// SPDX-License-Identifier: GPL-2.0-or-later /* * File: drivers/input/keyboard/adp5588_keys.c * Description: keypad driver for ADP5588 and ADP5587 * I2C QWERTY Keypad and IO Expander * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * Copyright (C) 2008-2010 Analog Devices Inc. */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/workqueue.h> #include <linux/errno.h> #include <linux/pm.h> #include <linux/platform_device.h> #include <linux/input.h> #include <linux/i2c.h> #include <linux/gpio/driver.h> #include <linux/slab.h> #include <linux/platform_data/adp5588.h> /* Key Event Register xy */ #define KEY_EV_PRESSED (1 << 7) #define KEY_EV_MASK (0x7F) #define KP_SEL(x) (0xFFFF >> (16 - x)) /* 2^x-1 */ #define KEYP_MAX_EVENT 10 /* * Early pre 4.0 Silicon required to delay readout by at least 25ms, * since the Event Counter Register updated 25ms after the interrupt * asserted. */ #define WA_DELAYED_READOUT_REVID(rev) ((rev) < 4) struct adp5588_kpad { struct i2c_client *client; struct input_dev *input; struct delayed_work work; unsigned long delay; unsigned short keycode[ADP5588_KEYMAPSIZE]; const struct adp5588_gpi_map *gpimap; unsigned short gpimapsize; #ifdef CONFIG_GPIOLIB unsigned char gpiomap[ADP5588_MAXGPIO]; bool export_gpio; struct gpio_chip gc; struct mutex gpio_lock; /* Protect cached dir, dat_out */ u8 dat_out[3]; u8 dir[3]; #endif }; static int adp5588_read(struct i2c_client *client, u8 reg) { int ret = i2c_smbus_read_byte_data(client, reg); if (ret < 0) dev_err(&client->dev, "Read Error\n"); return ret; } static int adp5588_write(struct i2c_client *client, u8 reg, u8 val) { return i2c_smbus_write_byte_data(client, reg, val); } #ifdef CONFIG_GPIOLIB static int adp5588_gpio_get_value(struct gpio_chip *chip, unsigned off) { struct adp5588_kpad *kpad = gpiochip_get_data(chip); unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]); unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]); int val; mutex_lock(&kpad->gpio_lock); if (kpad->dir[bank] & bit) val = kpad->dat_out[bank]; else val = adp5588_read(kpad->client, GPIO_DAT_STAT1 + bank); mutex_unlock(&kpad->gpio_lock); return !!(val & bit); } static void adp5588_gpio_set_value(struct gpio_chip *chip, unsigned off, int val) { struct adp5588_kpad *kpad = gpiochip_get_data(chip); unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]); unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]); mutex_lock(&kpad->gpio_lock); if (val) kpad->dat_out[bank] |= bit; else kpad->dat_out[bank] &= ~bit; adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank, kpad->dat_out[bank]); mutex_unlock(&kpad->gpio_lock); } static int adp5588_gpio_direction_input(struct gpio_chip *chip, unsigned off) { struct adp5588_kpad *kpad = gpiochip_get_data(chip); unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]); unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]); int ret; mutex_lock(&kpad->gpio_lock); kpad->dir[bank] &= ~bit; ret = adp5588_write(kpad->client, GPIO_DIR1 + bank, kpad->dir[bank]); mutex_unlock(&kpad->gpio_lock); return ret; } static int adp5588_gpio_direction_output(struct gpio_chip *chip, unsigned off, int val) { struct adp5588_kpad *kpad = gpiochip_get_data(chip); unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]); unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]); int ret; mutex_lock(&kpad->gpio_lock); kpad->dir[bank] |= bit; if (val) kpad->dat_out[bank] |= bit; else kpad->dat_out[bank] &= ~bit; ret = adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank, kpad->dat_out[bank]); ret |= adp5588_write(kpad->client, GPIO_DIR1 + bank, kpad->dir[bank]); mutex_unlock(&kpad->gpio_lock); return ret; } static int adp5588_build_gpiomap(struct adp5588_kpad *kpad, const struct adp5588_kpad_platform_data *pdata) { bool pin_used[ADP5588_MAXGPIO]; int n_unused = 0; int i; memset(pin_used, 