev_err(dd, "Can't find PCI Express " "capability!\n"); return 0; } static void ipath_init_pe_variables(struct ipath_devdata *dd) { /* * bits for selecting i2c direction and values, * used for I2C serial flash */ dd->ipath_gpio_sda_num = _IPATH_GPIO_SDA_NUM; dd->ipath_gpio_scl_num = _IPATH_GPIO_SCL_NUM; dd->ipath_gpio_sda = IPATH_GPIO_SDA; dd->ipath_gpio_scl = IPATH_GPIO_SCL; /* Fill in shifts for RcvCtrl. */ dd->ipath_r_portenable_shift = INFINIPATH_R_PORTENABLE_SHIFT; dd->ipath_r_intravail_shift = INFINIPATH_R_INTRAVAIL_SHIFT; dd->ipath_r_tailupd_shift = INFINIPATH_R_TAILUPD_SHIFT; dd->ipath_r_portcfg_shift = 0; /* Not on IBA6120 */ /* variables for sanity checking interrupt and errors */ dd->ipath_hwe_bitsextant = (INFINIPATH_HWE_RXEMEMPARITYERR_MASK << INFINIPATH_HWE_RXEMEMPARITYERR_SHIFT) | (INFINIPATH_HWE_TXEMEMPARITYERR_MASK << INFINIPATH_HWE_TXEMEMPARITYERR_SHIFT) | (INFINIPATH_HWE_PCIEMEMPARITYERR_MASK << INFINIPATH_HWE_PCIEMEMPARITYERR_SHIFT) | INFINIPATH_HWE_PCIE1PLLFAILED | INFINIPATH_HWE_PCIE0PLLFAILED | INFINIPATH_HWE_PCIEPOISONEDTLP | INFINIPATH_HWE_PCIECPLTIMEOUT | INFINIPATH_HWE_PCIEBUSPARITYXTLH | INFINIPATH_HWE_PCIEBUSPARITYXADM | INFINIPATH_HWE_PCIEBUSPARITYRADM | INFINIPATH_HWE_MEMBISTFAILED | INFINIPATH_HWE_COREPLL_FBSLIP | INFINIPATH_HWE_COREPLL_RFSLIP | INFINIPATH_HWE_SERDESPLLFAILED | INFINIPATH_HWE_IBCBUSTOSPCPARITYERR | INFINIPATH_HWE_IBCBUSFRSPCPARITYERR; dd->ipath_i_bitsextant = (INFINIPATH_I_RCVURG_MASK << INFINIPATH_I_RCVURG_SHIFT) | (INFINIPATH_I_RCVAVAIL_MASK << INFINIPATH_I_RCVAVAIL_SHIFT) | INFINIPATH_I_ERROR | INFINIPATH_I_SPIOSENT | INFINIPATH_I_SPIOBUFAVAIL | INFINIPATH_I_GPIO; dd->ipath_e_bitsextant = INFINIPATH_E_RFORMATERR | INFINIPATH_E_RVCRC | INFINIPATH_E_RICRC | INFINIPATH_E_RMINPKTLEN | INFINIPATH_E_RMAXPKTLEN | INFINIPATH_E_RLONGPKTLEN | INFINIPATH_E_RSHORTPKTLEN | INFINIPATH_E_RUNEXPCHAR | INFINIPATH_E_RUNSUPVL | INFINIPATH_E_REBP | INFINIPATH_E_RIBFLOW | INFINIPATH_E_RBADVERSION | INFINIPATH_E_RRCVEGRFULL | INFINIPATH_E_RRCVHDRFULL | INFINIPATH_E_RBADTID | INFINIPATH_E_RHDRLEN | INFINIPATH_E_RHDR | INFINIPATH_E_RIBLOSTLINK | INFINIPATH_E_SMINPKTLEN | INFINIPATH_E_SMAXPKTLEN | INFINIPATH_E_SUNDERRUN | INFINIPATH_E_SPKTLEN | INFINIPATH_E_SDROPPEDSMPPKT | INFINIPATH_E_SDROPPEDDATAPKT | INFINIPATH_E_SPIOARMLAUNCH | INFINIPATH_E_SUNEXPERRPKTNUM | INFINIPATH_E_SUNSUPVL | INFINIPATH_E_IBSTATUSCHANGED | INFINIPATH_E_INVALIDADDR | INFINIPATH_E_RESET | INFINIPATH_E_HARDWARE; dd->ipath_i_rcvavail_mask = INFINIPATH_I_RCVAVAIL_MASK; dd->ipath_i_rcvurg_mask = INFINIPATH_I_RCVURG_MASK; /* * EEPROM error log 0 is TXE Parity errors. 1 is RXE Parity. * 2 is Some Misc, 3 is reserved for future. */ dd->ipath_eep_st_masks[0].hwerrs_to_log = INFINIPATH_HWE_TXEMEMPARITYERR_MASK << INFINIPATH_HWE_TXEMEMPARITYERR_SHIFT; /* Ignore errors in PIO/PBC on systems with unordered write-combining */ if (ipath_unordered_wc()) dd->ipath_eep_st_masks[0].hwerrs_to_log &= ~TXE_PIO_PARITY; dd->ipath_eep_st_masks[1].hwerrs_to_log = INFINIPATH_HWE_RXEMEMPARITYERR_MASK << INFINIPATH_HWE_RXEMEMPARITYERR_SHIFT; dd->ipath_eep_st_masks[2].errs_to_log = INFINIPATH_E_INVALIDADDR | INFINIPATH_E_RESET; } /* setup the MSI stuff again after a reset. I'd like to just call * pci_enable_msi() and request_irq() again, but when I do that, * the MSI enable bit doesn't get set in the command word, and * we switch to to a different interrupt vector, which is confusing, * so I instead just do it all inline. Perhaps somehow can tie this * into the PCIe hotplug support at some point * Note, because I'm doing it all here, I don't call pci_disable_msi() * or free_irq() at the start of ipath_setup_pe_reset(). */ static int ipath_reinit_msi(struct ipath_devdata *dd) { int pos; u16 control; int ret; if (!dd->ipath_msi_lo) { dev_info(&dd->pcidev->dev, "Can't restore MSI config, " "initial setup failed?