0, sizeof(pin_used)); for (i = 0; i < pdata->rows; i++) pin_used[i] = true; for (i = 0; i < pdata->cols; i++) pin_used[i + GPI_PIN_COL_BASE - GPI_PIN_BASE] = true; for (i = 0; i < kpad->gpimapsize; i++) pin_used[kpad->gpimap[i].pin - GPI_PIN_BASE] = true; for (i = 0; i < ADP5588_MAXGPIO; i++) if (!pin_used[i]) kpad->gpiomap[n_unused++] = i; return n_unused; } static int adp5588_gpio_add(struct adp5588_kpad *kpad) { struct device *dev = &kpad->client->dev; const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(dev); const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data; int i, error; if (!gpio_data) return 0; kpad->gc.ngpio = adp5588_build_gpiomap(kpad, pdata); if (kpad->gc.ngpio == 0) { dev_info(dev, "No unused gpios left to export\n"); return 0; } kpad->export_gpio = true; kpad->gc.direction_input = adp5588_gpio_direction_input; kpad->gc.direction_output = adp5588_gpio_direction_output; kpad->gc.get = adp5588_gpio_get_value; kpad->gc.set = adp5588_gpio_set_value; kpad->gc.can_sleep = 1; kpad->gc.base = gpio_data->gpio_start; kpad->gc.label = kpad->client->name; kpad->gc.owner = THIS_MODULE; kpad->gc.names = gpio_data->names; mutex_init(&kpad->gpio_lock); error = gpiochip_add_data(&kpad->gc, kpad); if (error) { dev_err(dev, "gpiochip_add failed, err: %d\n", error); return error; } for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) { kpad->dat_out[i] = adp5588_read(kpad->client, GPIO_DAT_OUT1 + i); kpad->dir[i] = adp5588_read(kpad->client, GPIO_DIR1 + i); } if (gpio_data->setup) { error = gpio_data->setup(kpad->client, kpad->gc.base, kpad->gc.ngpio, gpio_data->context); if (error) dev_warn(dev, "setup failed, %d\n", error); } return 0; } static void adp5588_gpio_remove(struct adp5588_kpad *kpad) { struct device *dev = &kpad->client->dev; const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(dev); const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data; int error; if (!kpad->export_gpio) return; if (gpio_data->teardown) { error = gpio_data->teardown(kpad->client, kpad->gc.base, kpad->gc.ngpio, gpio_data->context); if (error) dev_warn(dev, "teardown failed %d\n", error); } gpiochip_remove(&kpad->gc); } #else static inline int adp5588_gpio_add(struct adp5588_kpad *kpad) { return 0; } static inline void adp5588_gpio_remove(struct adp5588_kpad *kpad) { } #endif static void adp5588_report_events(struct adp5588_kpad *kpad, int ev_cnt) { int i, j; for (i = 0; i < ev_cnt; i++) { int key = adp5588_read(kpad->client, Key_EVENTA + i); int key_val = key & KEY_EV_MASK; if (key_val >= GPI_PIN_BASE && key_val <= GPI_PIN_END) { for (j = 0; j < kpad->gpimapsize; j++) { if (key_val == kpad->gpimap[j].pin) { input_report_switch(kpad->input, kpad->gpimap[j].sw_evt, key & KEY_EV_PRESSED); break; } } } else { input_report_key(kpad->input, kpad->keycode[key_val - 1], key & KEY_EV_PRESSED); } } } static void adp5588_work(struct work_struct *work) { struct adp5588_kpad *kpad = container_of(work, struct adp5588_kpad, work.work); struct i2c_client *client = kpad->client; int status, ev_cnt; status = adp5588_read(client, INT_STAT); if (status & ADP5588_OVR_FLOW_INT) /* Unlikely and should never happen */ dev_err(&client->dev, "Event Overflow Error\n"); if (status & ADP5588_KE_INT) { ev_cnt = adp5588_read(client, KEY_LCK_EC_STAT) & ADP5588_KEC; if (ev_cnt) { adp5588_report_events(kpad, ev_cnt); input_sync(kpad->input); } } adp5588_write(client, INT_STAT, status); /* Status is W1C */ } static irqreturn_t adp5588_irq(int irq, void *handle) { struct adp5588_kpad *kpad = handle; /* * use keventd context to read the event fifo registers * Schedule readout at least 25ms after notification for * REVID < 4 */ schedule_delayed_work(&kpad->work, kpad->delay); return IRQ_HANDLED; } static int adp5588_setup(struct i2c_client *client) { const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(&client->dev); const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data; int i, ret; unsigned char evt_mode1 = 0, evt_mode2 = 0, evt_mode3 = 0; ret = adp5588_write(client, KP_GPIO1, KP_SEL(pdata->rows)); ret |= adp5588_write(client, KP_GPIO2, KP_SEL(pdata->cols) & 0xFF); ret |= adp5588_write(client, KP_GPIO3, KP_SEL(pdata->cols) >> 8); if (pdata->en_keylock) { ret |= adp5588_write(client, UNLOCK1, pdata->unlock_key1); ret |= adp5588_write(client, UNLOCK2, pdata->unlock_key2); ret |= adp5588_write(client, KEY_LCK_EC_STAT, ADP5588_K_LCK_EN); } for (i = 0; i < KEYP_MAX_EVENT; i++) ret |= adp5588_read(client, Key_EVENTA); for (i = 0; i < pdata->gpimapsize; i++) { unsigned short pin = pdata->gpimap[i].pin; if (pin <= GPI_PIN_ROW_END) { evt_mode1 |= (1 << (pin - GPI_PIN_ROW_BASE)); } else { evt_mode2 |= ((1 << (pin - GPI_PIN_COL_BASE)) & 0xFF); evt_mode3 |= ((1 << (pin - GPI_PIN_COL_BASE)) >> 8); } } if (pdata->gpimapsize) { ret |= adp5588_write(client, GPI_EM1, evt_mode1); ret |= adp5588_write(client, GPI_EM2, evt_mode2); ret |= adp5588_write(client, GPI_EM3, evt_mode3); } if (gpio_data) { for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) { int pull_mask = gpio_data->pullup_dis_mask; ret |= adp5588_write(client, GPIO_PULL1 + i, (pull_mask >> (8 * i)) & 0xFF); } } ret |= adp5588_write(client, INT_STAT, ADP5588_CMP2_INT | ADP5588_CMP1_INT | ADP5588_OVR_FLOW_INT | ADP5588_K_LCK_INT | ADP5588_GPI_INT | ADP5588_KE_INT); /* Status is W1C */ ret |= adp5588_write(client, CFG, ADP5588_INT_CFG | ADP5588_OVR_FLOW_IEN | ADP5588_KE_IEN); if (ret < 0) { dev_err(&client->dev, "Write Error\n"); return ret; } return 0; } static void adp5588_report_switch_state(struct adp5588_kpad *kpad) { int gpi_stat1 = adp5588_read(kpad->client, GPIO_DAT_STAT1); int gpi_stat2 = adp5588_read(kpad->client, GPIO_DAT_STAT2); int gpi_stat3 = adp5588_read(kpad->client, GPIO_DAT_STAT3); int gpi_stat_tmp, pin_loc; int i; for (i = 0; i < kpad->gpimapsize; i++) { unsigned short pin = kpad->gpimap[i].pin; if (pin <= GPI_PIN_ROW_END) { gpi_stat_tmp = gpi_stat1; pin_loc = pin - GPI_PIN_ROW_BASE; } else if ((pin - GPI_PIN_COL_BASE) < 8) { gpi_stat_tmp = gpi_stat2; pin_loc = pin - GPI_PIN_COL_BASE; } else { gpi_stat_tmp = gpi_stat3; pin_loc = pin - GPI_PIN_COL_BASE - 8; } if (gpi_stat_tmp < 0) { dev_err(&kpad->client->dev, "Can't read GPIO_DAT_STAT switch %d default to OFF\n", pin); gpi_stat_tmp = 0; } input_report_switch(kpad->input, kpad->gpimap[i].sw_evt, !(gpi_stat_tmp & (1 << pin_loc))); } input_sync(kpad->input); } static int adp5588_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adp5588_kpad *kpad; const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(&client->dev); struct input_dev *input; unsigned int revid; int ret, i; int error; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(&client->dev, "SMBUS Byte Data not Supported\n"); return -EIO; } if (!pdata) { dev_err(&client->dev, "no platform data?\n"); return -EINVAL; } if (!pdata->rows || !pdata->cols || !pdata->keymap) { dev_err(&client->dev, "no rows, cols or keymap from pdata\n"); return -EINVAL; } if (pdata->keymapsize != ADP5588_KEYMAPSIZE) { dev_err(&client->dev, "invalid keymapsize\n"); return -EINVAL; } if (!pdata->gpimap && pdata->gpimapsize) { dev_err(&client->dev, "invalid gpimap from pdata\n"); return -EINVAL; } if (pdata->gpimapsize > ADP5588_GPIMAPSIZE_MAX) { dev_err(&client->dev, "invalid gpimapsize\n"); return -EINVAL; } for (i = 0; i < pdata->gpimapsize; i++) { unsigned short pin = pdata->gpimap[i].pin; if (pin < GPI_PIN_BASE || pin > GPI_PIN_END) { dev_err(&client->dev, "invalid gpi pin data\n"); return -EINVAL; } if (pin <= GPI_PIN_ROW_END) { if (pin - GPI_PIN_ROW_BASE + 1 <= pdata->rows) { dev_err(&client->dev, "invalid gpi row data\n"); return -EINVAL; } } else { if (pin - GPI_PIN_COL_BASE + 1 <= pdata->cols) { dev_err(&client->dev, "invalid gpi col data\n"); return -EINVAL; } } } if (!client->irq) { dev_err(&client->dev, "no IRQ?