\n"); ret = 0; goto bail; } if (!(pos = pci_find_capability(dd->pcidev, PCI_CAP_ID_MSI))) { ipath_dev_err(dd, "Can't find MSI capability, " "can't restore MSI settings\n"); ret = 0; goto bail; } ipath_cdbg(VERBOSE, "Writing msi_lo 0x%x to config offset 0x%x\n", dd->ipath_msi_lo, pos + PCI_MSI_ADDRESS_LO); pci_write_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_LO, dd->ipath_msi_lo); ipath_cdbg(VERBOSE, "Writing msi_lo 0x%x to config offset 0x%x\n", dd->ipath_msi_hi, pos + PCI_MSI_ADDRESS_HI); pci_write_config_dword(dd->pcidev, pos + PCI_MSI_ADDRESS_HI, dd->ipath_msi_hi); pci_read_config_word(dd->pcidev, pos + PCI_MSI_FLAGS, &control); if (!(control & PCI_MSI_FLAGS_ENABLE)) { ipath_cdbg(VERBOSE, "MSI control at off %x was %x, " "setting MSI enable (%x)\n", pos + PCI_MSI_FLAGS, control, control | PCI_MSI_FLAGS_ENABLE); control |= PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dd->pcidev, pos + PCI_MSI_FLAGS, control); } /* now rewrite the data (vector) info */ pci_write_config_word(dd->pcidev, pos + ((control & PCI_MSI_FLAGS_64BIT) ? 12 : 8), dd->ipath_msi_data); /* we restore the cachelinesize also, although it doesn't really * matter */ pci_write_config_byte(dd->pcidev, PCI_CACHE_LINE_SIZE, dd->ipath_pci_cacheline); /* and now set the pci master bit again */ pci_set_master(dd->pcidev); ret = 1; bail: return ret; } /* This routine sleeps, so it can only be called from user context, not * from interrupt context. If we need interrupt context, we can split * it into two routines. */ static int ipath_setup_pe_reset(struct ipath_devdata *dd) { u64 val; int i; int ret; /* Use ERROR so it shows up in logs, etc. */ ipath_dev_err(dd, "Resetting InfiniPath unit %u\n", dd->ipath_unit); /* keep chip from being accessed in a few places */ dd->ipath_flags &= ~(IPATH_INITTED|IPATH_PRESENT); val = dd->ipath_control | INFINIPATH_C_RESET; ipath_write_kreg(dd, dd->ipath_kregs->kr_control, val); mb(); for (i = 1; i <= 5; i++) { int r; /* allow MBIST, etc. to complete; longer on each retry. * We sometimes get machine checks from bus timeout if no * response, so for now, make it *really* long. */ msleep(1000 + (1 + i) * 2000); if ((r = pci_write_config_dword(dd->pcidev, PCI_BASE_ADDRESS_0, dd->ipath_pcibar0))) ipath_dev_err(dd, "rewrite of BAR0 failed: %d\n", r); if ((r = pci_write_config_dword(dd->pcidev, PCI_BASE_ADDRESS_1, dd->ipath_pcibar1))) ipath_dev_err(dd, "rewrite of BAR1 failed: %d\n", r); /* now re-enable memory access */ if ((r = pci_enable_device(dd->pcidev))) ipath_dev_err(dd, "pci_enable_device failed after " "reset: %d\n", r); /* whether it worked or not, mark as present, again */ dd->ipath_flags |= IPATH_PRESENT; val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_revision); if (val == dd->ipath_revision) { ipath_cdbg(VERBOSE, "Got matching revision " "register %llx on try %d\n", (unsigned long long) val, i); ret = ipath_reinit_msi(dd); goto bail; } /* Probably getting -1 back */ ipath_dbg("Didn't get expected revision register, " "got %llx, try %d\n", (unsigned long long) val, i + 1); } ret = 0; /* failed */ bail: return ret; } /** * ipath_pe_put_tid - write a TID in chip * @dd: the infinipath device * @tidptr: pointer to the expected TID (in chip) to udpate * @tidtype: RCVHQ_RCV_TYPE_EAGER (1) for eager, RCVHQ_RCV_TYPE_EXPECTED (0) for expected * @pa: physical address of in memory buffer; ipath_tidinvalid if freeing * * This exists as a separate routine to allow for special locking etc. * It's used for both the full cleanup on exit, as well as the normal * setup and teardown. */ static void ipath_pe_put_tid(struct ipath_devdata *dd, u64 __iomem *tidptr, u32 type, unsigned long pa) { u32 __iomem *tidp32 = (u32 __iomem *)tidptr; unsigned long flags = 0; /* keep gcc quiet */ if (pa != dd->ipath_tidinvalid) { if (pa & ((1U << 11) - 1)) { dev_info(&dd->pcidev->dev, "BUG: physaddr %lx " "not 4KB aligned!\n", pa); return; } pa >>= 11; /* paranoia check */ if (pa & (7<<29)) ipath_dev_err(dd, "BUG: Physical page address 0x%lx " "has bits set in 31-29\n", pa); if (type == RCVHQ_RCV_TYPE_EAGER) pa |= dd->ipath_tidtemplate; else /* for now, always full 4KB page */ pa |= 2 << 29; } /* * Workaround chip bug 9437 by writing the scratch register * before and after the TID, and with an io write barrier. * We use a spinlock around the writes, so they can't intermix * with other TID (eager or expected) writes (the chip bug * is triggered by back to back TID writes). Unfortunately, this * call can be done from interrupt level for the port 0 eager TIDs, * so we have to use irqsave locks. */ spin_lock_irqsave(&dd->ipath_tid_lock, flags); ipath_write_kreg(dd, dd->ipath_kregs->kr_scratch, 0xfeeddeaf); if (dd->ipath_kregbase) writel(pa, tidp32); ipath_write_kreg(dd, dd->ipath_kregs->kr_scratch, 0xdeadbeef); mmiowb(); spin_unlock_irqrestore(&dd->ipath_tid_lock, flags); } /** * ipath_pe_put_tid_2 - write a TID in chip, Revision 2 or higher * @dd: the infinipath device * @tidptr: pointer to the expected TID (in chip) to udpate * @tidtype: RCVHQ_RCV_TYPE_EAGER (1) for eager, RCVHQ_RCV_TYPE_EXPECTED (0) for expected * @pa: physical address of in memory buffer; ipath_tidinvalid if freeing * * This exists as a separate routine to allow for selection of the * appropriate "flavor". The static calls in cleanup just use the * revision-agnostic form, as they are not performance critical. */ static void ipath_pe_put_tid_2(struct ipath_devdata *dd, u64 __iomem *tidptr, u32 type, unsigned long pa) { u32 __iomem *tidp32 = (u32 __iomem *)tidptr; if (pa != dd->ipath_tidinvalid) { if (pa & ((1U << 11) - 1)) { dev_info(&dd->pcidev->dev, "BUG: physaddr %lx " "not 2KB aligned!\n", pa); return; } pa >>= 11; /* paranoia check */ if (pa & (7<<29)) ipath_dev_err(dd, "BUG: Physical page address 0x%lx " "has bits set in 31-29\n", pa); if (type == RCVHQ_RCV_TYPE_EAGER) pa |= dd->ipath_tidtemplate; else /* for now, always full 4KB page */ pa |= 2 << 29; } if (dd->ipath_kregbase) writel(pa, tidp32); mmiowb(); } /** * ipath_pe_clear_tid - clear all TID entries for a port, expected and eager * @dd: the infinipath device * @port: the port * * clear all TID entries for a port, expected and eager. * Used from ipath_close(). On this chip, TIDs are only 32 bits, * not 64, but they are still on 64 bit boundaries, so tidbase * is declared as u64 * for the pointer math, even though we write 32 bits */ static void ipath_pe_clear_tids(struct