\n"); return -EINVAL; } kpad = kzalloc(sizeof(*kpad), GFP_KERNEL); input = input_allocate_device(); if (!kpad || !input) { error = -ENOMEM; goto err_free_mem; } kpad->client = client; kpad->input = input; INIT_DELAYED_WORK(&kpad->work, adp5588_work); ret = adp5588_read(client, DEV_ID); if (ret < 0) { error = ret; goto err_free_mem; } revid = (u8) ret & ADP5588_DEVICE_ID_MASK; if (WA_DELAYED_READOUT_REVID(revid)) kpad->delay = msecs_to_jiffies(30); input->name = client->name; input->phys = "adp5588-keys/input0"; input->dev.parent = &client->dev; input_set_drvdata(input, kpad); input->id.bustype = BUS_I2C; input->id.vendor = 0x0001; input->id.product = 0x0001; input->id.version = revid; input->keycodesize = sizeof(kpad->keycode[0]); input->keycodemax = pdata->keymapsize; input->keycode = kpad->keycode; memcpy(kpad->keycode, pdata->keymap, pdata->keymapsize * input->keycodesize); kpad->gpimap = pdata->gpimap; kpad->gpimapsize = pdata->gpimapsize; /* setup input device */ __set_bit(EV_KEY, input->evbit); if (pdata->repeat) __set_bit(EV_REP, input->evbit); for (i = 0; i < input->keycodemax; i++) if (kpad->keycode[i] <= KEY_MAX) __set_bit(kpad->keycode[i], input->keybit); __clear_bit(KEY_RESERVED, input->keybit); if (kpad->gpimapsize) __set_bit(EV_SW, input->evbit); for (i = 0; i < kpad->gpimapsize; i++) __set_bit(kpad->gpimap[i].sw_evt, input->swbit); error = input_register_device(input); if (error) { dev_err(&client->dev, "unable to register input device\n"); goto err_free_mem; } error = request_irq(client->irq, adp5588_irq, IRQF_TRIGGER_FALLING, client->dev.driver->name, kpad); if (error) { dev_err(&client->dev, "irq %d busy?\n", client->irq); goto err_unreg_dev; } error = adp5588_setup(client); if (error) goto err_free_irq; if (kpad->gpimapsize) adp5588_report_switch_state(kpad); error = adp5588_gpio_add(kpad); if (error) goto err_free_irq; device_init_wakeup(&client->dev, 1); i2c_set_clientdata(client, kpad); dev_info(&client->dev, "Rev.%d keypad, irq %d\n", revid, client->irq); return 0; err_free_irq: free_irq(client->irq, kpad); cancel_delayed_work_sync(&kpad->work); err_unreg_dev: input_unregister_device(input); input = NULL; err_free_mem: input_free_device(input); kfree(kpad); return error; } static int adp5588_remove(struct i2c_client *client) { struct adp5588_kpad *kpad = i2c_get_clientdata(client); adp5588_write(client, CFG, 0); free_irq(client->irq, kpad); cancel_delayed_work_sync(&kpad->work); input_unregister_device(kpad->input); adp5588_gpio_remove(kpad); kfree(kpad); return 0; } #ifdef CONFIG_PM static int adp5588_suspend(struct device *dev) { struct adp5588_kpad *kpad = dev_get_drvdata(dev); struct i2c_client *client = kpad->client; disable_irq(client->irq); cancel_delayed_work_sync(&kpad->work); if (device_may_wakeup(&client->dev)) enable_irq_wake(client->irq); return 0; } static int adp5588_resume(struct device *dev) { struct adp5588_kpad *kpad = dev_get_drvdata(dev); struct i2c_client *client = kpad->client; if (device_may_wakeup(&client->dev)) disable_irq_wake(client->irq); enable_irq(client->irq); return 0; } static const struct dev_pm_ops adp5588_dev_pm_ops = { .suspend = adp5588_suspend, .resume = adp5588_resume, }; #endif static const struct i2c_device_id adp5588_id[] = { { "adp5588-keys", 0 }, { "adp5587-keys", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adp5588_id); static struct i2c_driver adp5588_driver = { .driver = { .name = KBUILD_MODNAME, #ifdef CONFIG_PM .pm = &adp5588_dev_pm_ops, #endif }, .probe = adp5588_probe, .remove = adp5588_remove, .id_table = adp5588_id, }; module_i2c_driver(adp5588_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>"); MODULE_DESCRIPTION("ADP5588/87 Keypad driver");