ipath_devdata *dd, unsigned port) { u64 __iomem *tidbase; unsigned long tidinv; int i; if (!dd->ipath_kregbase) return; ipath_cdbg(VERBOSE, "Invalidate TIDs for port %u\n", port); tidinv = dd->ipath_tidinvalid; tidbase = (u64 __iomem *) ((char __iomem *)(dd->ipath_kregbase) + dd->ipath_rcvtidbase + port * dd->ipath_rcvtidcnt * sizeof(*tidbase)); for (i = 0; i < dd->ipath_rcvtidcnt; i++) dd->ipath_f_put_tid(dd, &tidbase[i], RCVHQ_RCV_TYPE_EXPECTED, tidinv); tidbase = (u64 __iomem *) ((char __iomem *)(dd->ipath_kregbase) + dd->ipath_rcvegrbase + port * dd->ipath_rcvegrcnt * sizeof(*tidbase)); for (i = 0; i < dd->ipath_rcvegrcnt; i++) dd->ipath_f_put_tid(dd, &tidbase[i], RCVHQ_RCV_TYPE_EAGER, tidinv); } /** * ipath_pe_tidtemplate - setup constants for TID updates * @dd: the infinipath device * * We setup stuff that we use a lot, to avoid calculating each time */ static void ipath_pe_tidtemplate(struct ipath_devdata *dd) { u32 egrsize = dd->ipath_rcvegrbufsize; /* For now, we always allocate 4KB buffers (at init) so we can * receive max size packets. We may want a module parameter to * specify 2KB or 4KB and/or make be per port instead of per device * for those who want to reduce memory footprint. Note that the * ipath_rcvhdrentsize size must be large enough to hold the largest * IB header (currently 96 bytes) that we expect to handle (plus of * course the 2 dwords of RHF). */ if (egrsize == 2048) dd->ipath_tidtemplate = 1U << 29; else if (egrsize == 4096) dd->ipath_tidtemplate = 2U << 29; else { egrsize = 4096; dev_info(&dd->pcidev->dev, "BUG: unsupported egrbufsize " "%u, using %u\n", dd->ipath_rcvegrbufsize, egrsize); dd->ipath_tidtemplate = 2U << 29; } dd->ipath_tidinvalid = 0; } static int ipath_pe_early_init(struct ipath_devdata *dd) { dd->ipath_flags |= IPATH_4BYTE_TID; if (ipath_unordered_wc()) dd->ipath_flags |= IPATH_PIO_FLUSH_WC; /* * For openfabrics, we need to be able to handle an IB header of * 24 dwords. HT chip has arbitrary sized receive buffers, so we * made them the same size as the PIO buffers. This chip does not * handle arbitrary size buffers, so we need the header large enough * to handle largest IB header, but still have room for a 2KB MTU * standard IB packet. */ dd->ipath_rcvhdrentsize = 24; dd->ipath_rcvhdrsize = IPATH_DFLT_RCVHDRSIZE; /* * To truly support a 4KB MTU (for usermode), we need to * bump this to a larger value. For now, we use them for * the kernel only. */ dd->ipath_rcvegrbufsize = 2048; /* * the min() check here is currently a nop, but it may not always * be, depending on just how we do ipath_rcvegrbufsize */ dd->ipath_ibmaxlen = min(dd->ipath_piosize2k, dd->ipath_rcvegrbufsize + (dd->ipath_rcvhdrentsize << 2)); dd->ipath_init_ibmaxlen = dd->ipath_ibmaxlen; /* * We can request a receive interrupt for 1 or * more packets from current offset. For now, we set this * up for a single packet. */ dd->ipath_rhdrhead_intr_off = 1ULL<<32; ipath_get_eeprom_info(dd); return 0; } int __attribute__((weak)) ipath_unordered_wc(void) { return 0; } /** * ipath_init_pe_get_base_info - set chip-specific flags for user code * @pd: the infinipath port * @kbase: ipath_base_info pointer * * We set the PCIE flag because the lower bandwidth on PCIe vs * HyperTransport can affect some user packet algorithms. */ static int ipath_pe_get_base_info(struct ipath_portdata *pd, void *kbase) { struct ipath_base_info *kinfo = kbase; struct ipath_devdata *dd; if (ipath_unordered_wc()) { kinfo->spi_runtime_flags |= IPATH_RUNTIME_FORCE_WC_ORDER; ipath_cdbg(PROC, "Intel processor, forcing WC order\n"); } else ipath_cdbg(PROC, "Not Intel processor, WC ordered\n"); if (pd == NULL) goto done; dd = pd->port_dd; done: kinfo->spi_runtime_flags |= IPATH_RUNTIME_PCIE | IPATH_RUNTIME_FORCE_PIOAVAIL | IPATH_RUNTIME_PIO_REGSWAPPED; return 0; } static void ipath_pe_free_irq(struct ipath_devdata *dd) { free_irq(dd->ipath_irq, dd); dd->ipath_irq = 0; } static void ipath_pe_read_counters(struct ipath_devdata *dd, struct infinipath_counters *cntrs) { cntrs->LBIntCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(LBIntCnt)); cntrs->LBFlowStallCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(LBFlowStallCnt)); cntrs->TxSDmaDescCnt = 0; cntrs->TxUnsupVLErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxUnsupVLErrCnt)); cntrs->TxDataPktCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxDataPktCnt)); cntrs->TxFlowPktCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxFlowPktCnt)); cntrs->TxDwordCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxDwordCnt)); cntrs->TxLenErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxLenErrCnt)); cntrs->TxMaxMinLenErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxMaxMinLenErrCnt)); cntrs->TxUnderrunCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxUnderrunCnt)); cntrs->TxFlowStallCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxFlowStallCnt)); cntrs->TxDroppedPktCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(TxDroppedPktCnt)); cntrs->RxDroppedPktCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxDroppedPktCnt)); cntrs->RxDataPktCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxDataPktCnt)); cntrs->RxFlowPktCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxFlowPktCnt)); cntrs->RxDwordCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxDwordCnt)); cntrs->RxLenErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxLenErrCnt)); cntrs->RxMaxMinLenErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxMaxMinLenErrCnt)); cntrs->RxICRCErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxICRCErrCnt)); cntrs->RxVCRCErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxVCRCErrCnt)); cntrs->RxFlowCtrlErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxFlowCtrlErrCnt)); cntrs->RxBadFormatCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxBadFormatCnt)); cntrs->RxLinkProblemCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxLinkProblemCnt)); cntrs->RxEBPCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxEBPCnt)); cntrs->RxLPCRCErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxLPCRCErrCnt)); cntrs->RxBufOvflCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxBufOvflCnt)); cntrs->RxTIDFullErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxTIDFullErrCnt)); cntrs->RxTIDValidErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxTIDValidErrCnt)); cntrs->RxPKeyMismatchCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxPKeyMismatchCnt)); cntrs->RxP0HdrEgrOvflCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxP0HdrEgrOvflCnt)); cntrs->RxP1HdrEgrOvflCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxP1HdrEgrOvflCnt)); cntrs->RxP2HdrEgrOvflCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxP2HdrEgrOvflCnt)); cntrs->RxP3HdrEgrOvflCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxP3HdrEgrOvflCnt)); cntrs->RxP4HdrEgrOvflCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(RxP4HdrEgrOvflCnt)); cntrs->RxP5HdrEgrOvflCnt = 0; cntrs->RxP6HdrEgrOvflCnt = 0; cntrs->RxP7HdrEgrOvflCnt = 0; cntrs->RxP8HdrEgrOvflCnt = 0; cntrs->RxP9HdrEgrOvflCnt = 0; cntrs->RxP10HdrEgrOvflCnt = 0; cntrs->RxP11HdrEgrOvflCnt = 0; cntrs->RxP12HdrEgrOvflCnt = 0; cntrs->RxP13HdrEgrOvflCnt = 0; cntrs->RxP14HdrEgrOvflCnt = 0; cntrs->RxP15HdrEgrOvflCnt = 0; cntrs->RxP16HdrEgrOvflCnt = 0; cntrs->IBStatusChangeCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(IBStatusChangeCnt)); cntrs->IBLinkErrRecoveryCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(IBLinkErrRecoveryCnt)); cntrs->IBLinkDownedCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(IBLinkDownedCnt)); cntrs->IBSymbolErrCnt = ipath_snap_cntr(dd, IPATH_CREG_OFFSET(IBSymbolErrCnt)); cntrs->RxVL15DroppedPktCnt = 0; cntrs->RxOtherLocalPhyErrCnt = 0; cntrs->PcieRetryBufDiagQwordCnt = 0; cntrs->ExcessBufferOvflCnt = dd->ipath_overrun_thresh_errs; cntrs->LocalLinkIntegrityErrCnt = dd->ipath_lli_errs; cntrs->RxVlErrCnt = 0; cntrs->RxDlidFltrCnt = 0; } /* * On platforms using this chip, and not having ordered WC stores, we * can get TXE parity errors due to speculative reads to the PIO buffers, * and this, due to a chip bug can result in (many) false parity error * reports. So it's a debug print on those, and an info print on systems * where the speculative reads don't occur. * Because we can get lots of false errors, we have no upper limit * on recovery attempts on those platforms. */ static int ipath_pe_txe_recover(struct ipath_devdata *dd) { if (ipath_unordered_wc()) ipath_dbg("Recovering from TXE PIO parity error\n"); else { int cnt = ++ipath_stats.sps_txeparity; if (cnt >= IPATH_MAX_PARITY_ATTEMPTS) { if (cnt == IPATH_MAX_PARITY_ATTEMPTS) ipath_dev_err(dd, "Too many attempts to recover from " "TXE parity, giving up\n"); return 0; } dev_info(&dd->pcidev->dev, "Recovering from TXE PIO parity error\n"); } return 1; } /** * ipath_init_iba6120_funcs - set up the chip-specific function pointers * @dd: the infinipath device * * This is global, and is called directly at init to set up the * chip-specific function pointers for later use. */ void ipath_init_iba6120_funcs(struct ipath_devdata *dd) { dd->ipath_f_intrsetup = ipath_pe_intconfig; dd->ipath_f_bus = ipath_setup_pe_config; dd->ipath_f_reset = ipath_setup_pe_reset; dd->ipath_f_get_boardname = ipath_pe_boardname; dd->ipath_f_init_hwerrors = ipath_pe_init_hwerrors; dd->ipath_f_early_init = ipath_pe_early_init; dd->ipath_f_handle_hwerrors = ipath_pe_handle_hwerrors; dd->ipath_f_quiet_serdes = ipath_pe_quiet_serdes; dd->ipath_f_bringup_serdes = ipath_pe_bringup_serdes; dd->ipath_f_clear_tids = ipath_pe_clear_tids; /* * this may get changed after we read the chip revision, * but we start with the safe version for all revs */ dd->ipath_f_put_tid = ipath_pe_put_tid; dd->ipath_f_cleanup = ipath_setup_pe_cleanup; dd->ipath_f_setextled = ipath_setup_pe_setextled; dd->ipath_f_get_base_info = ipath_pe_get_base_info; dd->ipath_f_free_irq = ipath_pe_free_irq; /* initialize chip-specific variables */ dd->ipath_f_tidtemplate = ipath_pe_tidtemplate; dd->ipath_f_read_counters = ipath_pe_read_counters; /* * setup the register offsets, since they are different for each * chip */ dd->ipath_kregs = &ipath_pe_kregs; dd->ipath_cregs = &ipath_pe_cregs; ipath_init_pe_variables(dd); }